
1. Interval Estimates

A point estimate T (X) for a parameter θ ∈ Θ on the basis of an observation
X ∈ X from some known family of distributions X ∼ fn(x | θ) is nearly
useless without some notion of its (likely) accuracy; a common approach is
to offer interval estimates, set-valued statistics U with the properties that:

1. θ ∈ U(X), with “high probability;”

2. U(X) is “small.”

For one-dimensional parameters θ ∈ Θ ⊂ R, for example, it is common to
estimate θ with an interval of the form UX = [LX , RX ] and require that

P

[

θ ∈ [LX , RX ]
]

≥ 1 − α for some small α > 0 and that the interval length

[RX − LX ] be as small as possible. Each of the three schools of statistical
inference, Likelihoodist, Bayesian, and Frequentist, offers a different way of
finding interval estimates. As usual, denote by θ̂ the Maximum Likelihood
Estimator θ̂n = θ̂n(X) = argmaxfn(x | θ).

1.1. Likelihoodist Intervals

The Likelihoodist approach is to choose a number ρ ∈ (0, 1) and set

U(X) = {θ ∈ Θ :
fn(x | θ)

fn(x | θ̂n)
≥ ρ},

the set of points with likelihood at least 100ρ% of the maximum possible
value. There is no probabilistic interpretation of this set (interval, in the
common case of one-dimensional unimodal densities), but to the Likelihood-
ist U(X) contains all the values of θ supported by the data at least 100ρ%
as much as θ̂.

The method may be implemented in R as follows. To illustrate, let’s suppose
we have Binomial data, with y = 8 successes in n = 10 tries and wish to
estimate the success probability θ.

First fix the value of ρ =rho desired (I’ll use ρ = 0.10 in the example) and
find a lower bound A and upper bound B for the range of values of θ that
might be in U(X) (we’ll need U(X) ⊂ [A,B]; obviously in the example A = 0
and B = 1 will work), and construct theta <- seq(A,B,,10001); this di-
vides the interval into 10,000 equal subintervals. Now estimate the Likeli-
hoodist range by evaluating the likelihood at each point in this range, lik
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<- dbinom(y, n, theta), and evaluating the expression range(theta[lik

> rho * max(lik)]). In the present example the result is 0.4703 0.9708,
indicating that points θ in the range from 0.47 to 0.97 have a a likelihood
at least 10% of the maximum value, theta[lik == max(lik)]=0.8.

For large n the DeMoivre-Laplace limit theorem (special case of the Central
Limit Theorem) tells us that Y ∼ Bi(n, θ) will have an approximately normal
No(µ, σ2) distribution, with mean µ = nθ and variance σ2 = nθ(1 − θ),
hence the maximum likelihood estimator θ̂n = y/n will have an approximate
θ̂n ≈ No(θ, θ(1 − θ)/n) distribution, so ρ and the endpoints of the 100ρ%
interval will satisfy

ρ ≈ e−n(θ−θ̂n)2/2θ̂n(1−θ̂n)

θ ≈ θ̂ ±
√

2

n
θ̂(1 − θ̂) log

1

ρ
,

where θ̂ = y/n is the maximum likelihood estimate for θ.

1.2. Bayesian Credible Intervals

The Bayesian approach to set and interval estimation is to fix some small
number α ∈ (0, 1) and, upon observing X ∼ fn(x | θ), construct a set U(x)
satisfying the Bayesian posterior probability bound

P

[

θ ∈ U(x) | X = x
]

≥ 1 − α (1)

In any number of dimensions the “HPD Region” is the set

U(x) = {θ ∈ Θ : fn(x | θ) ≥ cα(x)},

where cα(x) is chosen as large as possible without violating Eqn(1). In
one dimension a simpler alternative is the symmetric or “equal tail” in-
terval of the form U(x) = [Lx, Rx] with Lx and Rx chosen to satisfy the
symmetric requirements P[θ < Lx | X = x] ≤ α/2 and P[θ > Rx |
X = x] ≤ α/2; in the binomial example above, with a Jeffreys (“arc-
sin” or Be(.5,.5)) prior, this leads to Lx =qbeta(alpha/2, y+.5, n-y+.5)

and Rx =qbeta(1-alpha/2, y+.5, n-y+.5), or Lx =qbeta(0.025, 8.5,

2.5) = 0.4972255 and Rx =qbeta(0.975, 8.5, 2.5) = 0.9559406 in
our y = 8, n = 10 example with probability α = 0.05 of failing to bracket θ
in [Lx, Rx].
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Asymptotically the Beta is well approximated by the Normal with the same
mean and variance, so approximately

Lx ≈ th - Za * sqrt(th*(1-th)/(n+3))≈ θ̂ − zα/2

√

θ̂(1 − θ̂)/n

Rx ≈ th + Za * sqrt(th*(1-th)/(n+3))≈ θ̂ + zα/2

√

θ̂(1 − θ̂)/n,

where θ̂ = y/n is the maximum likelihood estimate, th=(y+.5)/(n+1) is the
posterior mean and zα/2 = Za = qnorm(1− alpha/2) is the usual normal
quantile (approximately 1.96, for α = .05). In our example this would give
0.5449 1.0005, showing that n = 10 may be too small to justify a normal
approximation.

