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1. Properties of Estimators

Let Xj be a sequence of independent, identically distributed random vari-
ables taking value in some space X , all with pdf f(x|θ) for some uncertain
parameter θ ∈ Θ, and let Tn(X1, ..., Xn) be a sequence of estimators of
θ— i.e., of functions Tn : X n → Θ intended to satisfy Tn(X) ≈ θ. An
example to keep in mind would be X ∼ No(θ, 1) with θ ∈ Θ = R, and
Tn(X) = Xn = (X1 + · · · + Xn)/n. Let us now explore different ways of
making the intention “Tn(X) ≈ θ” more precise.

1.1. Bias

The Bias of an estimator Tn(x) is simply the expected difference, βn(θ) =
E[Tn(X) − θ | θ]. An estimator is called unbiased if βn ≡ 0, i.e.,

E[Tn(X) | θ] ≡ θ

for all n ∈ N and all θ ∈ Θ, and an estimator sequence is called asymptoti-

cally unbiased if βn → 0 as n→ ∞, i.e.,

lim
n→∞

E[Tn(X) | θ] = θ.

An unbiased estimator will satisfy the goal “Tn(X) ≈ θ” in the sense that
the average value of Tn(X) over many replications will be θ. This will
offer little or no comfort to someone using the estimator only once, since the
possibility remains that perhaps [Tn(X)−θ] will be hugely positive with high
probability, and hugely negative with high probability, with large deviations
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that average out to zero in the end. Asymptotic unbiasedness offers even
less comfort, but its absence would be alarming. What is needed are bounds
or conditions on how large |Tn(X) − θ| can be.

Most of the criteria below depend, in one way or another, on the quadratic
Risk Funcion

R(θ, Tn) ≡ E
[

|Tn(X) − θ|2 | θ
]

;

we would like this to be small.

1.2. Convergence of Random Variables

While there are many possible metrics on Euclidean space R
p, for any integer

p ∈ N+, all lead to the same notions of convergence— a sequence of vectors
xn ∈ R

p converges to a limit x if and only if each of the p coordinates of
the difference (xn − x) converges to zero, i.e., if and only if for all ε > 0
there is a number Nε ∈ N+ such that, whenever n ≥ Nε, every coordinate
of (xn − x) is in the range [−ε, ε].
Random variables are more interesting— there are many different notions
of what it means for a sequence Xn of random variables to converge to some
limit X. Here are a few of them, each with an example constructed from
independent uniform random variables Un ∼ U(0, 1):

• pr : A sequence converges in probability (pr.) if

∀ε > 0, Pr[|Xn −X| > ε] → 0

The sequence Xn ≡ n 1[Un<1/n] converges to zero pr.

• Lp: A sequence converges in Lp for fixed 1 ≤ p <∞ if

E[|Xn −X|p] → 0

The sequence Xn (above) does not converge in Lp, but for q > 1 the
sequence Yn ≡ n1/q 1[Un<1/n] does converge to zero in Lp for 1 ≤ p < q.

• L∞: A sequence converges in L∞ (or uniformly1) if

sup[|Xn −X|] → 0

1To be a little more precise, we need the essential supremum of |Xn − X| to go to

zero— it’s okay for bad things to happen with probability zero. Ask me if you’d like to

see more details.
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The sequence Yn does not converge in L∞, but the sequence Zn ≡
Un/n

ε does for any ε > 0. Note that

sup{|Xn −X|} = lim
p→∞

(

E
[

|Xn −X|p
])1/p

Still other convergence notions are useful as well: a sequence converges in

distribution if
Pr[Xn ≤ r] → Pr[X ≤ r]

for each real number r (or just for a dense set of them, like the rationals);
this turns out to be equivalent to the requirement that E[g(Xn)] → E[g(X)]
for all continuous bounded functions g(x). And finally a sequence converges
almost surely (a.s.) if

Pr[Xn → X] = 1.

The two notions that will concern us most are L2 convergence (this is Lp,
with p = 2) and convergence in probability; the key fact to remember is
that convergence in L2 implies convergence in probability since, by Markov’s
inequality, for any ε > 0

Pr[|Xn −X| > ε] = Pr[|Xn −X|2 > ε2] ≤ E[|Xn −X|2]/ε2 → 0.

1.3. Consistency

The estimator sequence Tn(x) is called Consistent if it always converges to
the right answer θ as n → ∞, i.e., if the random variable |Tn(X) − θ| → 0
in some sense. Each sense in which random variables may converge leads
to a slightly different notion of consistency; the most commonly used is “L2

consistency”, where the requirement is that R(θ, Tn) → 0 as n→ ∞ for each
θ ∈ Θ and for squared-error loss, i.e.,

lim
n→∞

E
[

|Tn(X) − θ|2 | θ
]

= 0.

