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1. BACKGROUND: BAYESIAN ANALYSIS

In Bayesian analysis uncertainty about a quantity θ is represented in the form of a prob-
ability measure π(dθ) with which one can calculate the probability Pπ[θ ∈ A] that X lies
in any measurable set A, or (more generally) the expectation Eπg(θ) of any function of
interest that depends on θ. Upon observing the value of some random quantity X whose
probability distribution depends on θ, Bayes’ theorem gives the rule for calculating the
probability distribution π?(dθ) for uncertainty about θ after observing X=x as the ratio

π?(dθ) =
f(x|θ) π(dθ)∫

Θ
f(x|θ′) π(dθ′)

(1)

where π(dθ) is the probability distribution representing uncertainty about θ before ob-
serving X=x, and where f(x|θ) is the probability density function for X (with respect to
an arbitrary dominating measure µ(dx)), evaluated at the observed value X=x. The ex-
pectation of some function of interest g(θ) (possibly a vector) is given by a similar ratio:

g ≡E[g(θ)|X=x]

=

∫

Θ

g(θ) π?(dθ)

=

∫
Θ

g(θ)f(x|θ) π(dθ)∫
Θ

f(x|θ) π(dθ)
. (2)

Although we do not require that π(dθ) be properly normalized or even that π(Θ) < ∞,
we will assume throughout that

∫
Θ

f(x|θ) π(dθ) < ∞ and
∫
Θ
|g(θ)| f(x|θ) π(dθ) < ∞ for

every x, so both numerator and denominator will be well-defined in (1), (2), and similar
formulas to follow.

The posterior covariance matrix Σ ≡ E[(g(θ) − g)(g(θ) − g)′|X=x] gives one indi-
cation of how well g(θ) is determined by the prior distribution π(dθ) and the observation
X=x, and so measures the accuracy or precision of the estimate g of g(θ). It too is given
by a ratio of integrals

Σ ≡ E[(g(θ)− g)(g(θ)− g)′|X=x] (3)

=

∫
(g(θ)− g)(g(θ)− g)′f(x|θ) π(dθ)∫

f(x|θ) π(dθ)
.

A more complete representation of the uncertainty attendant g(θ) following the ob-
servation of X=x would be the (joint) posterior density function for g(θ), if it exists.
Although ξ = g(θ) may not have a density function (its distribution will not be abso-
lutely continuous if π(dθ) is supported on a lower-dimensional manifold, for example, or
if g(θ) is constant on a set of positive measure) it can be approximated arbitrarily well
by a distribution with a density of the form
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π?
ε (ξ) ≡

∫

Θ

Kε(ξ − g(θ)) π?(dθ)

=

∫
Θ

Kε(ξ − g(θ))f(x|θ) π(dθ)∫
Θ

f(x|θ) π(dθ)
(4)

for any approximate identity Kε(x) = ε−qK(x/ε) ≥ 0 satisfying
∫

Rq Kε(x) dx = 1 with
suitably small ε > 0. For plotting marginal posterior densities and for many other pur-
poses it is enough to know π?

ε (ξ) at a few hundred points {ξj}, i.e., to find the posterior
expectation of a several-hundred-dimensional function {Kε(ξj−g(θ))}j∈J .

If the method of selecting a probability distribution π(dθ) to represent knowledge
about θ before the experiment does not depend on the distribution of X, then Bayesian
statistical analysis based on π? is consistent with the Likelihood Principle, i.e., depends
on the observation X=x only through the “likelihood function”

L(θ) = L(θ|X=x) = f(x|θ).

Birnbaum and others (reviewed and extended by Berger and Wolpert, 1988) have shown
that any violation of the Likelihood Principle also violates either the Weak Conditional-
ity Principle (which asserts that, if one randomly selects between two experiments, then
only the experiment performed is relevant) or the Sufficiency Principle (which asserts
that all evidence about θ from observing X is also contained in any sufficient statistic
T (X)). Since these two principles are widely held, it is hard to justify the use of a sta-
tistical procedure inconsistent with the Likelihood Principle.

Although the likelihood function L(θ) = f(x|θ) is defined as a probability den-
sity function for X given θ, with respect to some arbitrary reference measure µ(dx),
the Bayesian statistician (in light of Equation (1)) regards it as the probability density
function for θ given X=x, with respect to a reference measure proportional to π(dθ).
The likelihood function is central for non-Bayesian statistical methods as well: the maxi-
mum likelihood estimate (MLE) ĝ of g(θ) is just the function g(θ) evaluated at a point θ̂
where L(θ) attains its maximum

ĝ =ĝ(θ)

=g(θ̂).

