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1. Random Samples & Generating Functions

Much of statistical theory is concerned with inference on the basis of a
“sample” X = (Xy,--+,X,) of some number n of independent replicates,
all from the same probability distribution with pdf or pmf f(z | ); interest
centers, in part, on what happens as n becomes large.

For any real-valued random variable X the complex-valued characteristic
function (ch.f.)

d(w) = E[e™7]
is well-defined and satisfies |¢(w)| < 1, since |e™|? = cos?r + sin?r = 1 for
all real numbers 7. If X has finite mean p and variance o2, the Lebesgue
dominated convergence theorem justifies differentiation under the integral
sign to compute
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Wéb(w) = E[-X"e"7]
¢"(0) = —E[X?]
so i1 = —i¢'(0) and 02 = —¢"(0) + ¢'(0)? or, in terms of ¥ (w) = log ¢(w),

p=-w)/(0)  o*=-"(0)

For an RP-valued random variable X the characteristic function is defined
on RP by '
$(w) = E[e™¥]



and satisfies the vector and matrix relations
p=—iVy(0) £ =-V%)(0)

Characteristic functions are just the Fourier transforms of distribution mea-
sures, so all the familiar results from Fourier analysis can be applied to
them. For example, the Fourier inversion theorem lets us recover a distri-
bution from its ch.f., we can relate smoothness of a ch.f. to the finiteness of
moments of the distribution, etc.

Two other sorts of generating functions are commonly encountered: the
moment generating function (MGF)

M(t) = ¢(—it) = E[e"]
derives its name from the property that
M®*)(0) = E[X*¥]
when both sides exist, and in particular that u = M’(0) and o2 = M"(0) —
M'(0)? (or, better, that

i = Vlog M(t ¥ =V2log M(t

)‘t:O’ )‘t:O;

we will use this property below, when studying Exponential Families), and
the generating function

G(z) = ¢(—ilog z) = E[z*],
useful primarily for nonnegative integer-valued distributions since for these

PIX = k] = G®¥)(1)/k!

Both these functions may fail to exist (or anyway to be finite) for thick-tailed
distributions; the standard Cauchy distribution, for example, has MGF sat-
isfying M(t) = oo, t # 0.

2. Exponential Families

We will pay special attention to the exponential family in which each pdf
takes the form
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f(z|0)=exp [Z ni(0)ti(z) — B(0)
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(surprisingly many of the commonly-considered distributions can be written
in this form, for suitable h, B, and {n;,t;}i<q), but will also consider other
distributions. The likelihood function for a random sample of size n from
the exponential family is

n

L(0) =exp | > n:(0) > _ti(x;) — nB(0)
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It is often convenient to reparametrize exponential families to the natural
parameter n = n(0) € R4, leading (with A(n(0)) = B(0)) to

fx | ) =T AD p(z)

Since any pdf integrates to unity we have
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and hence can calculate the moment generating function (MGF) for the
natural statistic 7'(z) = {t1(x), - - ,t4(x)} as

Mr(s) = E[es'T(X)]
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so we can find moments for the natural statistic by
E[T] = VlegMr(0) = VA
VIT] = VZ%logMr(0) = V2A(n).
provided that n is an interior point of the natural parameter space
E={nelR?:0< / e"T@p () de < oo}
X

and that A(-) is twice-differentiable near 7.



3. Exponential Family Examples

Be(a, 3)  f(z) = FF(<) (>)xa L1—2)%1, z€(0,1) T = (logz,logl—x)
B(a,8) = ~y(« ) ( ) v(a+B) n= (a,B)
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Exponential Family Examples (cont’d)

IG(a,b) (z) = ae (@022 )\/2723 >0 T= (1/z,x)
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Po()) flx)= Ne !, z=0,1,2,.. T= z
B\ = A n= logA\
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VA(n) = e ET = X
V2A(n) = e IAN) = 1/A
Pa(a, 3) fx)= Bal/zP*, z>a T = logx
B(#) = —logf— Bloga n= -3
A(n) = —log(—n) +nloga
VA(n) = loga—1/n ET = loga+1/5
VZAm) = n7? I\ = p?