By adding and subtracting the mean E[Tn(X)] we can see that L2 consistency
is equivalent to the two requirements βn → 0 (“asymptotic unbiasedness”)
and V[Tn] → 0 (variance converges to zero).

A weaker requirement would be consistency in probability, i.e., that for each
ε > 0, P[|Tn(X)−θ| > ε | θ] → 0 as n→ ∞; this is implied by L2-consistency.
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1.4. Efficiency

Under suitable regularity conditions an L2-consistent estimator sequence
Tn(x) will have a limiting squared error of the form R(θ, Tn) ≈ cT /n for
some cT > 0 that may depend on θ, i.e.,

nR(θ, Tn) = nE
[

|Tn(X) − θ|2
]

→ cT (θ) as n→ ∞

for some number cT > 0 (in fact they will usually obey the stronger condition
of asymptotic normality, that P[

√
n(Tn(X) − θ) ≤ z] → Φ(z/

√
cT ) as n →

∞). Evidently it would be preferable to have cT small. The estimator
sequence S is called “more efficient than” T if R(θ, Sn) ≤ R(θ, Tn), and the
ratio R(θ, Tn)/R(θ, Sn) is called the relative efficiency; asymptotically it
will be R(θ, Tn)/R(θ, Sn) → cT /cS in the usual case, equal to the ratio of
sample-sizes NS/NT the two estimators need to achieve the same expected-
squared-error. Harold Cramèr and C.R. Rao found a lower boundR(θ, Tn) ≥
cI/n for some cI(θ) > 0, so it is possible to quantify efficiency on an absolute
scale as the ratio cI/cT ≤ 1. This was called the “Cramèr-Rao lower bound”
in the literature until Erich Lehmann brought to everyone’s attention the
earlier work of Frechèt; now it’s called the Information Inequality. I’ll prove
it below.

1.5. Robustness

Sometimes a probability model is in doubt, or just wrong— we may believe
(or prefer to act as if) Xj ∼ f(x | θ), for example, but may be required
to make inference about θ ∈ Θ on the basis of observations Xj ∼ f∗(x | θ)
from a rather different family of distributions [add an example about outliers
here]. An estimator Tn is called robust if it still satisfies Tn(X) ≈ θ, even for
data Xj ∼ f∗(x | θ) from a somewhat different distribution. It is hard to be
more precise about the meaning without the context of a specific example;
we’ll return to this later.

1.6. Sufficiency

In most problems some aspects of the data X lend useful evidence about an
unknown θ ∈ Θ, while others do not— in a fixed number n of independent
Bernoulli trials, for example, only the total number S of successes is relevent
for estimating the success probability p, but not the order in which the suc-
cesses and failures arrive. A statistic S is called sufficient if it embodies all
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the evidence about θ— more precisely, if the conditional distribution of the
data X, given S(X), does not depend upon θ. The well-known Factorization
Criterion states that S is sufficient for θ if and only if the likelihood function
f(x|θ) may be written in the form

f(x|θ) = g(S(x), θ)h(x)

for some functions g(s, θ) and h(x); the important features are that h does
not depend on θ, and that g depends on x only through S = S(x). If the
distribution of X comes from an exponential family

f(x|θ) = eη(θ)·T (x)−B(θ)h(x)

then evidently T (x) is a q-dimensional sufficient statistic— this is the most
important case where sufficiency arises. A sufficient statistic S is called
minimal if its value is determined by any other sufficient statistic— i.e., if
for any sufficient T there is a function φ(t) such that S(x) = φ

(

T (x)
)

. The
natural sufficient statistic T in an exponential family is minimal sufficient,
provided that it is of minimal rank— i.e., that its q components are linearly
independent, and also those of η(θ). More generally, a sigma-field G on Ω
is called sufficient if the conditional expectation E[X | G] does not depend
on θ; G is minimal sufficient if G ⊂ H for every sufficient sigma-field H.
If S is a statistic, then S is a sufficient statistic if and only if σ(S) is a
sufficient sigma-field, but the sigma-field approach is more general in that G
may be generated by infinitely-many random variables G = σ{Sn}n∈N, and
the minimal sufficient sigma-field G is uniquely determined while there may
be many different minimal sufficient statistics.

