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Summary: Pre-experimental Frequentist error probabilities do not summarize ade-
quately the strength of evidence from data. The Conditional Frequentist paradigm
overcomes this problem by selecting a “neutral” statistic S to reflect the strength of the
evidence and reporting a conditional error probability, given the observed value of S.

We introduce a neutral statistic S that makes the Conditional Frequentist error reports
identical to Bayesian posterior probabilities of the hypotheses. In symmetrical cases we
can show this strategy to be optimal from the Frequentist perspective. A Conditional
Frequentist who uses such a strategy can exploit the consistency of the method with
the Likelihood Principle—for example, the validity of sequential hypothesis tests even
if the stopping rule is informative or is incompletely specified.

1. Introduction

1.1 Pre-experimental Frequentist Approach

The classical frequentist procedure for testing a simple hypothesis such as
H0 : X ∼ f0(·) against a simple alternative H1 : X ∼ f1(·) upon observ-
ing some random variable X taking values in a space X is simple: select
any measurable set R ⊂ X (the critical or rejection region) and

Pre-exp Freq: If X ∈ R, then Reject H0 and report
error probability α ≡ P0[X ∈ R]

If X /∈ R, then Fail to reject H0 and report
error probability β ≡ P1[X /∈ R]

The Size and Power of the test are, respectively, α = P0[X ∈ R] and
1−β = P1[X ∈ R], the probabilities of rejection under the null and alter-
native hypotheses. It is desirable to have both α and β small, since they
represent the probabilities of making two possible kinds of errors: α is the
probability of a Type-I error, erroneously rejecting the null hypothesis H0

(by observing x ∈ R), if in fact H0 is true; while β is that of a Type-II
error, erroneously failing to reject H0 (by observing x /∈ R), if in fact H1

is true.

The Neyman-Pearson lemma (see, e.g., Lehmann (1986)) shows that these
error probabilities are minimized by rejection regions of the form

R = {x ∈ X : B(x) ≤ rc}
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for an arbitrary constant (the critical value) rc > 0, where B(x) denotes
the Likelihood Ratio statistic

B(x) ≡ f0(x)

f1(x)
.

The probability distribution for B ≡ B(X) will depend on that of X, of
course; if we denote by Fθ(b) ≡ Pθ[B(X) ≤ b] the distribution function
for the likelihood ratio under the distribution X ∼ fθ(·), for θ ∈ {0, 1},
then the size and power of this test are α = F0(rc) and 1 − β = F1(rc),
respectively. The critical value rc is often chosen to attain a specified
Type-I error probability α (by setting rc ≡ F0

−1(α)) or to attain equal
probabilities of the two kinds of errors (by setting rc ≡ (F0 + F1)

−1(1)).
The Neyman-Pearson test depends on the data only through B(X), and its
complete specification requires only knowledge of the distribution functions
F0(b) and F1(b) for all b > 0.

1.2 Objections

The hallmark virtue of this method is its Frequentist Guarantee: the strong
law of large numbers implies that in a long series of independent size-α tests
of true hypotheses H0, at most 100α% will be erroneously rejected.

Nevertheless many statisticians and investigators object to fixed-level hy-
pothesis testing in this form, on the grounds that it does not distinguish
between marginal evidence (for example, that on the boundary ∂R of the
rejection region) and extreme evidence.

1.2.1 A Short “Aside” on p-Values

Some investigators address this problem by reporting not only the decision
to reject the hypothesis but also the p−value, the “probability of observing
evidence against H0 as strong or stronger as that actually observed, if the
hypothesis is true”; in this context, that is simply

p = P0[ More extreme evidence | X = x] = F0

(

B(x)
)

.

