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1. Random Samples & Generating Functions

Much of statistical theory is concerned with inference on the basis of a
“sample” X = (X1, · · · , Xn) of some number n of independent replicates,
all from the same probability distribution with pdf or pmf f(x | θ); interest
centers, in part, on what happens as n becomes large.

For any real-valued random variable X the complex-valued characteristic

function (ch.f.)
φ(ω) ≡ E[eiωX ]

is well-defined and satisfies |φ(ω)| ≤ 1, since |eir|2 = cos2 r + sin2 r = 1 for
all real numbers r. If X has finite mean µ and variance σ2, the Lebesgue
dominated convergence theorem justifies differentiation under the integral
sign to compute

d

dω
φ(ω) = E[iX eiωX ]

φ′(0) = iE[X]

d2

dω2
φ(ω) = E[−X2 eiωX ]

φ′′(0) = −E[X2]

so µ = −iφ′(0) and σ2 = −φ′′(0) + φ′(0)2 or, in terms of ψ(ω) ≡ log φ(ω),

µ = −iψ′(0) σ2 = −ψ′′(0)

For an R
p-valued random variable X the characteristic function is defined

on R
p by

φ(ω) ≡ E[eiω·X ]
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and satisfies the vector and matrix relations

µ = −i∇ψ(0) Σ = −∇2ψ(0)

Characteristic functions are just the Fourier transforms of distribution mea-
sures, so all the familiar results from Fourier analysis can be applied to
them. For example, the Fourier inversion theorem lets us recover a distri-
bution from its ch.f., we can relate smoothness of a ch.f. to the finiteness of
moments of the distribution, etc.

Two other sorts of generating functions are commonly encountered: the
moment generating function (MGF)

M(t) = φ(−i t) = E[etX ]

derives its name from the property that

M (k)(0) = E[Xk]

when both sides exist, and in particular that µ = M ′(0) and σ2 = M ′′(0) −
M ′(0)2 (or, better, that

~µ = ∇ logM(t)
∣

∣

t=0
, Σ = ∇2 logM(t)

∣

∣

t=0
;

we will use this property below, when studying Exponential Families), and
the generating function

G(z) = φ(−i log z) = E[zX ],

useful primarily for nonnegative integer-valued distributions since for these

P[X = k] = G(k)(1)/k!

Both these functions may fail to exist (or anyway to be finite) for thick-tailed
distributions; the standard Cauchy distribution, for example, has MGF sat-
isfying M(t) = ∞, t 6= 0.

2. Exponential Families

We will pay special attention to the exponential family in which each pdf
takes the form

f(x | θ) = exp

[

q
∑

i=1

ηi(θ)ti(x) −B(θ)

]

h(x)
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(surprisingly many of the commonly-considered distributions can be written
in this form, for suitable h, B, and {ηi, ti}i≤q), but will also consider other
distributions. The likelihood function for a random sample of size n from
the exponential family is

L(θ) = exp





q
∑

i=1

ηi(θ)
n

∑

j=1

ti(xj) − nB(θ)





It is often convenient to reparametrize exponential families to the natural

parameter η = η(θ) ∈ R
q, leading (with A(η(θ)) ≡ B(θ)) to

f(x | η) = eη·T (x)−A(η)h(x)

Since any pdf integrates to unity we have

eA(η) =

∫

X
eη·T (x)h(x) dx

and hence can calculate the moment generating function (MGF) for the
natural statistic T (x) = {t1(x), · · · , tq(x)} as

MT (s) = E

[

es·T (X)
]

=

∫

X
es·T (x) eη·T (x)−A(η)h(x) dx

= e−A(η)

∫

X
e(η+s)·T (x)h(x) dx

= eA(η+s)−A(η),

so we can find moments for the natural statistic by

E[T ] = ∇ logMT (0) = ∇A(η)
V[T ] = ∇2 logMT (0) = ∇2A(η).

provided that η is an interior point of the natural parameter space

E ≡ {η ∈ R
q : 0 <

∫

X
eη·T (x)h(x) dx <∞}

and that A(·) is twice-differentiable near η.
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3. Exponential Family Examples

Be(α, β) f(x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1, x ∈ (0, 1) T = (log x, log 1−x)
B(α, β) = γ(α) + γ(β) − γ(α+ β) η = (α, β)
A(η) = γ(η1) + γ(η2) − γ(η1 + η2)