1.7. Admissibility

An estimator T is called (squared-error) Admissible if there does not exist
another S satisfying R(θ, S) < R(θ, T ) for all θ ∈ Θ (more precisely, sat-
isfying R(θ, S) ≤ R(θ, T ) for all θ and R(θ ′, S) < R(θ′, T ) for at least one
θ ∈ Θ). It can be argued that one should never use an inadmissible estima-
tor T , since another S exists that is never worse and is sometimes better—
but, perhaps astonishingly, Charles Stein and his student Willard James
(1961) showed that one of the most commonly-used and recommended esti-
mators, Xn for the normal mean, is inadmissible in p > 3 dimensions (see
below).
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1.8. Bayes Risk

In the Bayesian paradigm the parameter θ is an uncertain quantity, so
estimator features like unbiasedness have no appeal at all; conversely the
sample-size n and the data X = (x1, · · · , xn) are both observed and hence
not uncertain, so features about averages over other possible X’s or limits
as n → ∞ have little appeal either. A desirable Bayesian property for an
estimator Tn() would be that Tn(X) ≈ θ in the sense that, given n and X,
the probability that θ lies far from the observed number Tn(x) is small, or
the expected squared distance is small. The most frequently cited quantity
is the Bayes risk for specified prior distribution π(dθ),

r(π, Tn) = E |Tn − θ|2 =

∫

Θ
R(θ, Tn)π(dθ)

=

∫∫

Θ×Xn

|Tn(x) − θ|2 f(x | θ)dxπ(dθ)

=

∫∫

Θ×Xn

|Tn(x) − θ|2 π(dθ | x) f(x) dx (1)

which is evidently minimized over all possible estimators Tn by the Bayesian
posterior mean estimator,

T π
n (x) ≡ E[θ | Xn = x] =

∫

Θ
θ π(dθ | x) =

∫

Θ θ fn(x | θ)π(dθ)
∫

Θ fn(x | θ)π(dθ)
.

It is a remarkable fact that every unique Bayes estimator is admissible.
Suppose, for contradiction, that for some prior distributibution π(dθ) on Θ
the Bayes posterior mean T π were not admissible; then there would exist
another estimator S with R(θ, S) ≤ R(θ, T π) and R(θ∗, S) < R(θ∗, T π)
for some θ∗ ∈ Θ. After integrating over Θ with respect to the prior, this
gives r(π, S) ≤ r(π, T π), so S too attains minimum Bayes risk— and by
uniqueness must be equal to T π, contradicting R(θ∗S) < R(θ∗, T π). The
standard method for constructing admissible estimators (evey by Frequentist
statisticians) is to look at Bayesian posterior means, for a range of possible
prior distributions π(dθ).

1.9. Minimaxity

An estimator T is called minimax if the supremum over all θ ∈ Θ of its
risk function,
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sup
θ∈Θ

R(θ, T ) = sup
θ∈Θ

E
[

|T (X) − θ|2 | θ
]

,

is as small as possible— i.e., every other estimator has a larger maximum
risk. This criterion would comfort an extreme pessimist— the worst that
can happen for such a T is no worse than the worst that can happen for any
other estimator.

Note that minimaxity may be viewed as a sort of Bayesian robustness,
against misspecification of the prior distribution. The standard method
for finding minimax estimators is also to look at limits of sequences of Bayes
estimators, in search of the “least favorable” prior distribution π(dθ) for
which R(θ, T π) is constant— and, by admissibility, necessarily minimax.

2. Normal Distribution Inference

Let X = (X1, · · · , Xn) be a random sample from the Normal No(µ, σ2)
distribution; the joint pdf (hence likelihood) is

f(x|µ, σ2) = (2πσ2)−n/2e−
P

(xi−µ)2/2σ2

= (2πσ2)−n/2e−
P

(xi−Xn)2/2σ2−n(Xn−µ)2/2σ2

= (2πσ2)−n/2e−(n/2σ2)[S2
n+(Xn−µ)2 ], where

Xn ≡ 1

n

∑

xi and S2
n ≡ 1

n

∑

(xi −Xn)2

are the maximum likelihood estimates (MLE’s) for µ and σ2, respectively.
Evidently the likelihood depends on the data only through these statistics;
since S2

n depends only on [X − Xn], a normal vector independent of Xn,
it follows that the random variables Xn and S2

n are independent. Their
distributions are

Xn ∼ No(µ, σ2/n) S2
n ∼ Ga

(

n− 1

2
,
n

2σ2

)

,

respectively, so the re-scaled quantity

Y ≡ n

σ2
S2

n ∼ Ga

(

n− 1

2
,
1

2

)

= χ2
n−1
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has a χ2
ν distribution with ν = (n− 1) degrees of freedom,