For a (nearly) uniform prior distribution π(θ) the MLE ĝ is (nearly) the mode of the dis-
tribution of g(θ) under the posterior π?(dθ), while g in (2) is the mean.

The difference between a mode and mean doesn’t seem so dramatic, and in many
cases it is not; the real issues arise in trying to represent the degree of certainty with
which g(θ) is known, following the observation of X=x. The Bayesian uses the same
measure π? given in (1) to evaluate the posterior probabilities that g(θ) lies in specified
sets (especially posterior HPD regions) or to evaluate the posterior covariance Σ of g as
in (3) or the marginal posterior density for some components of g(θ) as in (4), and thus
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stays faithful to the likelihood principle, while the frequentist constructs p-values, con-
fidence sets and standard errors by considering what the likelihood function would have

been if other, near-by values of X = x̃ ≈ x had been observed instead of X=x, and in so
doing leaves the Likelihood Principle behind.

Unfortunately the integrals necessary for calculating the ratios in Equations (2–4)
are seldom amenable to analytical methods. Frequently the parameter θ takes values
in a high-dimensional space, making the integral resistant to quadrature methods; the
simplest quarterly or monthly time-series applications lead to problems in four or twelve
dimensions, for example, and problems in five to ten or twenty dimensions and more are
common in many fields of application. Tensor-product quadrature methods are unthink-
able in such problems.

One recourse is to appeal to large-sample asymptotic normality and approximate
the mean g in (2) by the mode ĝ, and the covariance Σ in (3) by the inverse of the infor-
mation matrix. Another is to approximate the likelihood function L(θ) = f(x|θ) and the
prior distribution π(θ) by members of some conjugate pair of density families for which
the integrals can be evaluated in closed form for a suitable class of functions g(θ) (e.g.,
polynomials). With the emergence of fast desk-top computers and appropriate numeri-
cal algorithms a third choice has emerged: to approximate the integrals in (2–4) through
Monte Carlo integration.
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2. BACKGROUND: MONTE CARLO INTEGRATION

The theory of Monte Carlo integration is simple. If θi ∈ Θ is a sequence of synthetic
random variates, each drawn from some probability distribution Π(dθ) that dominates
π(dθ), then let w(θ) be the Radon-Nikodym derivative

w(θ) = f(x|θ)
π(dθ)

Π(dθ)
, (5)

and consider the weighted averages

gn ≡
∑n

i=1 g(θi)w(θi)∑n
i=1 w(θi)

. (6)

It is easy to calculate the expectations of the numerator and denominator in Equa-
tion (6), both of which are well-defined and finite by the earlier assumptions that both
the likelihood function f(x|θ) and the product g(θ)f(x|θ) are integrable with respect to
the prior π(dθ), i.e.,

∫
Θ

f(x|θ) π(dθ) < ∞ and
∫
Θ
|g(θ)| f(x|θ) π(dθ) < ∞. The numera-

tor has expectation

E

n∑

i=1

g(θi)w(θi) =

n∑

i=1

∫

Θ

g(θi)f(x|θi)
π(dθi)

Π(dθi)
Π(dθi)

=n ×
∫

Θ

g(θ)f(x|θ) π(dθ),

whereas the denominator has expectation

E

n∑

i=1

w(θi) =
n∑

i=1

∫

Θ

f(x|θi)
π(dθi)

Π(dθi)
Π(dθi)

=n ×
∫

Θ

f(x|θ) π(dθ).

Thus gn is the ratio of unbiased estimates of the numerator and denominator of (2); it
doesn’t follow that gn is an unbiased estimate of g, of course, but it suggests that the
approach is promising. Notice that the sample size and joint distribution of {θi}i≤n

weren’t specified; we are free to choose n and Π(dθ) in any convenient way, and the {θi}
need not be stochastically independent. If they are at least mixing (e.g., if each θi is in-
dependent of all but finitely many θj) then two applications of the strong ergodic theo-
rem (one to the numerator and one to the denominator) give an immediate proof of the
consistency of Monte Carlo estimation, i.e., the almost-sure convergence of gn to g.

The Monte Carlo estimate of Σ = E[(g(θ)−g)(g(θ)−g)′|X=x] is given by the matrix
expression

Σn ≡
∑n

i=1(g(θi) − gn)(g(θi) − gn)′w(θi)∑n
i=1 w(θi)

(7)
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and that of the marginal density {π?
ε (ξj)} by the weighted kernel density estimate

π?
εn(ξj) ≡

∑n
i=1 Kε(ξj−g(θi))w(θi)∑n

i=1 w(θi)
. (8)

If ξ = g(θ) has an absolutely continuous posterior distribution then, for fixed ε, the se-
quence of estimates gn will not be consistent estimators of the density function π?

