1. Interval Estimates

A point estimate T(X) for a parameter $\theta \in \Theta$ on the basis of an observation $X \in \mathcal{X}$ from some known family of distributions $X \sim f_n(x \mid \theta)$ is nearly useless without some notion of its (likely) accuracy; a common approach is to offer *interval estimates*, set-valued statistics U with the properties that:

- 1. $\theta \in U(X)$, with "high probability;"
- 2. U(X) is "small."

For one-dimensional parameters $\theta \in \Theta \subset \mathbb{R}$, for example, it is common to estimate θ with an *interval* of the form $U_X = [L_X, R_X]$ and require that $\mathsf{P}\left[\theta \in [L_X, R_X]\right] \geq 1 - \alpha$ for some small $\alpha > 0$ and that the interval length $[R_X - L_X]$ be as small as possible. Each of the three schools of statistical inference, *Likelihoodist*, *Bayesian*, and *Frequentist*, offers a different way of finding interval estimates. As usual, denote by $\hat{\theta}$ the Maximum Likelihood Estimator $\hat{\theta}_n = \hat{\theta}_n(X) = \operatorname{argmax} f_n(x \mid \theta)$.

1.1. Likelihoodist Intervals

The Likelihoodist approach is to choose a number $\rho \in (0, 1)$ and set

$$U(X) = \{ \theta \in \Theta : \frac{f_n(x \mid \theta)}{f_n(x \mid \hat{\theta}_n)} \ge \rho \},\$$

the set of points with likelihood at least $100\rho\%$ of the maximum possible value. There is no probabilistic interpretation of this set (*interval*, in the common case of one-dimensional unimodal densities), but to the Likelihood-ist U(X) contains all the values of θ supported by the data at least $100\rho\%$ as much as $\hat{\theta}$.

The method may be implemented in R as follows. To illustrate, let's suppose we have Binomial data, with y = 8 successes in n = 10 tries and wish to estimate the success probability θ .

First fix the value of $\rho = \mathbf{rho}$ desired (I'll use $\rho = 0.10$ in the example) and find a lower bound A and upper bound B for the range of values of θ that might be in U(X) (we'll need $U(X) \subset [A, B]$; obviously in the example A = 0and B = 1 will work), and construct theta <- seq(A,B,,10001); this divides the interval into 10,000 equal subintervals. Now estimate the Likelihoodist range by evaluating the likelihood at each point in this range, lik <- dbinom(y, n, theta), and evaluating the expression range(theta[lik > rho * max(lik)]). In the present example the result is 0.4703 0.9708, indicating that points θ in the range from 0.47 to 0.97 have a a likelihood at least 10% of the maximum value, theta[lik == max(lik)]=0.8.

For large *n* the DeMoivre-Laplace limit theorem (special case of the Central Limit Theorem) tells us that $Y \sim \text{Bi}(n, \theta)$ will have an approximately normal $No(\mu, \sigma^2)$ distribution, with mean $\mu = n\theta$ and variance $\sigma^2 = n\theta(1-\theta)$, hence the maximum likelihood estimator $\hat{\theta}_n = y/n$ will have an approximate $\hat{\theta}_n \approx No(\theta, \theta(1-\theta)/n)$ distribution, so ρ and the endpoints of the $100\rho\%$ interval will satisfy

$$\rho \approx e^{-n(\theta - \hat{\theta}_n)^2/2\hat{\theta}_n(1 - \hat{\theta}_n)}$$
$$\theta \approx \hat{\theta} \pm \sqrt{\frac{2}{n}\hat{\theta}(1 - \hat{\theta})\log\frac{1}{\rho}},$$

where $\hat{\theta} = y/n$ is the maximum likelihood estimate for θ .