Z ≡ Xn − µ

σ/
√
n

has a standard No(0, 1) distribution, and

t ≡ Xn − µ

S/
√
n− 1

=
Z

√

Y/(n− 1)

has a distribution that doesn’t depend on µ or σ2 at all, called the “Student’s
tn−1.” William Sealy Gosset (1908), writing under the nôm de plume “Stu-
dent” because his employer, the Guiness brewery, didn’t allow its employees
to publish, saw that this could provide a basis for inference about a normal
mean µ when the variance σ2 is unknown, and computed the probability
density function

fν(t) =
Γ(ν+1

2 )

Γ(ν
2 )
√
πν

(

1 + t2/ν
)−

ν+1

2 .

This distribution is “bell-shaped” and in fact converges to the standard
normal density as ν → ∞, but its “tails” fall off only polynomially fast
(at rate |t|−ν−1) as |t| → ∞, while the normal density’s tails fall off ex-
ponentially fast. For any n ∈ N and α ∈ (0, 1) we can find the number
tα/2 = qt(1-alpha/2,nu) such that P[|t| > tα/2] = α and note that

1 − α = P[−tα/2 ≤ t ≤ tα/2]

= P[
−tα/2Sn√
n− 1

≤ Xn − µ ≤
tα/2Sn√
n− 1

]

= P

[

µ ∈
(

Xn −
tα/2Sn√
n− 1

, Xn +
tα/2Sn√
n− 1

)]

,

giving a random interval Xn ± tα/2Sn/
√
n− 1 (called a confidence interval)

which will contain the uncertain quantity µ with prespecified probability
1−α. It is sometimes useful to notice that if t ∼ tν then t2 has an F 1

ν

distribution and that t2/(t2 + ν) ∼ Be(1/2, ν/2); the latter allows one to
use the incomplete Beta function to compute t probability integrals in C or
Fortran.

In the limit as ν → ∞ the density converges fν(t) = cν(1 + t2/ν)−(ν+1)/2 →
c∞e

−t2/2 to the standard normal distribution, so in the limit the number
tα/2 = qt(1-alpha/2,nu) is approximately zα/2 = qnorm(1-alpha/2), but
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for any ν < ∞ we have tα/2 > zα/2 so approximate intervals of the form

Xn ± zα/2Sn/
√
n− 1 would be too short and would fail to bracket µ with

probability at least 1 − α.

Note: As an estimator of σ2 the maximum likelihood estimator S2
n =

∑

(xi −Xn)2/n is biased, since βn = E[S2 | σ] − σ2 = (n − 1)σ2/n − σ2 =
−σ2/n 6= 0 (it is asymptotically unbiased, of course). Some authors prefer to
define “sample variance” by the unbiased estimator S2

n ≡∑(xi−Xn)2/(n−
1), which does satisfy E[S2

n | σ2] ≡ σ2; our intervals above will be recovered
if we replace each

√
n−1 with

√
n.

2.1. Example: Estimating the Normal Mean

The most obvious estimator of the normal mean µ is its maximum like-
lihood estimator, the sample mean T 1

n(x) = Xn =
∑n

i=1 xi/n. I would
also like to consider two other competitors: the sample median T 2

n(x) =
X(m+1), the m+1st-smallest observation if n = 2m+1 is odd, or T 2

n(x) =
(X(m) + X(m+1))/2, the average of the two middle values, if n = 2m is
even; and, for any ξ ∈ R and τ > 0, the weighted average T 3

n(x) =
[nσ−2Xn + τ−2ξ]/[nσ−2 + τ−2] (we’ll see later that this is the conjugate-
prior Bayes estimator). To simplify life we’ll take n = 2m + 1 odd, so
that

T 1
n(x) =

∑n
i=1 xi

n
T 2

n(x) = X((n+1)/2) T 3
n(x) =

σ−2
∑n

i=1 xi + τ−2ξ

nσ−2 + τ−2
.

2.1.1. Bias

The means are E[T 1
n ] = µ and (by symmetry) E[T 2

n ] = µ, while evidently
E[T 3

n(x)] = (nτ 2µ+σ2ξ)/(nτ 2 +σ2) = µ+(ξ−µ)/(n(τ/σ)2 +1), so T 1 and
T 2 are unbiased while T 3 is only asymptotically unbiased.