0(ξj);
in fact, the sequence will converge pointwise almost surely to π?

ε (ξ), the convolution of
the true density π?

0(ξ) with the kernel Kε(ξ). If a sequence εn → 0 converges to zero suf-

ficiently slowly that (εn)qn → ∞ (e.g., εn = n−(q+1)−1

) then one can verify pointwise
convergence of π?

εnn(ξj) to π?
0(ξj) at all points of continuity ξj .

The quantities gn, Σn, and π?
εn(ξj) are random variables; we should choose n and

the joint sampling distribution of the variates {θi} in such a way as to minimize their
computation time and some measure of their likely errors in estimating g, Σ, and π?

0(ξj).

The mean square error
√

E|gn − g|2 in Monte Carlo importance sampling falls off as
σ/

√
n for some constant σ > 0 if w, gw ∈ L2(Θ, Π(dθ)). For independent, identically-

distributed (iid) sampling it is easy to show that the constant is approximately

σ ≈

√∫ (
g(θ)− g

)2
w(θ)2Π(dθ)

∫
w(θ)Π(dθ)

,

but variance reduction techniques can often lead to much smaller constants. In d dimen-
sions, the errors of tensor-product quadrature rules of local order m fall off as n−m/d;
the commonly used fourth-order Runge-Kutta scheme, for example, has errors that fall
as n−4/d, faster than those of iid Monte Carlo methods in dimensions d ≤ 7. For this
reason Monte Carlo methods were widely discounted in the 1950’s, until the discovery
by Hammersley and Morton of “antithetic accelertion” (or, at least, its popularization;
see Tukey (1957)), the most important of several methods of reducing the constant σ
above. For small d Monte Carlo integration may not be efficient asymptotically, in the
limit as n → ∞, but it can be quite efficient for achieving moderate precision with mod-
est n if σ is made sufficiently small. Popular acceleration methods for reducing σ enough
to make Monte Carlo practical for Bayesian integration include

1. importance sampling, the use of a sampling distribution Π(dθ) lending relatively
little weight to the “unimportant” regions to which f(x|θ) π(dθ) gives little weight
and instead concentrating on those areas to which f(x|θ) π(dθ) gives great weight
(or, roughly, choosing Π(dθ) to insure that w(θ) is bounded and nearly constant).
See Curtiss, et al. (1951) for an account of the early development of importance
sampling by Fermi, von Neumann, and Ulam. Specific cases or generalizations in-
clude Russian roulette, splitting, stratified sampling, and conditional Monte Carlo.

2. control variables, the indirect use of Monte Carlo methodology to estimate the
difference

∫ (
g(θ)−h(θ)

)
w(θ)Π(dθ)

/∫
w(θ)Π(dθ) = g−h for some function h(θ) ≈

g(θ) with known expectation h (see Fieller and Hartley, 1954). A generalization of
this method is the regression method.

3. antithetic variates, the use of non–iid variates (especially negatively-correlated
pairs). Generalizations of this include random quadrature methods. See Hammers-
ley and Morton (1956).
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These and other methods (e.g., orthogonal polynomials) are discussed in Hammersley
and Handscomb (chapter 5, 1964), Rubinstein (1981, 1986), and Wilson (1984).

A renewed interest in Monte Carlo methods accompanied the appearance in the
early 1980’s of widely-available minicomputers and low-cost microcomputers. Kloek
and van Dijk (1978) introduced adaptive importance sampling, the dynamic adjustment
of the sampling distribution Π(dθ) to improve incrementally the algorithm’s efficiency,
while Naylor and Smith (1982), Smith et al. (1985), and others at the University of Not-
tingham developed adaptive orthogonalization techniques improving the efficiency of
both quadrature and Monte Carlo techniques. Geman and Geman (1984) in a study of
Bayesian methods for image reconstruction developed and applied the theory of Gibbs
sampling schemes, later recognized by Gelfand and Smith (1988) to be a broadly useful
tool in high-dimensional Bayesian analysis. Tanner and Wong (1987) introduced a re-
lated technique (substitution sampling). Geweke (1988) proved a central limit theorem
for Monte Carlo sampling schemes in Bayesian analysis. Many other recent contributions
deserve mention in this active field.