1.2. Bayesian Credible Intervals

The Bayesian approach to set and interval estimation is to fix some small number $\alpha \in (0, 1)$ and, upon observing $X \sim f_n(x \mid \theta)$, construct a set U(x)satisfying the Bayesian posterior probability bound

$$\mathsf{P}\Big[\theta \in U(x) \mid X = x\Big] \ge 1 - \alpha \tag{1}$$

In any number of dimensions the "HPD Region" is the set

$$U(x) = \{ \theta \in \Theta : f_n(x \mid \theta) \ge c_\alpha(x) \},\$$

where $c_{\alpha}(x)$ is chosen as large as possible without violating Eqn(1). In one dimension a simpler alternative is the symmetric or "equal tail" interval of the form $U(x) = [L_x, R_x]$ with L_x and R_x chosen to satisfy the symmetric requirements $P[\theta < L_x \mid X = x] \leq \alpha/2$ and $P[\theta > R_x \mid X = x] \leq \alpha/2$; in the binomial example above, with a Jeffreys ("arcsin" or Be(.5,.5)) prior, this leads to L_x =qbeta(alpha/2, y+.5, n-y+.5) and R_x =qbeta(1-alpha/2, y+.5, n-y+.5), or L_x =qbeta(0.025, 8.5, 2.5) = 0.4972255 and R_x =qbeta(0.975, 8.5, 2.5) = 0.9559406 in our y = 8, n = 10 example with probability $\alpha = 0.05$ of failing to bracket θ in $[L_x, R_x]$. Asymptotically the Beta is well approximated by the Normal with the same mean and variance, so approximately

$$\begin{split} L_x &\approx \text{ th - Za * sqrt(th*(1-th)/(n+3))} \approx \hat{\theta} - z_{\alpha/2} \sqrt{\hat{\theta}(1-\hat{\theta})/n} \\ R_x &\approx \text{ th + Za * sqrt(th*(1-th)/(n+3))} \approx \hat{\theta} + z_{\alpha/2} \sqrt{\hat{\theta}(1-\hat{\theta})/n}, \end{split}$$

where $\hat{\theta} = y/n$ is the maximum likelihood estimate, th=(y+.5)/(n+1) is the posterior mean and $z_{\alpha/2} = \text{Za} = \text{qnorm}(1 - \text{alpha}/2)$ is the usual normal quantile (approximately 1.96, for $\alpha = .05$). In our example this would give 0.5449 1.0005, showing that n = 10 may be too small to justify a normal approximation.

1.3. Computational Interlude

In this section we review a connection between the Beta and Binomial distributions that is useful in computations.

The environments R and SPlus feature built-in functions to evaluate the pdfs, CDFs, and inverse CDFs of common distributions; for example, they both include

$$pbinom(k,n,p) = \sum_{j=0}^{k} {n \choose j} p^{j} (1-p)^{n-j}$$
$$= \sum_{i=n-k}^{n} {n \choose i} p^{n-i} (1-p)^{i}$$
$$= 1-pbinom(n-k-1,n,1-p),$$

the Binomial CDF, and the beta CDF,

$$\begin{array}{lll} \texttt{pbeta(p,a,b)} &=& \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\,\Gamma(\beta)}\int_0^p x^{\alpha-1}(1-x)^{\beta-1}\,dx\\ &=& \texttt{1-pbeta(1-p,b,a)}. \end{array}$$

Their inverses are also supplied in R and SPlus, satisfying e.g.

$$pbeta(p,a,b)=q \Leftrightarrow qbeta(q,a,b)=p.$$

The functions pbinom and pbeta are related as follows. Let $U_1, ..., U_n$ be *n* independent standard uniform random variables, let 0 be a real number in the unit interval, and let k be an integer in the range $1 \le k \le n$. The *event* that at least k of the n uniforms satisfies $U_j \le p$ may be expressed either as $\{X \ge k\}$, where $X \sim \mathsf{Bi}(n,p)$ denotes the number $X \equiv \sum \mathbb{1}_{(0,p]}(U_j)$ of the n uniforms whose values satisfy $U_j \le p$, or alternately as $\{Y \le p\}$, where $Y \sim \mathsf{Be}(k, n - k + 1)$ denotes the value $Y = U_{(k)}$ of the k^{th} smallest of the n uniforms. Thus