2.1.2. Consistency

The sample mean Xn ∼ No(µ, σ2/n) has a normal distribution with mean
µ and variance σ2/n, so T 1 is L2 consistent with E[|T 1

n − µ|2] = σ2/n → 0.
A little more arithmetic shows that E[|T 3

n − µ|2] = (nσ2 + r2δ2)/(n + r)2,
where δ ≡ (ξ − µ) and r ≡ (σ2/τ2), so E[|T 3

n − µ|2] → 0 at rate 1/n as well.

The median is more fun. Recall that the Beta distribution Be(α, β) has mean
α

α+β and variance αβ
(α+β)2(α+β+1) , or 1

2 and 1
4(2m+3) in the symmetric case
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α = β = m+ 1, and that Be(α, β) is asymptotically normal as α+ β → ∞.
From the earlier class notes we have

pbinom(x,n,p)=1-pbeta(p,x+1,n-x)

for any number p ∈ (0, 1) and integers 0 ≤ x ≤ n < ∞, so for any number
a ∈ R the probability that the median X(m+1) ≤ µ + aσ/

√
n is the same

as the probability that at least m+ 1 of the n = 2m+ 1 Xi’s are less than
µ+ aσ/

√
n, an event with probability

P[X(m+1) ≤ µ+ aσ/
√
n] =

n
∑

k=m+1

(

n

k

)

Φ(a/
√
n)kΦ(−a/

√
n)n−k

= 1-pbinom(m, n, pnorm(a/sqrt(n)))

= pbeta(pnorm(a/sqrt(n)), m+1, m+1)

≈ pbeta(0.5+dnorm(0)*a/sqrt(n), m+1, m+1)

≈ Φ

(

(1
2 + φ(0)a/

√
n) − 1

2
√

1/4(2m + 3)

)

= Φ
(

2
√

2m+ 3 φ(0)a/
√

2m+ 1
)

≈ Φ(2φ(0) a) ,

so the median X̃n ≡ X(m+1) has a limiting distribution given by

√
n(X̃n − µ) ∼ No(0, σ2/4φ(0)2)

approximately for large n. Of course we could simplify this distribution to
No(0, σ2π/2) using φ(0) = 1/

√
2π, but in fact the result is true more gener-

ally: for any Xj ∼ F (x) with F (θ) = 1/2 and f(θ) = F ′(θ) > 0, the median
X̃n ≡ X(m+1) has the limiting distribution

√
n(X̃n − θ) ∼ No(0, 1/4f(θ)2).

In particular, asymptotically we have E[|T 2
n − µ|2] ≈ σ2π/2n → 0, so T 2 is

consistent too.

2.1.3. Efficiency

The Information Inequality

Let f(x | θ) be a density function with the property that log f(x | θ) is
differentiable in θ throughout the open p-dimensional parameter set Θ ⊂ R

p;
then the score statistic (or score function) is defined by
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Z(X) ≡ ∇θ log f(x | θ) =
∇θ f(x | θ)
f(x | θ)

and the Fisher (or Expected) Information matrix is defined by

I(θ) ≡ E
[

Z(X)Z(X)′ | θ
]

;

if we may exchange integration with differentiation then we can calculate

E[Zi(X) | θ] =

∫

X

[
d

dθi
log f(x | θ)] f(x | θ) dx

=

∫

X

d
dθi

f(x | θ)
f(x | θ) f(x | θ) dx

=

∫

X

d

dθi
f(x | θ) dx

=
d

dθi

∫

X

f(x | θ) dx

= 0

and hence E[Z(X) | θ] = 0 and Cov[Z(X) | θ] = E [Z(X)Z(X)′ | θ] = I(θ);
taking another derivative with respect to θj of the equation E[Zi(X) | θ] = 0
gives, by the product rule,

0 =
d

dθj
E[Zi(X) | θ]

=
d

dθj

∫

X

[
d

dθi
log f(x | θ)] f(x | θ) dx

=

∫

X

[
d2

dθi dθj
log f(x | θ)] f(x | θ) dx+

∫

X

[
d

dθi
log f(x | θ)] [ d

dθj
log f(x | θ)] f(x | θ) dx

= E

[

d2

dθi dθj
log f(x | θ)

]

+ I(θ),

so we may also compute the Fisher Information as

I(θ) = E
[

−∇2
θ log f(X | θ)

]

,

the matrix of expected negative second derivatives of the log likelihood with
respect to θ.
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Now let Θ ⊂ R be one-dimensional and let T be any statistic with finite
expectation ψ(θ) ≡ E[T (X) | θ], and assume additionally that ψ is differen-
tiable throughout Θ to justify exchanging integration and differentiation as
follows:

ψ′(θ) =
d

dθ

∫

X

T (x) f(x | θ) dx

=

∫

X

T (x)
d

dθ
f(x | θ) dx

=

∫

X

T (x)Z(x) f(x | θ) dx

= E [T (X)Z(X) | θ] = Cov [T (X)Z(X)] ,

so the score statistic Z(X) ≡ d
dθ log f(x | θ) has mean zero, variance I(θ),

and covariance ψ′(θ) = Cov[T (X), Z(X)] with T (X); by the Covariance
Inequality |Cov(T,Z)|2 ≤ V(T )V(Z) (Minkowski’s inequality), we can con-
clude that |ψ′(θ)|2 ≤ I(θ)V(T (X)), or that

V(T (X)) ≥ |ψ′(θ)|2
I(θ)

;

in particular, any unbiased estimator T of θ must have risk

R(θ, T ) ≥ 1

I(θ)

bounded below by the celebrated Information Inequality.

[Could add examples, No+Po+(perhaps) Exponential Family; at least, men-
tion that In(θ) = nI(θ) for iid samples]
Efficiency of the Mean and Median

The Fisher Information for n observations from the No(θ, σ2) distribution
is In(θ) = nσ−2, so no unbiased estimator can have risk less than 1/I(θ) =
σ2/n; this bound is attained by the sample mean T 1

n , so no estimator of θ
is more efficient than the sample mean T 1

n = Xn, with E[|T 1
n − µ|2] = σ2/n.

The relative efficiency of the sample median T 2
n = T̃n then is

R(µ, T 1
n)

R(µ, T 2
n)

=
E[|T 1

n − µ|2]
E[|T 2

n − µ|2] ≈
σ2/n

σ2π/2n
=

2

π
,

so the sample median T 2
n(t) will require a sample about π/2 ≈ 1.57 times

(57% more) observations than the sample mean T 1
n(t) would to achieve

equally small squared errors. The Bayes estimator has relative efficiency

R(µ, T 1
n)

R(µ, T 3
n)

=
E[|T 1

n − µ|2]
E[|T 3

n − µ|2] =
σ2/n

(nσ2 + r2δ2)/(n+ r)2
=

(n+ r)2σ2

n2σ2 + nr2δ2
→ 1,
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so the Bayes estimate T 3 is also has the highest asymptotic efficiency possi-
ble.

Pitman noticed that, if
√
n(Tn−θ) ⇒ No(0, c) in a strong enough sense that

even the density function converges pointwise, then the constant c can be
recovered from the pdf fn(t) for Tn by

cT = lim
n→∞

n

2πfn(θ)2
.

Applying this to the sample median of n = 2m + 1 samples from a distri-
bution with CDF F (t) and pdf f(t) = F ′(t) > 0, with F (θ) = 1/2, and
recalling Stirling’s approximation n! ≈

√
2πnn+1/2 e−n (with relative error

no larger than e1/12n),

fn(θ +
t√
n

) = n

(

2m

m

)

1√
n
f(θ +

t√
n

)F (θ +
t√
n

)m
(

1 − F (θ +
t√
n

)
)m

≈
√
n

(2m)!

m!2
f(θ)

(

1/2 +
t√
n
f(θ)

)m (
1/2 − t√

n
f(θ)

)m

≈
√
n

√
2π(2m)2m+1/2 e−2m

(
√

2π(m)m+1/2 e−m)2 22m
f(θ)

(

1 − 4
t2

n
f(θ)2

)m

=

√

2n

π(n− 1)
f(θ)

(

1 − 4
t2

n
f(θ)2

)(n−1)/2

≈
√

4 f(θ)2

2π
exp

(

− 2 t2f(θ)2
)

,

a normal density function in t with mean 0 and variance 1/4f(θ)2, so the
asymptotic relative efficiency of the Median with respect to the sample Mean
(which by the Central Limit Theorem satisfies

√
n(Xn − θ) ⇒ No(0, σ2)) is

ARE = 4f(θ)2σ2. For normal f(·) = No(θ, σ2), f(θ)2 = 1/2πσ2 giving an
ARE of 2/π for the Median, as before.