One of the reasons these methods are so successful in Bayesian statistics is that
statisticians seldom must integrate pathological functions with great local variation; in-
deed, likelihood functions and their products with prior densities can often be approxi-
mated strikingly well (sometimes after a nonlinear transformation removing positivity or
monotonicity constraints) by simple elliptically symmetric functions such as multivariate
Student t or the Gaussian forms

f(x|θ)π(θ) ≈ ce−
1
2 (θ−θ̂)′Λ(θ−θ̂) (9)

for some vector θ̂ and Hermitian form Λ. Important problems with non-unimodal inte-
grands do arise (e.g., in estimating the central tendency in problems with broad-tailed
distributions, such as Cauchy or Student t), and some problems exhibit sufficient skew-
ness to require novel, asymetric sampling distributions, but Bayesian statistical methods
are now more practical than ever before precisely because the integrands encountered
in Equations (2–4) above are commonly well enough behaved that Monte Carlo meth-
ods work well, even in high dimensional problems. In the example below the parame-
ters in a seven-dimensional variation on a logistic regression model are fit to about two
decimals of precision in several minutes’ computation time on a desktop workstation by
Monte Carlo methods, while a five-parameter submodel could not be fit to ±10% preci-
sion in a week-end of computation using fourth-order Runge-Kutta. Asymptotically the
quadrature method must win out, of course, since eventually c1n

−4/7 < c2n
−1/2, but the

asymptotics are not terribly relevant to the practical problem of finding an approximate
solution to the problem at hand. The solution can be found using Monte Carlo methods,
and (apparently) not using quadrature methods.

It is worth noting that nowhere in the discussion of the Monte Carlo method and
methods of accelerating its convergence has it been necessary to consider the dimension
of the parameter space Θ. Quadrature methods calling for the evaluation of an inte-
grand at points of a lattice require an amount of computation which increases exponen-
tially in the dimension, while Monte Carlo does not.

Of course this point can be emphasized too strongly. In many high-dimensional

Page 6



Robert Wolpert Monte Carlo Integration in Bayesian Analysis

problems the matrix Λ in (9) above is badly conditioned, so the measure f(x|θ) π(dθ)
is supported in a neighborhood of some lower dimensional (and possibly curved) space;
a failure to detect this situation or imprecision in identifying the space can lead to ineffi-
cient sampling schemes and even to gross undetected estimation errors. If the curvature
is significant then nonlinear reparametrizations may be required. Graphical methods for
exploring likelihood contours can be helpful in revealing this and similar problems and in
suggesting nonlinear reparametrizations to correct them.

3. SPECIAL FEATURES OF BAYESIAN MONTE-CARLO ANALYSIS

Implementing Bayesian statistical analysis calls for the numerical estimation of several
integrals such as those in Equations (2–4) which share certain features (illustrated in
the example below) that make some Monte Carlo techniques seem especially appropri-
ate. Each of the integrands in the numerators and denominators of equations (2–4) is
a product of three terms: a multidimensional function of interest like g(θ), (g(θ)−g),
Kε(ξj−g(θ)), or simply 1; a nonnegative likelihood function f(x|θ); and a nonnegative
prior density function, π(θ). In many applications:

1. The integrand is high-dimensional. The function g(θ) often has hundreds of com-
ponents (e.g., in kernel density estimation) each of which is easy to compute (e.g.,
components might include [θ]j, [θ]j[θ]k, 1Aj

(θ), or Kε(ξj−g(θ))). Using Monte Carlo
techniques, all the terms in Equations (4–6) can be calculated simultaneously using
the same sequence of random deviates {θi}.

2. The likelihood function L(θ) = f(x|θ) in each of the required integrals is often slow
and expensive to compute. When no sufficient statistics are available (e.g., when ex-
ponential families are inappropriate), calculating f(x|θ) may require a loop through
the entire dataset for each distinct value of θ. The computational burden of gen-
erating random deviates θi ∼ Π(dθ) is usually negligible when compared to that
of calculating f(x|θi), so there is little reward for using especially efficient random
number generators; conversely, variance-reduction techniques are quite important to
limit the number of points where f(x|θi) must be evaluated.

3. The prior density function π(θ) in each of the required integrals is also compara-
tively expensive to compute if subjective prior distributions are used (summarized
in tables, or using density functions drawn with a “mouse.”) Some prior densities
intended to be “noninformative” are especially expensive computationally, e.g., the
reference priors of Berger and Bernardo (1989) or even Jeffreys’ priors (1960) in
multi-dimensional models which are not exponential families.

4. For many problems the product of the likelihood function and prior density is uni-
modal and “bell-shaped,” i.e., the negative logarithm `(θ) ≡ − log[f(x|θ)π(θ)] is
well approximated by a quadratic form in a neighborhood of its minimum.

5. High precision isn’t important; ±5% or ±1% is usually quite adequate. Other un-
certainties and approximations arising in the modeling process usually make it inap-
propriate to seek machine accuracy (6-16 decimals) in statistical calculations.

