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1. Introduction

In Probability Theory we agree about the probability distribution of some
random quantity X, usually with a continuous distribution with known prob-
ability density function (pdf) f(x) or a discrete distribution with probability
mass function (pmf) f(x), and we compute probabilities with summations
or integrals

P[X ∈ A] =

∫

A

f(x) dx or P[X ∈ A] =
∑

x∈A

f(x)

or (more generally, since g(x) ≡ IA(x) gives the previous case) expectations

E[g(X)] =

∫

X

g(x) f(x) dx or E[g(X)] =
∑

x∈X

g(x) f(x),

where in both cases X denotes the outcome space of possible values of the
random variable X, A ⊂ X is any suitable subset of outcomes of interest,
and g : X → R is any function for which the indicated integral or sum
makes sense. The common situation in which we have some number n > 1
of independent observations that comprise a “random sample” is really just
a special case, where X is all or part of R

n, so our setting already includes
the possibility of multiple observations.

In Statistical Inference we are faced with the inverse problem: we observe
an event X ∈ A or value g(X) or, to keep things simple, the actual outcome
X = x ∈ X , and we try to learn about the probability distribution of X —
i.e., learn what the pdf or pmf f(x) must be, after observing X = x.
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This means we must have more than one distribution in mind. One way to
keep track of these is to parameterize the possible pdf’s or pmf’s by writing
f θ(x) or f(x|θ) for each possible index θ in some set Θ of labels for the
distributions under consideration.

In much of what follows we will be concerned primarily or exclusively with
the pdf or pmf only at the observed value X = x of the data, which (we
will argue) embodies all the evidence about θ contained in the observation
X = x. It turns out (we’ll see why later) that any positive multiple of the
pdf or pmf reflects exactly the same information — so we introduce the new
name and notation of Likelihood Function,

L(θ) ∝ f(x|θ),

with the observed value of X = x implicit and the proportionality constant
completely arbitrary (so two likelihoods that are proportional to one another
will be regarded as identical).

2. Example 1

Imagine that a new medical treatment is effective in treating some adverse
condition for an uncertain fraction p of the population; we try to learn about
p by selecting some sample size N (perhaps ten), finding N “randomly se-
lected individuals from the population” (surely this would be a challenging
task!), treating these N individuals with the new treatment, and counting
the number X for whom it is effective. Under the usual conditions of inde-
pendence etc. (about which we should probably be more sceptical), X will
have the binomial distribution with pmf

f(x|N, p) =

(

N

x

)

px (1 − p)N−x.

Here the outcome and parameter spaces are X = Z+ and Θ = Z+ × (0, 1),
if we treat N as uncertain, or X = {0, · · · , N} and Θ = (0, 1), if (as is
more usual) we treat N as known. The probabilist will want to compute
E[g(X)|N, p] for various functions g : X → R and known 0 < p < 1, while
the statistician will want to make statements about p after observing the
value X = x ∈ X (the number of successes among the N = 10 subjects,
in Example 1). Let us now play the role of a statistician who has observed
x = 2 successes in N = 10 tries. The likelihood function is any or all of
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Figure 1. Binomial likelihood for x = 2, n = 10.

L(p) =
(

10
2

)

p2 (1 − p)8

= 45p2 (1 − p)8

∝ p2 (1 − p)8

on the interval 0 < p < 1. The plot was generated by the R function

eg1 <- function(x=2, n=10) {
p <- seq(0, 1,, 101);
y <- dbinom(x,n,p);
plot(p,y,xlab="P",ylab="Likelihood",type="l")

}

3. Three Questions, Three Paradigms

Historically Statistical Inference has been viewed as answering one or more
of these questions:

• Find a Point Estimate for θ, i.e. a Θ-valued function S : X → Θ
which in some sense (we’ll be more precise later) is intended to satisfy
“S(X) ≈ θ”; in Example 1, we’ll want an estimator S(2) ≈ p of the
success probability for the new treatment.
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• Find an Interval Estimate for θ, i.e. a set-valued function U :
X → P(Θ) intended to satisfy θ ∈ U(X) “frequently” and also to
be “small”; in Example 1, find a subset U(2) ⊂ (0, 1) that is both
short and still seems likely to contain p.