1.4. Frequentist Confidence Intervals

A frequentist $100(1 - \alpha)\%$ confidence set is a random set U(X) with the property that

$$\mathsf{P}[\theta \in U(X) \mid \theta] \ge 1 - \alpha$$

for each $\theta \in \Theta$. Notice that this is a probabilistic statement about the set U(X), and not about the parameter θ . In one-dimensional problems ($\Theta \subset \mathbb{R}$), the "equal-tail" (or "symmetric") set is the interval $U(X) = [L_X, R_X]$ chosen to satisfy $\mathsf{P}[\theta < L_X \mid \theta] \leq \alpha/2$ and $\mathsf{P}[R_X < \theta \mid \theta] \leq \alpha/2$ for all $\theta \in \Theta$; for one-dimensional data $\mathcal{X} \subset \mathbb{R}$ with a monotone likelihood function (this includes the normal (with known variance), exponential, and Poisson means; Bernoulli and binomial probabilities; uniform $\mathsf{Un}[0,\theta]$; and many other examples), the task is to construct an increasing sequence of numbers $L_x \in \mathbb{R}$ for $x \in \mathcal{X}$ with the property that $\alpha/2 \geq \mathsf{P}^{\theta}[\theta < L_X]$.

For any integer $x \in \{1, ..., n\}$, any $\theta \in (L_{x-1}, L_x)$, and any $\alpha \in (0, 1)$, let $X \sim \text{Bi}(n, \theta)$ and, using the connection between pbinom and pbeta from Section (1.3), compute

Similarly, for $x \in \{0, ..., n-1\}$ and $R_x < \theta < R_{x+1}$,

Evidently the shortest allowable interval will be that with

$$L_x \equiv \text{qbeta(alpha/2,x,n-x+1)},$$

 $R_x \equiv \text{qbeta(1-alpha/2,x+1,n-x)}.$

In the limit as $n \to \infty$ the normal approximation to the Beta leads to approximate confidence intervals of the form

$$\left[\frac{x}{n+1} - z_{\alpha/2}\sqrt{\frac{x(n-x+1)}{(n+1)^2(n+2)}}, \quad \frac{x+1}{n+1} + z_{\alpha/2}\sqrt{\frac{(x+1)(n-x)}{(n+1)^2(n+2)}}\right],$$

or (in a less accurate further approximation suggested by looking at the approximately normal distribution of $\hat{\theta} = x/n$),

$$\left[\hat{\theta} - z_{\alpha/2}\sqrt{\hat{\theta}(1-\hat{\theta})/n}, \quad \hat{\theta} + z_{\alpha/2}\sqrt{\hat{\theta}(1-\hat{\theta})/n}\right]$$

where $\hat{\theta} = x/n$ is the MLE for θ , identical to the asymptotic reference Bayesian interval above.

Each of the three paradigms leads to an interval that is asymptotically of the form $\hat{\theta} \pm c\sqrt{\hat{\theta}(1-\hat{\theta})/n}$, with $c(\rho) = \sqrt{-2\log\rho}$ for Likelihoodists and $c(\alpha) = z_{\alpha/2}$ for both Bayesians and Frequentists. Evidently the three paradigms all have similar intervals, with $c(\rho) \approx c(\alpha) + 1/2$ in this range.

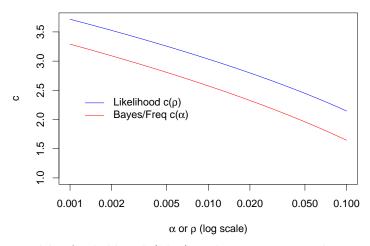


Figure 1. Width of Likelihood (blue) and Frequentist and Bayesian (red) Intervals.