6. Integrals are moderately high-dimensional. In applications to structured, hierar-
chical Bayesian models and in routine economic time series Θ often range from 4–
24 dimensions or more, while latent variable models and nonparametric survival or
density estimation lead to problems with hundreds of variables.
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7. As insights and experience are gained the function of interest g(θ) often changes; as
new data become available the likelihood function f(x|θ) changes; even the prior
density π(θ) may change. “Optimal” methods tailored to a particular integrand
aren’t helpful unless the tailoring can be done and revised almost instantly.

8. Speed is important in some applications and not in others. For interactive elicita-
tion of prior densities in hierarchical models it would be useful to calculate predic-
tive distributions and prior marginal densities within seconds. This is not yet possi-
ble for any but the simplest of models.

4. A BIOASSAY EXAMPLE

In Wolpert and Warren-Hicks (1990) details are given of a hierarchical Bayesian
analysis combining laboratory data and field observations to study the effects on fish
survival of three features often associated with so-called “acid rain” (low pH and high
concentrations of calcium and monomeric aluminum). Multicollinearity in some ob-
servational datasets makes it difficult or impossible to use all three quantities to good
advantage in a model selected through the use of field observations alone; hierarchical
Bayesian models provide a coherent logical structure for combining field data and bioas-
say data, despite uncertainties about the differences between field and laboratory set-
tings, and offer a way to circumvent the multicollinearity.

Threat and Tolerance

Denote by Xi the vector of explanatory variables Xi = (pHi, log[Al]i, log[Ca]i) associated
with the water chemistry of some lake (indexed by i). With each such vector is associ-
ated a “threat” ζi, but the correspondence Xi 7→ ζi = ζ(Xi) is uncertain. Initially take
the association to be linear

ζi = Xiβ = Xi1 + Xi2β2 + Xi3β3

for an uncertain 3-vector β, normalized by the constraint β1 = 1. With each lake in the
field dataset associate an uncertain “tolerance” τi representing unrecorded and uncon-
trolled environmental factors (food supply, water temperature, etc.) which may affect
the lake’s ability to support a brook trout population, with the understanding that the
lake will support brook trout if τi ≥ ζi and it will not support trout if τi < ζi. If toler-
ances are taken to be random, drawn independently of Xi from a specified location-scale
family with standardized CDF Ψ(x) (say, the logistic) and uncertain location and scale
parameters αF and σF , then the probability that a lake with the explanatory variables
Xi would be viable for brook trout would be

P[τi ≥ ζi] = 1 − Ψ

(
ζi − αF

σF

)
=
(
1 + e(Xiβ−αF )/σF

)−1
.

In the laboratory bioassay experiments fish are presumed to be endowed with unobserv-
able logistically distributed tolerances τj and are presumed to experience a constant haz-
ard of hj = 0 if τj ≥ Xjβ, and hj = (Xjβ − τj)c if τj < Xjβ; it follows that the
probability pj of surviving for at least the duration tj of the bioassay is

pj = Zj +
Zj(1 − Zj)

1 + cσLtj
2F1(1, 2; 1 + cσLtj ; 1 − Zj)
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where Zj =
(
1 + e(Xjβ−αL)/σL

)−1
is the probability that P[τj ≥ Xjβ] and where

2F1(a, b; c; z) is Gauss’ hypergeometric function. The second term in this expression is
the probability of a right-censored death time. The likelihood function for the seven-
dimensional parameter θ = (β2, β3, αF , σF , αL, σL, c) on the basis of 177 field observa-
tions (Pi = 1 for presence, Pi = 0 for absence of fish) and 164 bioassay observations (Sj

surviving and Dj dead fish) is

L(θ) =
177∏

i=1

(
1 + e(Xiβ−αF )/σF

)−Pi
(
1 + e−(Xiβ−αF )/σF

)Pi−1

×
164∏

j=1

(
Zj +

Zj(1 − Zj)

1 + cσLtj
2F1(1, 2; 1 + cσLtj ; 1 − Zj)

)Sj

×
164∏

j=1

(
1 − Zj −

Zj(1 − Zj)

1 + cσLtj
2F1(1, 2; 1 + cσLtj ; 1 − Zj)

)Dj

The functions of interest include the marginal densities for each of the four parameters
(β2, β3, αF , σF ) governing field observations, the posterior mean and covariance matrix
for these parameters, and the predictive distributions for the probability of fish presence(
1 + e(Xβ−αF )/σF

)−1
for several specified chemistries X (all of which are reported in

Wolpert and Warren-Hicks (1990)). Features of this model include:
1. High-dimensional integrand (several hundred dimensions for the density estimation).
2. Slow computation for the likelihood function; transcendental and even special func-

tions must be calculated for each observation at every point θ.
3. Slow computation of the prior density, if the Jeffreys prior is used; again transcen-

dental functions must be calculated inside a loop, and now a 7× 7 determinant must
be evaluated as well.