Although p-values do offer some indication of relative strengths of evidence
for different outcomes, they suffer from two fatal flaws: they distort the
strength of evidence (this is illustrated in Example 1 below, where data
with x̄n = −.18 offer strong evidence in favor of H0, yet p = 0.05 leading
many investigators to reject H0 in favor of H1; or the case x̄n = 0, equally
improbable under the two hypotheses, yet with p = 0.0023 suggesting
strong evidence in favor of H1). More alarming perhaps is that they are
invalid from the Frequentist perspective, because

P0[p ≡ F0

(

B(X)
)

≤ α′ | X ∈ R] > α′



for α′ < α (i.e., the distribution of p for rejected but nevertheless true
hypotheses is not subuniform), in violation (conditional on rejection) of
the Frequentist Guarantee.

1.3 Example 1

Let X be a vector of n independent observations from a normal distribution
with known variance (say, one) but uncertain mean, known only to be one
of two possible values (say, µ0 = −1 or µ1 = +1). The Likelihood Ratio
upon observing X = x depends only on the average x̄n ≡ Σxi/n:

B(x) =
f0(x)

f1(x)
=

(2π)−n/2e−Σ(xi+1)2/2

(2π)−n/2e−Σ(xi−1)2/2
= e−2nx̄n ,

so a Neyman-Pearson test would reject H0 : µ = µ0 for large values of
X̄. The size and power of a test that rejects H0 when X̄ ≥ c would
be α = Φ

(

− √n(c + 1)
)

and 1 − β = 1 − Φ
(√

n(c − 1)
)

, respectively.
With n = 4 and c = 0, for example, we have equal error probabilities
α = β = Φ(−

√
4) ≈ 0.025. But these pre-experimental reports of error

probability do not distinguish between an observation with X̄ = x̄n = 0.1,
offering at best marginal evidence against H0, and and extreme observation
like x̄n = 1.0, a compelling one; in each case the reported error probability
is 0.025, while the p-value is p = 1− F0

(

B(x)
)

= Φ
(

−√n(1 + x̄n)
)

:

Data LHR Pre-Exp Freq p-Value

x̄n B(x) α β p

−0.18 4.221 0.025 0.025 0.050

0.00 1.000 0.025 0.025 0.023

0.10 0.449 0.025 0.025 0.014

0.37 0.052 0.025 0.025 0.003

1.00 3.4×10−4 0.025 0.025 3.2×10−5

2. The Conditional Frequentist Paradigm

A broad effort to find valid frequentist tests that better distinguish extreme
from marginal evidence was begun by Kiefer (1975, 1977) and advanced
by Kiefer and Brownie (1977), Brown (1978), and others (see Berger and
Wolpert (1988) for references). Briefly, the idea is to choose a “neutral”
(possibly ancillary) statistic S intended to reflect how extreme the data
are, without offering evidence either for or against H0; in Example 1, for
example, one might choose S(X) = |X̄| or X̄2. With the same rejection
region as before, the conditional frequentist reports:



Cond’l Freq: If X ∈ R, then Reject H0 and report
error probability α(s) ≡ P0[X ∈ R|S = s]

If X /∈ R, then Fail to reject H0 and report
error probability β(s) ≡ P1[X /∈ R|S = s]

Now the error-reports α(S), β(S) are data-dependent random variables,
and the frequentist guarantee takes the form P0[α(S) ≤ p] ≤ p for every
p ∈ (0, 1). In Example 1, for S(X) = |X̄|, we have

Data Pre-exp Freq p-Value Cond’l Freq

x̄n α β p α(s) β(s)

−0.18 0.025 0.025 0.050 0.81 0.19

0.00 0.025 0.025 0.023 0.50 0.50

0.10 0.025 0.025 0.014 0.31 0.69

0.37 0.025 0.025 0.003 0.05 0.95

1.00 0.025 0.025 3.2×10−5 3.4×10−4 1.00

2.1 Bayesian Tests

Bayesian decision-theoretic methods begin by quantifying the cost Lθ of
making an error when Hθ : X ∼ fθ is true, for θ ∈ {0, 1}. The “state
of nature” θ is regarded as uncertain and therefore random, with some
probability distribution π0 = P[H0] = P[θ = 0], π1 = P[H1] = 1−π0. Upon
observing the data X = x the posterior probability of H0 is computed,

π?0 = π[H0|X=x] =
π0f0(x)

π0f0(x) + π1f1(x)
=

π0

π1

B(X)

1 + π0

π1

B(X)
;

this would be the error probability if H0 were rejected.