• Test Hypotheses about θ, i.e. for subsets H ⊂ Θ report on the plau-
sibility of the assertion “θ ∈ H”. For the hypothesis H = [ 1

2 , 1), for
example, report how plausible is the assertion “p ≥ 1

2” after observing
X = 2.

Over time three different paradigms have arisen to guide the use of data
to answer these questions. We will look at how each of these paradigms
would answer the three questions. Two other questions we will occasionally
consider are

◦ Predict the value z of some as-yet unobserved variable Z ∼ fz(z|θ)
with some predictor Ẑ : X → Z intended to satisfy Ẑ(X) ≈ z.

◦ Make a Decision, choosing an Action a ∈ A intended to minimize
Loss L(a, θ) (or maximize Utility U(a, θ)); this is effected by a De-

cision Function δ : X → A whose Risk R(θ, δ) = E[L
(

δ(X), θ)] is
small in some sense.

Note that the last of these subsumes all its predecessors, for suitable choices
of action space A and loss L(a, θ).

3.1. The Bayesian Paradigm

Historically the first approach to inference is the Bayesian paradigm, usu-
ally attributed to Thomas Bayes (1763) and Pierre-Simon Laplace (1774).
In their original approach the uncertain quantity θ is treated as if it were
random, with pdf (proportional to) the Likelihood Function L(θ); in the
present example we may evaluate the integral

∫ 1
0 p2(1 − p)8 dp = 1/495,

so in the Bayes-Laplace approach we would treat p as uncertain with pdf
495 p2(1− p)8, 0 < p < 1, and answer the three questions by something like:

• Point Estimate: S(2) = E[p | X = 2] =
∫ 1
0 p 495p2(1 − p)8 dp = 1/4;

other choices might include the mode S ′(2) = argmax495p2(1 − p)8 =
2/10 or median S ′′(2) = 0.2358, with P[p ≤ S ′′(x)|X = x] = 1/2;
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• Interval Estimate: A “central” 90% interval U = (u−, u+), for ex-
ample, that satisfies P[p ∈ U | X = 2] = 0.90, could be found by locat-
ing the points u−, u+ ∈ (0, 1) satisfying 0.05 =

∫ u
−

0 495p2(1− p)8 dp =
∫ 1
u+

495p2(1 − p)8 dp, or U = [0.08, 0.47]; and

• Hypotheses Test: P
[

p ∈ [12 , 1) | X = 2
]

=
∫ 1
0.5 495p2(1 − p)8 dp =

0.0327.

Later Bayesians (including Reverend Bayes) generalized this idea somewhat
and put it onto stronger foundation grounds by regarding the pdf f(x | θ)
as a conditional pdf for X given θ; once we identify some marginal pdf
π(θ) for θ, with their product we can form the joint pdf f(x, θ) = f(x|θ)π(θ)
and, from it, the other conditional pdf, here called the posterior pdf,

π(θ | x) =
f(x, θ)

f1(x)
=

f(x|θ)π(θ)
∫

Θ f(x|θ′)π(θ′) dθ′
∝ L(θ)π(θ).

The presentation above would be the special case of a uniform prior distri-
bution with density π(θ) ≡ 1 for θ ∈ (0, 1); we’ll consider (and motivate)
other possibilities later.