4. A unimodal and “bell-like” likelihood function (after logarithmic transformations for
σF and σL), with nearly elliptical contours for each pair of parameters.

5. Satisfactory and attainable precision of ±1% with several minutes’ computation on
a desktop Unix workstation.

6. Modest dimensionality (7) of the parameter space Θ. We also consider models with
quadratic terms in the uncertain dependence of threat ζ upon the three explanatory
variables, increasing the dimension to 13; the dimension increases quickly as higher-
order terms or more explanatory variables are added.

7. Changing functions of interest (predictive distributions were added), likelihood func-
tion (observations were added, and probit models were considered), and prior den-
sity (both uniform and Jeffreys priors were studied).

8. Badly conditioned linear approximations in the original coordinate system; the el-
liptical likelihood contours are highly eccentric, and the condition numbers for the
information matrices at the posterior modes are high.

Wolpert and Warren-Hicks (1990) found approximations to the predictive survival dis-
tributions and posterior parameter distributions for this model using Monte Carlo meth-
ods with antithetic variates drawn from multivariate Student t sampling distributions.
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A two-step adaptive importance sampling scheme was used with initial location vectors
and dispersion matrices suggested by an analysis of the likelihood function’s behaviour
near its maximum, later improved using Monte Carlo estimates of the mean and covari-
ance. The degrees-of-freedom parameters were chosen to match the tail behaviour of the
likelihood function.

5. APPENDIX: IMPLEMENTATION DETAILS

Elementary statistics textbooks sometimes give “shortcuts” for calculating the sample
mean and variance from running totals SX ≡ ∑

Xi and SXX ≡ ∑
X2

i ; unfortunately
these widely-implemented formulas represent S2

n as the small difference of two large
numbers, and so entail a great loss of precision. To find S2

3 = 2/3 correctly to d deci-
mals using this technique for the data set {2999, 3000, 3001}, for example, requires that
all intermediate calculations be carried out accurately to about 7 + d decimals; even for
this simple problem zero decimals are available in Fortran single-precision! The expected
number of bits of precision lost is about log2

(
1 + (µ/σ)2

)
in general, or 23 bits for the

example.
One remedy for this unnecessary loss of precision is to use the defining relation for

S2
n: first compute Xn, then sum the squared deviations (Xi − Xn)2. This is unattrac-

tive because it requires that all n observations be stored while the usual but imprecise
formulas require only the three summary statistics N , SX , and SXX . An alternative is to
initialize X0 ≡ 0 and S2

0 ≡ 0, and then for n ≥ 1 use the recursive formulas:

∆n ≡[Xn − Xn−1]

Xn ≡Xn−1 +
1

n
∆n

S2
n ≡[S2

n−1 +
1

n
∆2

n](1 − 1

n
)

which lead to full-precision values for Xn and S2
n.

The same precision problem arises in calculating the weighted mean gn in Equa-
tion (6) and especially in estimating the precision (7); the use of antithetic variates to
reduce σ can exacerbate the problem, since [1 + (µ/σ)2] is then so large. The algorithm
presented below gives high-precision recursive estimates gn of the mean vector g, Σn of
the covariance matrix Σ, and MSEn of the estimation error matrix E (gn − g)(gn − g)′,
for any antithetic sampling scheme.

Recursive Estimation Formulas

Let π(dθ) be a prior measure and L(θ) = f(x|θ) a likelihood function on some measure-
space

(
Θ, F , dθ

)
and let g(θ) be an IRq valued measurable function on Θ. The problem

at hand is to find a sequence of estimates

gn ≈ g ≡
∫

g(θ)L(θ) π(dθ)∫
L(θ) π(dθ)

Σn ≈ Σ ≡
∫ (

g(θ)− g
)(

g(θ)− g
)′

L(θ) π(dθ)∫
L(θ) π(dθ)

MSEn ≈ E
[(

gn − g
)(

gn − g
)′ | X=x

]
.
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For each n choose an integer mn and draw an antithetic series θ
(n)
1 ,...,θ

(n)
mn consisting

of mn not-necessarily-independent draws θ
(n)
j , each with marginal distribution Π(dθ).

The number mn of draws need not be constant as n varies. Within each antithetic series
estimates will be calculated of g and Σ, each an average weighted by w

(n)
j = w(θ

(n)
j ) at

the observed points θ
(n)
j .