The optimal strategy for minimizing the expected loss depends only on the
prior odds ρ ≡ π0/π1, the loss ratio ` ≡ L0/L1, and the Likelihood Ratio
(also called a Bayes factor) B ≡ B(X):

Bayesian: If ρB ≤ `, then Reject H0 and report
error probability π?0 ≡ P[H0|X] = ρB/(1 + ρB)

If ρB > `, then Accept H0 and report
error probability π?1 ≡ P[H1|X] = 1/(1 + ρB)

Error reports for rejected hypotheses will never exceed `/(1+ `), so setting
` = α/(1 − α) would lead to a test with a guaranteed level π?

0 ≤ α;
conversely, the choice ` = ρ will always prefer the more likely hypothesis.
For example, with equal losses (so ` = 1) and a priori equal probabilities
for the two hypotheses (so ρ = 1) in Example 1, for S(X) = |X̄|, we have:



Data LHR Cond’l Freq Bayesian

x̄n B(x) α(s) β(s) π?0 π?1
−0.18 4.221 0.81 0.19 0.81 0.19

0.00 1.000 0.50 0.50 0.50 0.50

0.10 0.449 0.31 0.69 0.31 0.69

0.37 0.052 0.05 0.95 0.05 0.95

1.00 3.4×10−4 3.4×10−4 1.00 3.4×10−4 1.00

In this example we always have α(S) = π?0 and β(S) = π?1 ; indeed both
α(S) and π?0 are given by B/(1 + B) = 1/(1 + e2nx̄n), so they must be
equal for all n and x. Is it possible that in every example we can find
some statistic S for which the Conditional Frequentist and Bayesian tests
coincide? The answer is almost “yes.”

3. The Proportional Tail Statistic Sρ

Suppose that B ≡ B(X) has an absolutely continuous distribution under
both hypotheses, so both F0(·) and F1(·) are equal to the integrals of their
derivatives F ′0(·) and F ′1(·).

Lemma. For all b > 0, F ′0(b) ≡ bF ′1(b).

Proof.

F0(b) =

∫ b

0

F ′0(y)dy = P0[B(X) ≤ b]

=

∫

{x: B(x)≤b}

f0(x)dx

=

∫

{x: B(x)≤b}

B(x)f1(x)dx

=

∫ b

0

yF ′1(y)dy.

The last step follows from the change of variables y = B(x) ≡ f0(x)
f1(x)

. Now

differentiate both sides with respect to b (by our supposition above that
F0 and F1 be absolutely continuous) to complete the proof. ¦
For each ρ > 0 define the proportional tail statistic

Sρ ≡ min
(

F1(B), ρ− ρF0(B)
)

.

Notice that F1(·) + ρF0(·) increases continuously from from 0 to (1+ρ)
on [0,∞), so there is a smallest b∗ > 0 at which F1(b

∗) = ρ
(

1 − F0(b
∗)

)

.



For any critical value rc ≤ b∗ and likelihood ratio b < rc, the conditional
distribution of B given Sρ = F1(b) is concentrated on exactly two points:
B = b and B = b′, where b′ > b∗ satisfies

F1(b)

1− F0(b′)
=

P1[B ≤ b]

P0[B > b′]
= ρ

(this explains the statistic’s name). Simple computation using the Lemma
reveals that the conditional (on Sρ) probabilities for B to take on the two
values (b, b′) are in the ratio ρb : 1.

Let ac = F0
−1

(

1−F1(rc)/ρ
)

be the number a > b∗ satisfying F1(rc)
1−F0(a)

= ρ.

Then similarly if b > ac then the conditional distribution of B, given
Sρ = ρ

(

1−F0(b)
)

, is concentrated on two points, with probabilities in the
same ratio.