3.1.1. Computational Notes

For any α > 0 and β > 0,
∫ 1
0 tα−1(1 − t)β−1 dt = Γ(α)Γ(β)/Γ(α + β). Here

Γ(z) ≡
∫ ∞

0 tz−1e−t dt is Euler’s Gamma function, satisfying Γ(n+1) = n!
for integers n ∈ Z+, but well-defined by the integral given for all z ∈ C

with <(z) > 0 and, by analytic continuation, for all z ∈ C other than
the non-positive integers Z−. In particular, this lets us evaluate

∫ 1
0 p2(1 −

p)8 dp = Γ(3)Γ(9)/Γ(12) = 2!
9·10·11 = 1/495 and

∫ 1
0 p 495p2(1−p)8 dp = 495×

Γ(4)Γ(9)/Γ(13) = 1/4; we may also recognize c p2(1− p)8 as the pdf for the
Be(3, 9) distribution with mean 3/12 = 1/4. R lets us evaluate (u−, u+) =
qbeta(c(.05,.95), 3, 9) = (0.07882005, 0.47008680) and P[p ≥ 1

2 | X =
2] = 1-pbeta(0.5, 3, 9) = pbeta(0.5, 9, 3) = 0.03271484.

3.2. The Classical Paradigm

Midway through last century Ronald Aylmer Fisher, Jersey Neyman, Karl
Pearson, and others offered another way of approaching the three questions
(see Zabel 1989, for a nice review of the history). Instead of using probability
theory to describe uncertainty about a parameter θ ∈ Θ, they considered for
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each fixed θ how likely it would be to observe values X that were equal to
the observed x, or that offered even more “extreme” evidence against some
hypothesis H ⊂ Θ or assertion θ ∈ U . In this approach the usual estimate
for θ is is the Maximum Likelihood Estimator or MLE

θ̂(x) ≡ argmax [L(θ)] ,

the value θ̂ ∈ Θ where L(θ) (or, equivalently, `(θ) ≡ log L(θ)) attains its
maximum, if in fact the maximum is attained. In Example 1 this estimate
is easily shown to be p̂ = x

N
= 2/10, as is evident from the plot.

In the Classical paradigm the evidence against an hypothesis like p ∈ H =
[12 , 1) may be quantified by the probability P[X ≤ 2 | p] = pbinom(2,10,p)

for p ∈ H, the probability of observing the actual data x = 2 or other out-

comes regarded as more extreme (here the “more extreme” outcomes would
be X < 2, since under H one would expect large numbers of success). The
maximum over p ∈ H is attained at the boundary, pbinom(2,10,0.5) =
(1 + 10 + 45)/210 = 56/1024 = 0.0546875.

A symmetric 90% interval estimate in the Classical paradigm is given by a
random interval U(x) =

(

U−(x), U+(x)
)

with endpoints that must satisfy
P[p < U−(X)] ≤ 0.05 and P[U+(X) < p] ≤ 0.05, for every 0 < p < 1; the
shortest such interval is given by

U = [qbeta(0.05,x,n-x+1), qbeta(0.95,x+1,n-x)]

in general, or [qbeta(.05,2,9), qbeta(.95,3,8)] in Example 1, leading
to the Frequentist:

• Point Estimate: p̂(2) = x/N = 2/10;

• Interval Estimate: Central 90% interval U = (u−, u+) = [0.037, 0.507];

• Hypotheses Test: P
[

X ≤ 2 | p] ≤ pbinom(2,10,0.5) = 0.0547.

3.3. The Likelihoodist Paradigm

Bayesian statisticians integrate over θ ∈ Θ, holding X = x ∈ X fixed;
Classical statisticians sum over x ∈ X , holding θ ∈ Θ fixed; Likelihoodists
don’t integrate or add at all. They also use the MLE as a point estimate, but
for a 90% interval estimate would offer U = [u−, u+] for the two solutions
u− < u+ to the equation L(p) = 0.90L(p̂), and for a report on an hypothesis
H ⊂ Θ would offer supθ∈H L(θ)/L(θ̂), or here
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• Point Estimate: p̂(2) = x/N = 2/10;

• Interval Estimate: 90% interval U = (u−, u+) = [0.146, 0.262];