Within each antithetic series

For each n set w
(n)
0 ≡ 0, g

(n)
0 ≡ 0, msq

(n)
0 ≡ 0. For 1 ≤ j ≤ mn, set

ω
(n)
j ≡ w(θ

(n)
j ) = L(θ

(n)
j ) π(dθ

(n)
j )
/
Π(dθ

(n)
j )

w
(n)
j ≡ w

(n)
j−1 + ω

(n)
j =

∑

i≤j

ω
(n)
i

h
(n)
j ≡ ω

(n)
j /w

(n)
j

g
(n)
j ≡ g(θ

(n)
j )

δ
(n)
j ≡ g

(n)
j − g

(n)
j−1

g
(n)
j ≡ g

(n)
j−1 + h

(n)
j δ

(n)
j =

∑

i≤j

ω
(n)
i g

(n)
i

/∑

i≤j

ω
(n)
i

msq
(n)
j ≡ (1 − h

(n)
j )
[
msq

(n)
j−1 + h

(n)
j (δ

(n)
j )(δ

(n)
j )′

]

=
∑

i≤j

ω
(n)
i (g

(n)
i −g

(n)
j )(g

(n)
i −g

(n)
j )′

/∑

i≤j

ω
(n)
i

The four summary statistics from the nth antithetic series are:
mn The number of function evaluations in the series;

wn ≡ w
(n)
mn The total weight for the series;

gn ≡ g
(n)
mn The w(θ

(n)
j )-weighted average of the vectors g(θ

(n)
j );

msqn ≡ msq
(n)
mn The mean-square variation, i.e., the w(θ

(n)
j )-weighted average of

the matrices (g
(n)
i −gn)(g

(n)
i −gn)′.

There is no information in these “within” statistics about the variability arising

from the importance sampling because of the allowed dependence among the θ
(n)
j for a

given n. This variability will be reflected in a “between” mean-square summarizing the
variability of the vector quantities gn across repeated independent replicates.

If samples were drawn directly from the posterior density, the function w(θ) would
be constant and gn and msqn would be the unweighted average and sample variance of
the {gi}i≤mn

, respectively. In the common case mn = 2 the formulas above reduce to
mn = 2
wn = ω

(n)
1 + ω

(n)
2

gn =
(

ω
(n)
1

ω
(n)
1 +ω

(n)
2

)
g
(n)
1 +

(
ω

(n)
2

ω
(n)
1 +ω

(n)
2

)
g
(n)
2

msqn =
(

ω
(n)
1

ω
(n)
1 +ω

(n)
2

)(
ω

(n)
2

ω
(n)
1 +ω

(n)
2

)(
g
(n)
1 − g

(n)
2

)(
g
(n)
1 − g

(n)
2

)′
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or simply wn = 2, g = (g
(n)
1 + g

(n)
2 )/2 and msqn = (g

(n)
1 − g

(n)
2 )(g

(n)
1 − g

(n)
2 )′/4 for direct

sampling from the posterior.

Combining Antithetic series

For estimating mean-square estimation errors it is useful to have both w-weighted and
w2-weighted averages; the latter we distinguish with asterisk superscripts. Initialize
Nn ≡ 0, W0 ≡ 0, W ∗

0 ≡ 0, g0 ≡ 0, g∗0 ≡ 0, Σ0 ≡ 0, MSB0 ≡ 0, and MSB∗
0 ≡ 0;

with each succeeding n set

Nn ≡ Nn−1 + mn =
∑

j≤n

mj

wn ≡ w
(n)
mn =

∑

i≤mn

ω
(n)
i

gn ≡ g
(n)
mn =

∑

i≤mn

ω
(n)
i g

(n)
i

/
wn

msqn ≡ msq
(n)
mn =

∑

i≤mn

ω
(n)
i (g

(n)
i − gn)(g

(n)
i − gn)′

/
wn

Wn ≡ Wn−1 + wn =
∑

j≤n

wj W ∗
n ≡ W ∗

n−1 + (wn)2 =
∑

j≤n

(wj)
2

Hn ≡ wn/Wn H∗
n ≡ (wn)2/W ∗

n

∆n ≡ [gn−gn−1] ∆∗
n ≡ [gn−g∗n−1]

gn ≡ gn−1 + Hn∆n =
∑

j≤n

wjgj

/
Wn g∗n ≡ g∗n−1 + H∗

n∆∗
n =

∑

j≤n

(wj)
2gj

/
W ∗

n
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MSWn ≡ (1 − Hn)MSWn−1 + Hn msqn

=

∑
j≤n wj msqj∑

j≤n wj

=

∑
j≤n

∑
i≤mj

ω
(j)
i (g

(j)
i − gj)(g

(j)
i − gj)

