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Integration in R
d:

Stochastic and Deterministic Methods

By Robert L. Wolpert
Duke University ISDS

Let’s consider how to evaluate the integral of a function f(x)—

first over a one-dimensional interval [a, b], later over a square in R
2

or a cube in R
3 and eventually over a (hyper-)cube in R

d for a

LARGE dimension d. This problem comes up all the time in

modern statistics; we’ll see some examples below. We begin in one

dimension. Let’s find ways to approximate the integral:

I(a, b, f) ≡
∫ b

a

f(x) dx
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1. Rectangle Method
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function rv = int_R(N, a,b, fun)

% int_R(): Numerical integration, rectangle method

x = linspace(a,b, N+1); % Evenly-spaced

dx = diff(x,1); % Interval Widths

mx = x(1:end-1)+dx/2; % Interval Midpoints

fx = feval(fun,mx); % F(x) at midpoints

rv = dx * fx’; % Rectangle Integral approx
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2. Trapezoid Method
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function rv = int_T(N, a,b, fun)

% int_T(): Numerical integration, trapezoid method

x = linspace(a,b, N+1); % Evenly-spaced

y = feval(fun,x);

dx = diff(x,1); % Interval Widths

fx = mean(feval(fun,x([1:end-1;... % Avg of f(x)

2:end]))); % at endpoints

rv = dx * fx’; % Trapezoid Integral approx
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Which is Better? Why?

• For specified number N of function evaluations, which is more

accurate?

• For specified accuracy, which uses fewer function evaluations?

• What if f(x) is smooth?

• What if f(x) is not smooth?

• Are there methods better than both of these?

Let’s look at some evidence.
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I(0, π/2, sin) =

∫ π/2

0

sin(x) dx

= − cos(π/2) + cos(0)

= 1

N = 2 4 6 8 10

R(N, 0, π/2, sin) = 1.0262 1.0065 1.0029 1.0016 1.0010

T (N, 0, π/2, sin) = 0.9481 0.9871 0.9943 0.9481 0.9979

Evidently the Rectangle method is about twice as accurate. Let’s

see why.
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Consequences of Taylor’s Theorem

Look at the integral with N = 1 on a short interval [−ε, ε]:

f(x) = f(0) +xf ′(0) + 1

2
x2f ′′(0) + 1

6
x3f ′′′(0) +O(x4)

f(±ε) = f(0) ±εf ′(0) + 1

2
ε2f ′′(0) ± 1

6
ε3f ′′′(0) +O(ε4)

∫ ε

−ε
f(x) = 2ε f(0) +0 + ε3

3
f ′′(0) +0 +O(ε5)

R(1, f) = 2εf(0) = 2ε f(0) + O(ε5)

= I(f) − ε3

3
f ′′(0) + O(ε5)

T (1, f) = ε[f(−ε) + f(ε)] = 2ε f(0) + ε3f ′′(0) + O(ε5)

= I(f) + 2ε3

3
f ′′(0) + O(ε5)

Thus R(f) is about twice as good. What if N > 1?
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Simpson’s Clever Idea

R(N, f) = I(f) − ε2

6

∫ b

a

f ′′(x) dx + O(ε4)

T (N, f) = I(f) +
ε2

3

∫ b

a

f ′′(x) dx + O(ε4)

Simpson had the good idea to look at the weighted average

S(N, f) ≡ [2 R(N, f) + T (N, f)]/3:

S(N, f) = I(f) + O(ε4)

How much does it matter whether the error is O(ε2) or O(ε4)?
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How many evals do we need?

Since R(N, f) = I(f) + O(ε2) and T (N, f) = I(f) + O(ε2), with

either method we need order N > δ−1/2 function evaluations for

the error to be smaller than δ; for an accuracy of m digits, so that

δ = 10−m, the number of evaluations needed (and hence the time

to evaluate the integral) grows like N ≈ c 10m/2.

With Simpson’s method, S(N, f) = I(f) + O(ε4) so we need only

N ≈ c 10m/4. Look what a difference it makes:

δ = 0.1 0.01 0.001 10−4 10−6

R(N, 0, π/2, sin) : N = 2 4 10 33 321

T (N, 0, π/2, sin) : N = 2 5 14 46 454

S(N, 0, π/2, sin) : N = 1 1 2 3 7
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What about d dimensions?

It takes N ≈
(

b−a
dx

)2

points to fill the square [a, b]2 ⊂ R
2 with a

grid of points spaced dx apart— so, if we try to approximate the

two-dimensional integral

I(f) =

∫ b

a

(

∫ b

a

f(x, y) dx

)

dy

≈ R
(

M, a, b, R(M, a, b, f)
)

by iterating the Rectangle (or Trapezoid) method it will take

N = M2 function evaluations to achieve an accuracy of

δ ∝ M−1/2 = N−1, so errors fall off only as 1/N and it takes about

N ≈ c δ−1 evaluations to achieve accuracy δ.
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Integration in d dimensions

Iterating Simpson’s rule

I(f) =

∫ b

a

(

∫ b

a

f(x, y) dx

)

dy

≈ S
(

M, a, b, S(M, a, b, f)
)

errors fall off at rate 1/N2 so it takes about N ≈ c 10−m/2

evaluations to achieve m decimals of precision in 2 dimensions.

In d dimensions it will take N = Md evaluations to achieve

δ ∝ M−4 = N−4/d for Simpson’s method, so N ≈ 10−dm/4

evaluations are needed to achieve m decimals of precision. For

dimensions d > 5 or 10 this is simply impractical.
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Monte Carlo Integration

If Xi are independent random variables from the uniform Un(a, b)

distribution, then

E[f(Xi)] =
1

b − a

∫ b

a

f(x) dx

= I(f)/(b − a);

by the Strong Law of Large Numbers (SLLN),

= lim
N→∞

1

N

N
∑

i=1

f(Xi).

Thus we can approximate I(f) ≈ (b − a)f(Xi); how good is this

approximation?
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Central Limit Theorem

The random variables Yi = f(Xi) are independent with means and

variances

µ =
1

b − a

∫ b

a

f(x) dx =
I(f)

b − a
;

σ2 =
1

b − a

∫ b

a

(f(x) − µ)2 dx

=
1

b − a

∫ b

a

f(x)2 dx − µ2 =
I(f2)

b − a
− I(f)2

(b − a)2
.

By the Central Limit Theorem (CLT),

f(Xi) =
1

N

N
∑

i=1

f(Xi) ≈ No(µ, σ2/N).
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Stochastic vs. Quadrature

Amazingly, this holds in any number d of dimensions; thus the

approximate error

|I(f) − (b − a)df(Xi)| ≈ (b − a)dσ/
√

N

falls off like N−1/2. This is faster than Simpson’s method if

N−1/4 ≤ N−2/d, i.e., d > 7, and is faster than the Rectangle or

Trapezoid method if d > 3.
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Free lunch?

Does this really work in any number d of dimensions? Statisticians

must integrate functions in hundreds of dimensions; does Monte

Carlo make this practical?

“Not yet” is a good answer... the constant σ in the error bound

|I(f) − (b − a)df(Xi)| ≈ σ(b − a)d N−1/2

can be huge.
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