• Hypotheses Test: supp≥.5 L(p)/L(p̂) = L(.5)/L(.2) = 0.146

3.4. Not really a paradigm, but...

Encourged by the Central Limit Theorem, and perhaps uninformed about
the subtle points of probability and statistics, näıve investigators often treat
all data as if it were normally distributed and use ad hoc procedures that
would be defensible if the data really did follow a normal distribution; in
the present example they would treat the data as Bernoulli indicator vari-
ables Yi ∼ Bi(1, p) with observed mean Ȳ10 = X/N = 0.20, with approx-
imate distribution Ȳ10 ≈ No(p, p(1 − p)/N). Since the Gaussian or nor-
mal distribution satisfies 0.90 = P[µ − 1.645σ ≤ Z ≤ µ + 1.645σ], and
since one can hope that the sample mean Ȳ = X/N = 0.20 and variance
s2 = X(N − X)/(N − 1) = 0.17778 of the {Yi} will be close to their popu-
lation mean µ = p and variance σ2 = p(1 − p), this leads to näıve inference
of:

• Point Estimate: p̂(2) = x/N = 2/10;

• Interval Estimate: 90% interval U = p̂ ± 1.645
√

s2/N = 0.20 ±
1.645

√

16/900 = [−0.019, 0.419];

• Hypotheses Test: P[Ȳ10 ≤ 0.2 | p ≥ .5] ≈ P[(Z − µ)/σ ≤ (.20 −
.50)/

√

16/900 = Φ(−2.25) = 0.0122.

For large samples this will give a decent approximation to the Classical
(Fisherian/Frequentist) approach; for small samples (as in the present case)
the approach is indefensible, but still surprisingly common.

3.5. Example 1b

Now imagine that another new medical treatment is undergoing testing at
another laboratory, this time with a different scheme: subjects are given the
treatment until α = 2 successes are found, and the number Y of failures
is counted. Upon observing Y = 8 failures before the second success, the
likelihood function in this negative binomial sampling scheme is:
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f(y|α, p) =

(

−α

y

)

pα (p − 1)y

∝ p2 (1 − p)8

exactly the same as in Example 1. Both Bayesian and Likelihoodist analyses,
which depend on the data only through the Likelihood Function, will give
exactly the same answers as before, but not the Classical approach: here the
“more extreme” outcomes than the observed Y = 2 under the hypothesis
H : p ≥ 1

2 would be Y > 2, giving

• Point Estimate: p̂(2) = x/N = 2/10 (as before);

• Interval Estimate: Central 90% interval U = (u−, u+) = [0.04, 0.43];

• Hypotheses Test: P
[

Y ≥ 8 | p] ≤ 1-pnbinom(7,2,0.5) = 0.02.

Later we will discuss arguments why inference should in general depend
only on L(θ), a proposition known as the Likelihood Principle; evidently
Bayesian and Likelihoodist analyses are consistent with the LP, while Clas-
sical analysis is not.

4. Example

Both Frequentist and Bayesian method for achieving interval estimates of
a parameter θ on the basis of an observed value X = x of a random vari-
able X ∼ f(x|θ) are based on the same function, f(x|θ), with different
interpretations— for Bayesians interest centers on the likelihood function
L(θ) = f(x∗|θ) with x fixed at its observed value x∗ ∈ X , for various pos-
sible values θ ∈ Θ of the uncertain parameter; for Frequentists, interest
centers on the probabilities f(x|θ∗) of various possible values of X = x ∈ X ,
for a hypothesized value θ∗ ∈ Θ of θ.

Faced with the question Does p = 1/2? on the basis of the evidence
X = 13 for a binomial-distributed random variable X ∼ Bi(17, p), the
Bayesian would focus on the function L(p) ∝ p13(1 − p)4 (red curve in
Figure (2)), calculating its mean (for a point estimate) or its integrals (for
interval estimates), while the Frequentist would focus on the function f(k) ∝
(17

k

)

(1/2)13(1 − 1/2)4 (green spikes in Figure (2)), calculating its sums:
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Figure 2. Binomial likelihood for x = 13, n = 17.

