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1.1. Example: Normal
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2. Default Prior Distributions

2.1. Uniform
2.2. Invariant
2.3. Jeffreys

Let’s restrict attention to problems k£ = 1 with dimensional parameter space
O C R for a moment, and imagine what happens with a reparametrization
to n = ¢(#) for some 1:1 monotonic function g : R — R. If we impose
uniformity in one parametrization, then
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which will typically not be uniform; thus the idea of using as a default the
uniform distribution entails the significant choice of parametrization. The
Binomial Distribution, for example, can be parametrized equally well by the
success probability p or by its logistic n = log &; scaling in the Normal



Distribution can be parametrized using standard deviation o, variance o2,

precision 7 = 02, or the logarithm w = log 0. The posterior distributions,
and hence the inference, can depend on these choices:

Bernoulli p (1 —p)f Be(s+1,f+1)
log 25 p*7'(1—p)/ ™" Be(s)

Normal o 7(n=3)/2-75 5 Ga(21,25%)
o2 T(n—4)/2e—7%52 Ga(nT—27 %52)
log 2 r(n=2)/2,-755 Ga(g, %SQ)

o2 e Ga("$2,25?)

Certainly it’s disappointing that the apparently arbitrary choice of parametriza-
tion should affect the posterior and, through it, the inference.

Laplace’s suggestion was to choose a parametrization for which uniformity
was most plausible; Sir Harrold Jeffreys had another idea, a new recipe
for a prior distribution 7;(f) that would be invariant under changes in
parametrization. He began by looking at how the Information matrix changes
under changes in parametrization from 6 to n = g(). First consider the one-
dimensional version:
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Thus the Jacobian % can be evaluated by \/I?/I"— and, in particular,

determines a prior density that transforms exactly the right way under
smooth changes of variables. In k£ dimensions the same idea again leads
to an invariant distribution, 7;(6) = \/|1(#)|, where |1(0)| denotes the de-
terminant of the Fisher information matrix.

2.3.1. Examples

For the Bernoulli and Binomial distributions the Information is I(p) =
zﬁ’ so my(p) o< 1/4/p(1 —p) is the Be(1/2,1/2) (or “arcsin”) law, for



which the posterior upon observing s successes and f failures is Be(s +
1/2, f + 1/2); this is halfway inbetween the earlier results treating p and

log £ > as uniform.

For the normal distribution the Information matrix is I(u,7) = <g 7__(2) /2>

with determinant |I| o 771, leading to mj(u,7) oc 77 Changing vari-
ables to standard deviation ¢ = 7=/ or variance v = ¢ = 77! leads to
77(p,0) o< 02 and wy(p,v) ox v=3/2, respectively. Under this distribution
the posterior distribution for 4 is a noncentral ¢ centered at X with v = n
degrees of freedom.
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Most authors prefer the posterior distribution under the prior m(p, 7) oc 771,

leading to noncentral ¢ with n—1 degrees of freedom; this 7(u, 7) arises natu-
rally either as right Haar measure on R?, treated as the group of translations
and rescaling, or as the product m;(u)ms(7) of Jeffreys prior distributions for
w and 7, each treated as the sole parameter in a one-dimensional inference
problem.



