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Integration in R’

Stochastic and Deterministic Methods

By Robert L. Wolpert
Duke University ISDS

Let’s consider how to evaluate the integral of a function f(z)—
first over a one-dimensional interval [a, b], later over a square in R?
or a cube in R3 and eventually over a (hyper-)cube in R? for a
LARGE dimension d. This problem comes up all the time in
modern statistics; we’ll see some examples below. We begin in one
dimension. Let’s find ways to approximate the integral:

b
I(a,b, f) = / f(z)dz
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function rv = int_R(N, a,b, fun)

% int_R(): Numerical integration, rectangle method

linspace(a,b, N+1); 7% Evenly-spaced

diff(x,1);
x(1:end-1)
feval (fun,

dx *x fx’;

% Interval Widths
+dx/2; % Interval Midpoints
mx) ; % F(x) at midpoints

% Rectangle Integral approx
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1. Rectangle Method
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2. Trapezoid Method
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4 N 4 N

function rv = int_T(N, a,b, fun) Which is Better? Why‘7

% int_T(): Numerical integration, trapezoid method
e For specified number N of function evaluations, which is more

accurate?

linspace(a,b, N+1); 7% Evenly-spaced

feval (fun,x);

For specified accuracy, which uses fewer function evaluations?

What if f(z) is smooth?

dx = diff(x,1); % Interval Widths
fx = mean(feval(fun,x([1l:end-1;... % Avg of f(x) e What if f(z) is not smooth?

2:end]))); % at endpoints e Are there methods better than both of these?
rv = dx * fx’; % Trapezoid Integral approx

Let’s look at some evidence.

- / - /
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/ \ /Consequences of Taylor’s Theorem \
Look at the integral with N =1 on a short interval [—e, €]:
/2
/25 = [ sin(a) e @)= JO) a0 +5R00) +80) 406
= —cos(m/2) + cos(0) f(xe) = f(0) +ef'(0)  +3€f"(0) +5Ef(0) +O0(e")
= 1 IS f@) = 2¢f(0) +0 +217(0) 40 +O(€%)
N= 2 4 6 8 10
R(N,0,7/2,sin) = 1.0262 1.0065 1.0029 1.0016 1.0010 R(L,f) =2¢f(0) = 2¢ f(0) + O(€”)
3
T(N,0,7/2,sin) = 0.9481 0.9871 0.9943 0.9481 0.9979 =1I(f) - 5 f"(0)+O0()
Evide}rlltly the Rectangle method is about twice as accurate. Let’s T(1,f) =e[f(—e)+ fle)] = 2€f(0)+e3f7(0) + O(%)
see why. _ I(f) + %f”(O) + 0(65)

\ / Qhus R(f) is about twice as good. What if N > 1?7 /
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Simpson’s Clever Idea

62 b
RVD) = 1= [ fa)de+ o)

62 b
TV, = 1D+ [ fla)de o)

Simpson had the good idea to look at the weighted average
S(N,f)=[2R(N, f) +T(N, f)]/3:

SN, f) = I(f) +0(e")

How much does it matter whether the error is O(e?) or O(e*)?
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/ What about d dimensions?

It takes N ~ (bd’—m‘l)2 points to fill the square [a,b]? C R? with a

grid of points spaced dz apart— so, if we try to approximate the
two-dimensional integral

1) = Lb<lbﬂaywm>dy

R(M.a,b, R(M, a,b, )

Q

by iterating the Rectangle (or Trapezoid) method it will take
N = M? function evaluations to achieve an accuracy of

\ ~ c¢6~! evaluations to achieve accuracy 6.

§ oc M—Y/2 = N1, so errors fall off only as 1/N and it takes about

~
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How many evals do we need?

Since R(N, f) = I(f) + O(e?) and T(N, f) = I(f) + O(€?), with
either method we need order N > §~1/2 function evaluations for
the error to be smaller than §; for an accuracy of m digits, so that
0 = 107, the number of evaluations needed (and hence the time
to evaluate the integral) grows like N = ¢ 10m/2.

With Simpson’s method, S(N, f) = I(f) + O(e*) so we need only
N = ¢10™/%4. Look what a difference it makes:

= 0.1 001 0.001 107* 10
R(N,0,7/2,sin): N= 2 4 10 33 321
T(N,0,7/2,sin): N= 2 5 14 46 454
S(N,0,7/2,sin): N= 1 1 2 3 7
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/Integration in d dimensions \
Iterating Simpson’s rule
b b
1 = [ ([ sayic)a
a a
~ S(M.a,b,5(M,a,b,f))
errors fall off at rate 1/N? so it takes about N ~ ¢10~/2
evaluations to achieve m decimals of precision in 2 dimensions.
In d dimensions it will take N = M? evaluations to achieve
§ ox M—* = N=%4 for Simpson’s method, so N ~ 10~4m/4
evaluations are needed to achieve m decimals of precision. For
@mensions d > 5 or 10 this is simply impractical. /
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\ /Central Limit Theorem \

Monte Carlo Integration
The random variables Y; = f(X;) are independent with means and
If X; are independent random variables from the uniform Un(a, b) .
variances
distribution, then
I
b= e [ @=L
EF(X)] = / fla ‘
= I(f)/(b—a); 0" = a(f(fv)—u) dx
by the Strong Law of Large Numbers (SLLN) _ 1 /b fla)?de — p2 = 1(f?) _ I(f)?
= ‘[1/ = 5 .
b—a b—a (b—a)
= oy Z Jx
By the Central Limit Theorem (CLT),
Thus we can approximate I(f) ~ (b — a)f(X;); how good is this
approximation? / \ Z fX o(p, 0 / N). /
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o
Stochastic vs. Quadrature Free lunch?

. . . . . Does thi I k i ber d of di ions? Statistici

Amagzingly, this holds in any number d of dimensions; thus the 0es ) 15 Teatty wot . 1n c?ny HUHDEr @0 %mens%ons atsticians
) must integrate functions in hundreds of dimensions; does Monte
approximate error

1(f) = (b= a)'f(Xi)| = (b~ a)'o/VN

Carlo make this practical?
“Not yet” is a good answer... the constant ¢ in the error bound

falls off like N—1/2. This is faster than Simpson’s method if
N4 < N=2/4 je. d>7,and is faster than the Rectangle or 1I(f) — (b— ) f(X;)| ~ o(b— a)? N~1/2
Trapezoid method if d > 3.

can be huge.
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