Thus the error-report for a Conditional Frequentist test using Sρ as the
neutral statistic, and R = {x : B(x) ≤ rc} for a critical region, would be:

Prop Tail: If B ≤ rc, then Reject H0 and report
error probability α(s) = ρB/(1 + ρB)

If B > ac, then Accept H0 and report
error probability β(s) = 1/(1 + ρB)

If rc < B < ac we cannot reject H0 (since X /∈ R) but the conditional
error report would be β(s) ≡ P1[B > rc|Sρ] = 1 (since S−1ρ (s) = {b, b′} ⊂
(rc,∞) for s = Sρ(b)), making “acceptance” of H0 unappealing; we regard
this evidence as insufficiently compelling to either reject or accept, and
recommend in this case that judgment be deferred. Of course this situation
does not arise if rc = b∗ = ac.

This rejection region and both error reports are identical to those of the
Bayesian method for loss-ratio ` = ρrc; for that reason, call this test “Tρ`”.
The Bayesian test, like Tρ`, rejected H0 for B ≤ rc = `/ρ, but (perhaps)
differed from Tρ` by accepting whenever B > rc while Tρ` can only accept
for B > ac ≥ rc; these can be made identical by setting rc = b∗ and
` = b∗ρ, whereupon rc and ac coincide with b∗ = `/ρ. Example 1 is of this
form, with rc = b∗ = ac = 1.



4. Example 2: Sequential Tests

In a sequential test of a simple hypothesis on the basis of i.i.d. observations
Xi ∼ fθ(·) the number N of observations is itself random, under the control
of the investigator, determined by a “stopping rule” of the form

τn(x1, . . . , xn) = P[N = n|X1 = x1, . . . , Xn = xn],

whose distribution (conditional on the observations) does not depend on
whether H0 or H1 is true. For each possible value n of N there is a critical
or Rejection Region Rn; the hypothesis H0 is rejected if (X1, . . . , XN ) ∈
RN . Computing exactly the pre-experimental significance level

α = P0[(X1, . . . , XN ) ∈ RN ]

=
∞
∑

n=0

P0[{(X1, . . . , Xn) ∈ Rn} ∩ {N = n}]

is prohibitively difficult, depending in the detail on the probability distri-
bution for the stopping rule. The Likelihood Ratio and the Conditional

Frequentist procedure for Sρ remain simple: Bn = f0(X1)···f0(Xn)
f1(X1)···f1(Xn)

, and

α(s) = ρBN/(1 + ρBN ); neither depends on the stopping rule at all.

4.1 The SPRT

In Abraham Wald’s Sequential Probability Ratio Test (or SPRT), for ex-
ample, one chooses numbers R < 1 < A and continues taking samples
until Bn < R, whereupon one stops and rejects H0 in favor of H1; or until
Bn > A, whereupon one stops and accepts H0. An elementary martingale
argument shows that N <∞ almost surely, and that approximately

α = P0[BN ≤ R] ≈ R(A− 1)

A−R
β = P1[BN ≥ A] ≈ 1−R

A−R

Unfortunately the accuracy of these approximations depends critically on
the probability distribution for the “overshoot,” the amount R − BN or
BN−A by which BN jumps past Wald’s boundary; see Siegmund (1985) for
details. Our proposed test with ρ = (A−1)/

(

A(1−R)
)

would give exactly
the same error probabilities, in the absence of overshoot, and moreover
corrects automatically for overshoot (by giving appropriately smaller error
probabilities), without need for even knowing the stopping rule! In the
symmetric case R = 1/A, for the SPRT, we have ρ = 1 and

α(s) =
BN

1 +BN
β(s) =

1

1 +BN
,

while the pre-experimental error probabilities are α ≈ R
1+R for BN ≤ R

and β ≈ 1
1+A upon accepting with BN ≥ A.