Pitman also suggested an incredibly easy way to compute ARE’s: under the
strong conditions that the PDF of

√
n(Tn−θ) converges pointwise and in L1

to a normal distribution with mean 0 and variance cT , the density function
fn(x) of Tn will satisfy

cT = lim
n→∞

n

2πfn(θ)2

so we can pick off the asymptotic relative efficiency simply from the value at θ
of the pdf; for the median of normal deviates, this again gives us cT = πσ2/2,
once again giving an ARE of 2/π.
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2.1.4. Robustness

If the true distribution of theXi is not No(µ, σ2) but rather a mixture of 99%
No(µ, σ2) and 1% of something with much heavier tails, like a Cauchy or even
a normal distribution with much larger variance, then there is a chance that
the data will include one or more “outliers” from the contaminating distri-
bution. Many of the pleasant features of T 1

n = Xn and the Bayes estimator
T 3

n are lost now, because Xn is quite sensitive to the presence of outliers—
for example, the bias and expected squared error are now much larger, per-
haps infinite. The median is much less effected by the contamination, and
remains consistent and comparatively efficient; for this reason it is called
a robust estimator, while the sample mean and its relatives are not. With
Cauchy contamination, for example, we have R(µ, T 1

n) = ∞ > R(µ, T 2
n).

Tukey proposed a simple “contamination model”

Xi ∼ εNo(θ, σ2) + (1 − ε)No(θ, τ 2σ2)

for some ε > 0, τ � 1, the ε-mixture of a No(θ, σ2) random variable with
a normal distribution with the same mean but inflated variance. It is easy
to see that this has again mean θ but variance σ2[1 − ε + ετ 2], and has a
density function whose value at θ is

f(θ) =
1√

2πσ2

(

1 − ε+
ε

τ

)

,

so by Pitman’s argument the relative efficiency of the median to the mean
are

4f(θ)2V(X) = 2(1 − ε+ ε/τ)2(1 − ε+ ετ 2)/π,

giving 2/π for ε = 0 but becoming arbitrarily large as τ → ∞ for any ε > 0
indicating that the median is more efficient under a contamination model.

[Could add note on how Bayes estimators with respect to flat-tailed priors
are robust, while those for conjugate priors are not; for example, Cauchy
prior for normal problems, as recommended by Jeffreys. Could also mention
trimmed means etc.].

2.1.5. Admissibility

An estimator T is called (squared-error) Admissible if there does not ex-
ist another S satisfying R(θ, S) < R(θ, T ) for all θ ∈ Θ (more precisely,
satisfying R(θ, S) ≤ R(θ, T ) for all θ and R(θ ′, S) < R(θ′, T ) for at least
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one θ ∈ Θ). It can be argued that one should never use an inadmissible
estimator T , since another S exists that is never worse and is sometimes
better— but, perhaps astonishingly, Charles Stein and his student Willard
James (1961) showed that the most commonly-used and recommended esti-
mator for the normal mean, Xn, is inadmissible in p > 2 dimensions, with
higher risk than the “James-Stein estimator”

T JS(X) =

(

1 − p− 2
∑p

i=1(X̄
i
n)2

)

Xn,

the sample mean “shrunk” a bit toward (or perhaps even beyond) zero. Brad
Efron and Carl Morris extended this for p > 3 to

T EM(X) = Xn +

(

1 − p− 3

SSn

)

(Xn −Xn),

shrunk not toward zero but rather toward Xn, the grand average over not
only the n observations but also over the p components of Xn and where

SSn =
∑p

i=1(X
i
n −Xn)2, the sum of squared differences.

The James-Stein estimator may be viewed as an emprical analogue of the
Bayes shrinkage estimator T 3 introduced above, which may be written (for
σ2 = 1)

T 3(X) = ξ +

(

1 − 1

1 + nτ2

)

(Xn − ξ),

with “prior mean” ξ = 0 (or ξ = Xn taken from the componentwise average
of the data, for Efron and Morris’ variation) and “prior variance” τ 2 taken
from how variable are the p components. We will see below that every Bayes
estimator is admissible; thus a common approach to constructing admissible
estimators is to choose specific prior distributions and derive their Bayes
estimators. The James-Stein estimator is not itself admissible; some time
later Bill Strawderman (1971) was the first to find a proper prior distribution
π whose (necessarily admissible) Bayes estimator satisfies R(θ, T π) < σ2/n
for all θ ∈ R

p.

2.1.6. Bayes Risk

The Bayes risk r(π, Tn) may (in principle) be calculated for any prior dis-
tribution π; the calculation is particularly easy for a (conjugate) normal
No(ξ, τ 2) prior distribution, for then the posterior is
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fn(θ | X = x) ∝ fn(x | θ)π(θ)

∝ e−(n/2σ2)(Xn−θ)2 e−(θ−ξ)2/2τ2

∝ e−(θ−M)2/2V ,

again normal but now with mean M ≡ nσ−2Xn+τ−2ξ
nσ−2+τ−2 = Xn+(nσ2/τ2)ξ

1+(nσ2/τ2)
and

variance V = [nσ−2 + τ−2]−1. The smallest possible Bayes Risk is that
of T 3

n(X) = E[θ | X] = M , namely r(π, T 3
n) = V = [nσ−2 + τ−2]−1,

while that of the sample mean is r(π, T 1
n) =

(

1 + r2δ2

r2+n

)

V . Notice that

r(π, T 1
n)/r(π, T 3) → 1 as n → ∞, so for large enough sample sizes both

estimators have approximately the same Bayes risk. I’m not sure how to
calculate the Bayes risk of the sample median, r(π, T 2

n), but clearly it’s larger
than r(π, T 3

n).

