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1. Information in Multidimensional Problems

1.1. Example: Normal

1.2. Example: Beta

2. Default Prior Distributions

2.1. Uniform

2.2. Invariant

2.3. Jeffreys

Let’s restrict attention to problems k = 1 with dimensional parameter space
Θ ⊂ R for a moment, and imagine what happens with a reparametrization
to η = g(θ) for some 1:1 monotonic function g : R → R. If we impose
uniformity in one parametrization, then

πη(η) =
πθ(θ)

|g′(θ)|

= 1/|g′
(

g−1(η)
)

|,

which will typically not be uniform; thus the idea of using as a default the
uniform distribution entails the significant choice of parametrization. The
Binomial Distribution, for example, can be parametrized equally well by the
success probability p or by its logistic η = log p

1−p ; scaling in the Normal
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Distribution can be parametrized using standard deviation σ, variance σ2,
precision τ = σ−2, or the logarithm ω = log σ2. The posterior distributions,
and hence the inference, can depend on these choices:

Bernoulli p ps(1 − p)f Be(s + 1, f + 1)
log p

1−p ps−1(1 − p)f−1 Be(s,f)

Normal σ τ (n−3)/2e−τ n

2
S2

Ga(n−1
2 , n

2 S2)

σ2 τ (n−4)/2e−τ n

2
S2

Ga(n−2
2 , n

2 S2)

log σ2 τ (n−2)/2e−τ n

2
S2

Ga(n
2 , n

2 S2)

σ−2 τn/2e−τ n

2
S2

Ga(n+2
2 , n

2 S2)

Certainly it’s disappointing that the apparently arbitrary choice of parametriza-
tion should affect the posterior and, through it, the inference.

Laplace’s suggestion was to choose a parametrization for which uniformity
was most plausible; Sir Harrold Jeffreys had another idea, a new recipe
for a prior distribution πJ(θ) that would be invariant under changes in
parametrization. He began by looking at how the Information matrix changes
under changes in parametrization from θ to η = g(θ). First consider the one-
dimensional version:

Iθ = −
∂2

∂θ2
log f(x|θ)

= −
(∂η

∂θ

)2 ∂2

∂η2
log f(x|η)

=
(∂η

∂θ

)2
Iη

Thus the Jacobian ∂η
∂θ can be evaluated by

√

Iθ/Iη— and, in particular,

πJ(θ) ≡
√

I(θ)

determines a prior density that transforms exactly the right way under
smooth changes of variables. In k dimensions the same idea again leads
to an invariant distribution, πJ(θ) ≡

√

|I(θ)|, where |I(θ)| denotes the de-
terminant of the Fisher information matrix.

2.3.1. Examples

For the Bernoulli and Binomial distributions the Information is I(p) =
1

p(1−p) , so πJ(p) ∝ 1/
√

p(1 − p) is the Be(1/2, 1/2) (or “arcsin”) law, for
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which the posterior upon observing s successes and f failures is Be(s +
1/2, f + 1/2); this is halfway inbetween the earlier results treating p and
log p

1−p as uniform.

For the normal distribution the Information matrix is I(µ, τ) =

(

τ 0
0 τ−2/2

)

with determinant |I| ∝ τ−1, leading to πJ(µ, τ) ∝ τ−1/2. Changing vari-
ables to standard deviation σ = τ−1/2 or variance v = σ2 = τ−1 leads to
πJ(µ, σ) ∝ σ−2 and πJ(µ, v) ∝ v−3/2, respectively. Under this distribution
the posterior distribution for µ is a noncentral t centered at X̄ with ν = n
degrees of freedom.

Most authors prefer the posterior distribution under the prior π(µ, τ) ∝ τ−1,
leading to noncentral t with n−1 degrees of freedom; this π(µ, τ) arises natu-
rally either as right Haar measure on R

2, treated as the group of translations
and rescaling, or as the product πJ(µ)πJ (τ) of Jeffreys prior distributions for
µ and τ , each treated as the sole parameter in a one-dimensional inference
problem.
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