4.2 An Informative Stopping-Rule

Stopping rules are not always so tractable and well-motivated as Wald’s.
By the law of the iterated logarithm an investigator who continues sampling
until reaching “significant” evidence against H0 (say, at level α = .05) will
be able to do so, even if H0 is true; for testing H0 : µ = −1 versus H1 : µ =
+1 withXi ∼ N(µ, 1) (as in Example 1), for example, the random sequence
αn ≡ Φ(−√n(1 + X̄n)) is certain to fall below any preselected α, even for
µ = −1. While this will lead to fallacious error reports and inference if αn

or α are used for error reports, the report α(s) = ρBN
1+ρBN

= (1+ e2NX̄N )−1

of test Tρ` will continue to be both valid and meaningful; the large value of

n needed to reach αn < α will lead to an error report of α(s) ≈ e2n

e2n+e2Zα
√

n
,

close to one if H0 is rejected.

4.3 An Ambiguous Example

Suppose we are told, “Investigators observing i.i.d. Xi ∼ N(µ, 1) to test
H0 : µ = 0 against H1 : µ = 1 report stopping after n = 20 observations,
with x̄20 = −0.7.” How are we to interpret this evidence? We are not even
told whether this was conceived as a sequential or fixed-sample experiment;
and, if sequential, what was the stopping rule. But for the Conditional
Frequentist test Tρ`, it doesn’t matter; for example, we can select the

symmetric ρ = ` = 1 and report B = f0(x)/f1(x) = e−20(x̄20−1/2) ≈ 0.018,
leading us to reject (since B ≤ `/ρ = 1) with α(s) = B

1+B = 0.018. This

will be Brown-optimal (see below) and hence better than whatever method
the investigators used, no matter what their stopping rule.

5. Brown Optimality

Brown (1978) introduced an ordering and an optimality criterion for hy-
pothesis tests: A test T1 is to be preferred to T2 (written T1 Â T2) if for
each increasing convex function h(·) : [0, 1] → R, the error probabilities
αi ≡ P0[ Rejection by Ti] and βi ≡ P1[ No rejection by Ti] satisfy

U0(T1) ≡ E0

[

h
(

1−max(α1, β1)
)]

≥ U0(T2) ≡ E0

[

h
(

1−max(α2, β2)
)]

U1(T1) ≡ E1

[

h
(

1−max(α1, β1)
)]

≥ U1(T2) ≡ E1

[

h
(

1−max(α2, β2)
)]

.

This criterion is designed to prefer a test with lower error probabilities
(the monotonicity of h assures this); and, for tests with similar overall
error probabilities, to prefer one that better distinguishes marginal from
extreme evidence (the convexity of h assures this).

Under conditions of Likelihood Ratio Symmetry (where B ≡ f0(X)/f1(X)
has the same probability distribution under H0 as does 1/B under H1—



i.e., where F0(b) = 1−F1(1/b) for all b > 0), Brown (1978) proved that the
symmetric (ρ = ` = 1) version T11 of the Conditional Frequentist test based
on Sρ is optimal, i.e., preferred T11 Â T ∗ to every other test T ∗. Even in
the absence of Likelihood Ratio Symmetry, it is easy to show that the test
Tρ` based on Sρ is at least admissible, in the sense that U0(Tρ`) ≥ U0(T

∗)
or U1(Tρ`) ≥ U1(T

∗) (or both) for every T ∗.

6. Conclusions

The Conditional Frequentist test Tρ`, the Neyman-Pearson test that rejects

H0 if B ≡ f0(x)
f1(x)

≤ `/ρ and reports conditional error probabilities (given the

value of the Proportional Tail statistic Sρ ≡ min
(

F1(B), ρ(1−F0(B))
)

) of

α(s) = ρB
1+ρB (upon rejecting) or β(s) = 1

1+ρB (upon accepting), is:

• A valid Bayesian test,
• A valid Likelihoodist test,
• A valid Conditional Frequentist test,
• Always admissible,
• Brown-Optimal, at least in symmetric cases,
• Unaffected by stopping rules,
• Flexible, and easy to compute and implement,
• Consistent with the Likelihood Principle.

Within all three paradigms it is superior to the commonly-used Neyman-
Pearson test. I suggest that it should replace Neyman-Pearson tests for all
tests of simple hypotheses against simple alternatives.
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