1.3. Computational Interlude

In this section we review a connection between the Beta and Binomial dis-
tributions that is useful in computations.

The environments R and S Plus feature built-in functions to evaluate the
pdfs, CDFs, and inverse CDFs of common distributions; for example, they
both include

pbinom(k,n,p) =

k
∑

j=0

(

n

j

)

pj(1 − p)n−j

=

n
∑

i=n−k

(

n

i

)

pn−i(1 − p)i

= 1-pbinom(n-k-1,n,1-p),

the Binomial CDF, and the beta CDF,

pbeta(p,a,b) =
Γ(α + β)

Γ(α) Γ(β)

∫ p

0
xα−1(1 − x)β−1 dx

= 1-pbeta(1-p,b,a).

Their inverses are also supplied in R and S Plus, satisfying e.g.

pbeta(p,a,b)=q ⇔ qbeta(q,a,b)=p.

The functions pbinom and pbeta are related as follows. Let U1, ..., Un be
n independent standard uniform random variables, let 0 < p < 1 be a real
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number in the unit interval, and let k be an integer in the range 1 ≤ k ≤ n.
The event that at least k of the n uniforms satisfies Uj ≤ p may be expressed
either as {X ≥ k}, where X ∼ Bi(n, p) denotes the number X ≡

∑

1(0,p](Uj)
of the n uniforms whose values satisfy Uj ≤ p, or alternately as {Y ≤ p},
where Y ∼ Be(k, n − k + 1) denotes the value Y = U(k) of the kth smallest
of the n uniforms. Thus

pbeta(p,k,n-k+1) = P[Y ≤ p]

= P[X ≥ k]

= 1-pbinom(k-1,n,p)

= pbinom(n-k,n,1-p).

1.4. Frequentist Confidence Intervals

A frequentist 100(1 − α)% confidence set is a random set U(X) with the
property that

P[θ ∈ U(X) | θ ] ≥ 1 − α

for each θ ∈ Θ. Notice that this is a probabilistic statement about the set

U(X), and not about the parameter θ. In one-dimensional problems (Θ ⊂
R), the “equal-tail” (or “symmetric”) set is the interval U(X) = [LX , RX ]
chosen to satisfy P[θ < LX | θ] ≤ α/2 and P[RX < θ | θ ] ≤ α/2 for all
θ ∈ Θ; for one-dimensional data X ⊂ R with a monotone likelihood function
(this includes the normal (with known variance), exponential, and Poisson
means; Bernoulli and binomial probabilities; uniform Un[0, θ ]; and many
other examples), the task is to construct an increasing sequence of numbers
Lx ∈ R for x ∈ X with the property that α/2 ≥ P

θ[ θ < LX ].

For any integer x ∈ {1, ..., n}, any θ ∈ (Lx−1, Lx), and any α ∈ (0, 1), let
X ∼ Bi(n, θ) and, using the connection between pbinom and pbeta from
Section (1.3), compute

P
θ[θ < LX ] = P

θ[LX ≥ Lx]

= P
θ[X ≥ x]

= 1-pbinom(x-1,n,theta)

= pbeta(theta,x,n-x+1)

≤ pbeta(L[x],x,n-x+1)

≤ α/2 if

Lx ≤ qbeta(alpha/2,x,n-x+1).
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Similarly, for x ∈ {0, ..., n − 1} and Rx < θ < Rx+1,

P
θ[RX < θ] = P

θ[RX ≤ Rx]

= P
θ[X ≤ x]

= pbinom(x,n,theta)

= 1-pbeta(theta,x+1,n-x)

≤ 1-pbeta(R[x],x+1,n-x)

≤ α/2 if

Rx ≥ qbeta(1-alpha/2,x+1,n-x).

Evidently the shortest allowable interval will be that with

Lx ≡ qbeta(alpha/2,x,n-x+1),

Rx ≡ qbeta(1-alpha/2,x+1,n-x).

In the limit as n → ∞ the normal approximation to the Beta leads to
approximate confidence intervals of the form

[

x

n + 1
− zα/2

√

x(n − x + 1)

(n + 1)2 (n + 2)
,

x + 1

n + 1
+ zα/2

√

(x + 1)(n − x)

(n + 1)2 (n + 2)

]

,

or (in a less accurate further approximation suggested by looking at the
approximately normal distribution of θ̂ = x/n),

[

θ̂ − zα/2

√

θ̂(1 − θ̂)/n, θ̂ + zα/2

√

θ̂(1 − θ̂)/n

]

where θ̂ = x/n is the MLE for θ, identical to the asymptotic reference
Bayesian interval above.

Each of the three paradigms leads to an interval that is asymptotically

of the form θ̂ ± c

√

θ̂(1 − θ̂)/n, with c(ρ) =
√
−2 log ρ for Likelihoodists

and c(α) = zα/2 for both Bayesians and Frequentists. Evidently the three
paradigms all have similar intervals, with c(ρ) ≈ c(α) + 1/2 in this range.
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Figure 1. Width of Likelihood (blue) and Frequentist and Bayesian (red)
Intervals.
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