3. Where do Estimators Come From?

3.1. Method of Moments

Match first d population moments µj(θ) ≡ E[Xj | θ] with sample moments

µ̂j ≡ 1
n

∑n
i=1X

j
i , where d is lowest value to give unique solution (usually

the dimension of Θ). Introduced by Chebyshev, developed by (his student)
Markov.

3.2. Least Squares

Minimize squared Euclidean distance between observed data vector Y =
{Y1, ..., Yn} and expectation µ = {µ1(θ), ..., µn(θ)} (common in regression
settings). Proposed by Adrien Marie Legendre (1805), claimed by Carl
Friedrich Gauss (1821).

3.3. Maximum Likelihood

Attributed to Sir Ronald Aylmer Fisher (1922). Maximize likelihood L(θ)
(or its logarithm). Note that if f(x | θ) is log-concave (for example, if
−∇2

θ log f(x | θ) is strictly positive-definite throughout Θ), then the M.L.E.

θ̂(~x) ≡ argmaxfn(x | θ)
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will be unique, if (as usual) log f(x | θ) has a critical point (where ∇θ log f(x |
θ) vanishes) in the interior of Θ. In natural exponential families where

fn(x | η) = exp
{

η ·
∑

T (xj) − nA(η)
}

hn(x),

evidently −∇2
η log fn(x | θ) = n∇2

ηA(η) is the covariance matrix for Tn(x) =
∑

T (xj), so fn(x) is log-convex, and

∇η log fn(x | η) = Tn(x) − n∇A(η),

so the M.L.E. is the solution η = η̂n(x) to the equation

∇A(η) =
1

n
Tn(x) = T (x)

provided that a solution in E exists.

3.4. Location and Scale

Let X have any probability distribution with CDF F (x), pdf f(z), and MGF
M(t) = E[etZ ]; let a ∈ R and b > 0. Then Y = aX+b will have a continuous
distribution too, with CDF FY

(

a−1(y − b)), pdf a−1fY

(

a−1(y − b)), and
MGF MY (t) = M(bt) eta. The family of distributions y ∼ f(y | a, b) is
called the location-scale family generated by f(x); familiar examples inlclude
the No(θ, σ), based on the standard No(0, 1) distribution, and the uniform
Un(b, a+b), built on the standard Un(0, 1) distribution, but the location-scale
families built on the t, Cauchy, exponential, Weibull, and other distributions
arise frequently in examples and applications. If the base distribution has
a well-defined mean θ and finite variance σ2 then Y = aX + b has mean
aθ + b and variance a2σ2, so it is possible to estimate location and scale
parameters a and b on the basis of sample mean Xn (or median or trimmed
mean or other measure of centrality) and sample variance S2

n (or mean or
median absolute deviation or interquartile range or other measure of scale).
Any remaining (“shape”) parameters are handled using other methods.

3.5. Bayesian Posterior Mean (or Mode or Median)

Choose some prior distribution π(dθ) and evaluate the posterior distribution
π(dθ|X) or some measure of its center. Recall from Equation (1) that θ̄n ≡
E[θ | X] is is the unique minimizer of the Bayes risk for squared-error loss.
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3.6. Empirical Bayes

Begin with some family of possible prior distributions πγ(dθ), using a data-
dependent choice of γ (Note: This will violate the Likelihood Principle)

3.7. Objective Bayes

Choose a conventional prior distribution π(dθ), depending on the sampling
distribution f(x|θ) for the problem, then proceed as in Bayesian analy-
sis. Most common choices are uniform π(dθ) = dθ and Jeffreys π(dθ) =
√

|I(θ)| dθ, where I(θ) = ∇2E[− log f(X|θ) | θ] is the Fisher Information
matrix. (Note: This will also violate Likelihood Principle. Also, usually
π(dθ) is improper, i.e., π(Θ) = ∞).

3.8. Invariant

Mention group invariance— right-invariant Haar measure, Euclean group,
perhaps the Bi(n, p) problem, etc.
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