5. Glossary

Hypothesis H ⊂ Θ Any subset of parameters
Likelihood L(θ) Any positive multiple c f(x | θ) of the pdf at the

observed datum X = x, as a function of θ ∈ Θ
Outcome x ∈ X A possible values of the observation X
Parameter θ ∈ Θ A possible “State of Nature”
Statistic S = S(X) Any function S : X → R of the data

6. Computational Notes

In a homework exercise you were asked to show that

p =

∫ ∞

x

1

Γ(α)
zα−1e−z dz =

α−1
∑

y=0

xy

y!
e−x

for nonnegative integers α ∈ Z+ and positive x ∈ R+. While the relation
can be verified by differentiation, it is more illuminating to view it through
the Poisson process: the αth event of a unit-rate Poisson process arrives later
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than time x if and only if fewer than α events have occurred by time x. These
identical events have probabilities 1-pgamma(x,a) and ppois(a-1,x), re-
spectively, since the time of the αth event and the number of events by time
x have the Ga(α, 1) and Po(x) distributions. In R this relation becomes
p = 1-pgamma(x, a) = ppois(a-1, x), leading to the following relations
among x, p, and a:

p = 1-pgamma(x,a) = ppois(a-1,x)

a = 1+qpois(p,x)

x = qgamma(1-p,a)

A similar but subtler relation holds for the binomial and beta distributions:

q =

∫ 1

p

Γ(n + 1)

Γ(x + 1)Γ(n − x)
tx(1 − t)n−x−1 dt =

x
∑

k=0

(

n

k

)

pk(1 − p)n−k

or q = 1-pbeta(p,x+1,n-x)=pbinom(x,n,p), leading to the following re-
lations among x, p, and q:

q = pbinom(x,n,p) = pbinom(n-x,n,1-p)

= 1-pbeta(p,x+1,n-x)

p = qbeta(1-q,x+1,n-x)

x = qbinom(q,n,p)

This relation may also be verified using calculus, or probabilistically by
observing that at most x of n independent Un(0,1) random variables fall
below p ∈ (0, 1) if and only if the x + 1st smallest exceeds p; this order
statistic has a Be(x + 1, n − x) distribution.

This relation allows us to evaluate the endpoints of interval estimates for
the uncertain success probability p after observing x successes in n tries
for binomial data— for example, we can find an increasing sequence u+(x)
satisfying P[p > u+(X) | p] = 0.05 by noting that the event [p > u+(X)] is
the same as [X ≤ x] for the largest x with p > u+(x), so

u+(x) = inf{p : P[X ≤ x|p] > 0.05}

= inf{p : pbinom(x,n,p) > 0.05

= inf{p : pbeta(p,x+1,n-x) < 0.95

= qbeta(0.95,x+1,n-x)

or u+ = qbeta(0.95,3,8) = 0.5069 in the example, while similar reasoning
gives u−(x) = qbeta(0.05,x,n-x+1) in general or u− = qbeta(0.05,2,9) =
0.03677 in the example.
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The binomial coefficient is sometimes defined for integers 0 ≤ k ≤ n by
(

n
k

)

≡ n!
k! (n−k)! , but it is better thought of as the fraction

(

n

k

)

≡
(n)k
k!

where (n)k ≡ n · (n − 1) · · · (n + 1 − k) (the first k terms of n!) is well-
defined for all real n ∈ R and integers k ∈ Z+, even if n is non-integral
or if k > n; for example, this leads to a stronger-than-usual version of the
Binomial Theorem,

(a + b)z =
∞
∑

k=0

(

z

k

)

akbz−k

valid for all z ∈ R (even negative or non-integral z— in fact, even for z ∈ C),
and to simple expressions for the Negative Binomial pmf, X ∼ NB(α, p):

f(x | α, p) =

(

−α

x

)

pα (p − 1)x, x ∈ Z+

=

(

x + α − 1

x

)

pα (1 − p)x, x ∈ Z+

that are valid even for non-integral shape parameter α > 0.
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