∇A(η) =

[

ψ(η1) − ψ(η1 + η2)
ψ(η2) − ψ(η1 + η2)

]

ET =

[

ψ(α) − ψ(α + β)
ψ(β) − ψ(α + β)

]

∇2A(η) =

(

ψ′(η1) − c −c
−c ψ′(η2) − c

)

c = ψ′(η1 + η2)

Bi(n, p) f(x) =
(n
x

)

pxq(n−x), x = 0...n T = x
B(p) = −n log q η = log(p/q)
A(η) = n log(1 + eη) p = eη/(1 + eη)

∇A(η) = neη

1+eη ET = np

∇2A(η) = neη

(1+eη)2 I(p) = n/pq

Ex(λ) f(x) = λe−λx, x > 0 T = x
B(λ) = − log λ η = −λ
A(η) = − log(−η)

∇A(η) = −1/η ET = 1/λ
∇2A(η) = η−2 I(λ) = 1/λ2

Ga(α, λ) f(x) = λα

Γ(α)x
α−1 e−λx, x > 0 T = (log x, x)

B(α, β) = γ(α) − α log λ η = (α,−λ)
A(η) = γ(η1) − η1 log(−η2)

∇A(η) =

[

ψ(η1) − log(−η2)
−η1/η2

]

ET =

[

ψ(α) − log λ
α/λ

]

∇2A(η) =

(

ψ′(η1) −1/η2

−1/η2 η1/η2
2

)

I(α, λ) =

(

ψ′(α) −1/λ
−1/λ α/λ2

)

Ge(p) f(x) = p qx, x = 0, 1, 2, ... T = x
B(p) = − log p η = log q
A(η) = − log(1 − eη) p = 1 − eη

∇A(η) = eη

1−eη ET = q/p

∇2A(η) = eη

(1−eη)2
I(p) = 1/p2q
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Exponential Family Examples (cont’d)

IG(a, b) f(x) = ae−(a−bx)2/2x/
√

2πx3, x > 0 T = (1/x, x)
B(a, b) = −ab− log a η = (−a2/2,−b2/2)
A(η) = −2

√
η1 η2 − 1

2 log(−2η1) a =
√−2η1, b =

√−2η2

∇A(η) =

[
√

η2/η1 − 1/2η1
√

η1/η2

]

ET =

[

b/a+ 1/a2

a/b

]

∇2A(η) = 1
2





√

η2

η1
3 + 1

η1
2

−1√
η1η2

−1√
η1η2

√

η1

η2
3



 I(a, b) =

(

b/a+ 2/a2 −1
−1 a/b

)

NB(α, p) f(x) =
(−α

x

)

pα (−q)x, x = 0, 1, 2, ... T = x
B(p) = −α log p η = log q
A(η) = −α log(1 − eη) p = 1 − eη

∇A(η) = αeη

1−eη ET = αq/p

∇2A(η) = αeη

(1−eη)2
I(p) = α/p2q

No(µ, σ2) f(x) = e−(x−µ)2/2σ2

/
√

2πσ2 T = (x, x2)
B(µ, σ2) = µ2/2σ2 + 1

2 log σ2 η = (µσ−2,−σ−2/2)
A(η) = −η1

2/4η2 − 1
2 log(−2η2)

∇A(η) =

[

−η1/2η2

η1
2/4η2

2 − 1/2η2

]

ET =

[

µ
µ2 + σ2

]

∇2A(η) =

(

−1/2η2 η1/2η2
2

η1/2η2
2 −η1

2/2η2
3 + 1/2η2

2

)

I(a, b) =

(

σ−2 0
0 σ−4/2

)

Po(λ) f(x) = λxe−λ/x!, x = 0, 1, 2, ... T = x
B(λ) = λ η = log λ
A(η) = eη λ = eη

∇A(η) = eη ET = λ
∇2A(η) = eη I(λ) = 1/λ

Pa(α, β) f(x) = β αβ/xβ+1, x > α T = log x
B(β) = − log β − β log α η = −β
A(η) = − log(−η) + η log α

∇A(η) = log α− 1/η ET = log α+ 1/β
∇2A(η) = η−2 I(λ) = β−2
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