′

∑
j≤n

∑
i≤mj

ω
(j)
i

MSBn ≡ (1 − Hn)
[
MSBn−1 + Hn(∆n)(∆n)′

]

=

∑
j≤n wj(gj − gn)(gj − gn)′∑

j≤n wj

MSB∗
n ≡ (1 − H∗

n)
[
MSB∗

n−1 + H∗
n(∆∗

n)(∆∗
n)′
]

=

∑
j≤n(wj)

2(gj − g∗
n)(gj − g∗n)′∑

j≤n(wj)2

Σn ≡ MSWn + MSBn

= Hn msqn + (1 − Hn)
[
Σn−1 + Hn(∆n)(∆n)′

]

=

∑
j≤n

∑
i≤mj

ω
(j)
i (g

(j)
i − gn)(g

(j)
i − gn)′

∑
j≤n

∑
i≤mj

ω
(j)
i

The Estimates

With these in hand we can now estimate g, the posterior expectation of g(θ), by

gn =
∑∑

ω
(j)
i g

(j)
i

/∑∑
ω

(j)
i

≈
∫

w(θ)g(θ)Π(dθ)

/∫
w(θ)Π(dθ)

=

∫
g(θ)L(θ) π(dθ)

/∫
w(θ)Π(dθ)

= g
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and the posterior variance by

Σn ≡ MSWn + MSBn

=
∑∑

ω
(j)
i (g

(j)
i − gn)(g

(j)
i − gn)′

/∑∑
ω

(j)
i

≈
∫

w(θ)(g(θ)− g)(g(θ)− g)′Π(dθ)

/∫
w(θ)Π(dθ)

=

∫
(g(θ)− g)(g(θ)− g)′L(θ) π(dθ)

/∫
L(θ) π(dθ)

= Σ

The mean-square error of estimation is more interesting. A second-order Taylor-
series expansion of the function f(x, y, z) = xy/z2 about the means µX=0, µY =0, and
µZ 6=0 of three real-valued random variables X, Y , and Z (not necessarily independent)
reveals that E(XY/Z2) ≈ (EXY )/(EZ)2. Thus the mean-square estimation error is

E(gn − g)(gn − g)′ = E

(∑
j≤n wj(gj − g)∑

j≤n wj

)(∑
j≤n wj(gj − g)∑

j≤n wj

)′

≈
E
(∑

j≤n wj(gj − g)
)(∑

j≤n wj(gj − g)
)′

(
E
∑

j≤n wj

)2

=
E
∑

j≤n(wj)
2(gj − g)(gj − g)′

(
E
∑

j≤n wj

)2

≈
∑

j≤n(wj)
2(gj − gn)(gj − gn)′

(∑
j≤n wj

)2

=
1

(Wn)2

∑

j≤n

(wj)
2
(
gj − g∗

n + g∗n − gn

)(
gj − g∗n + g∗n − gn

)′

=
1

(Wn)2

∑

j≤n

(wj)
2
[(

gj − g∗n
)(

gj − g∗n
)′

+
(
g∗n − gn

)(
g∗n − gn

)′]

= MSEn ≡ W ∗
n

(Wn)2
[MSB∗

n + (g∗n − gn)(g∗n − gn)′]

This error estimate has two components: MSB∗
n, a measure of how much the gj dif-

fer, and (g∗n − gn)(g∗n − gn)′, a measure of how much the wj differ. The first component
can be made small by capturing as much variability as possible within each antithetic
series (in MSWn) and leaving as little as possible in MSBn ≈ MSB∗

n, while the sec-
ond component can be made small by sampling from an importance function similar to
the posterior distribution so the weights wj will be nearly constant and hence the (wj)-
weighted and (wj)

2-weighted means gn and g∗n will be nearly equal.

With iid sampling from the posterior density function the mean-square error in esti-

Page 14



Robert Wolpert Monte Carlo Integration in Bayesian Analysis

mating the ith component of g would have been

1

Nn
Σii ≈ 1

Nn
Σii

n

= REi
n × MSEii

n

where, following Hammersley and Handscomb, the “relative efficiency” for the ith com-

ponent is defined to be

REi
n ≡

( 1

Nn
Σii

n

)/
MSEii

n

=
(Wn)2

[
MSWii

n + MSBii
n

]

NnW ∗
n

[
MSB∗ii

n + |(g∗n − gn)i|2
] .

The RE indicates the efficiency of a given importance-sampling scheme, relative to the
benchmark of iid sampling directly from the posterior distribution. The given procedure
with n function evaluations attains the same precision as would iid sampling with RE×n
function evaluations. For some problems relative efficiencies of well over 100% are possi-
ble with well-chosen antithetic schemes.
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