1. Fisher Information

Let f(z | 6) be a density function with the property that log f(x | ) is
differentiable in # throughout the open p-dimensional parameter set © C RP;
then the score statistic (or score function) is defined by

Vo f(x]0)
f(z]9)

and the Fisher (or Expected) Information matrix is defined by

Z(X) = Vglogf(z]0)=

1(0) = E[Z(X)Z(X) |6];

if we may exchange integration with differentiation then we can calculate
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and hence E[Z(X) | 8] = 0 and Cov[Z(X) | ] = E[Z(X)Z(X)" | 0] =
taking another derivative with respect to 6; of the equation E[Z;(X) | 6
gives, by the product rule,

0 = iE[ Z:(X) | 6]

1(0);
=0

- / [ g £ | 0)] (@ | )] da
— [l 0w 015G |0+ [ (108 1o 0)] 0w £ (o 0)] (o | 0]
-t dedjw g 1z 0)| + 100,
so we may also compute the Fisher Information as
1) = E[-V?logf(z|0)]
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as the matrix of expected negative second derivatives of the log likelihood
with respect to 6.

The Fisher Information matrix depends on the parametrization chosen. If
we rewrite our model in terms of some other parameter 7, then by the vector
chain rule Vy = J7V,, (J denotes the Jacobian matrix J = % with compo-
nents J;; = 0n;/00;), the Fisher Information for the two parametrizations
are related by

1(6) = J" I(n) J. (1)

The score statistic and Fisher Information are given in Natural Exponential
Families by

Z(X) = Vylog f(X]n)
= Vy[n-t(z)— A(n) +log h(z)]

= t(x) — VA(n)

I(n) = —V;Elog f(XIn) |n]
= —Vi(n-E[{(X)]) + V*A(n)
= V2A(n)

1.1. The Information Inequality

Now let ©® C R be one-dimensional and let T be any statistic with finite
expectation 1(0) = E[T'(X) | 6], and assume additionally that 1 is differen-
tiable throughout © to justify exchanging integration and differentiation as
follows:

v = G [ 1@l 0d

= [ 1@ s 0)ds

_ /X T(x) Z(z) f(z | 0) dz
— E[T(X)Z(X) | 0] = Cov[T(X) Z(X)],

so the score statistic Z(X)

= d% log f(x | #) has mean zero, variance 1(0),
and covariance ¢'(0) = Cov[T(X), Z(X)

| with T(X); by the Covariance



Inequality |Cov(T, Z)|? < V(T)V(Z) (Minkowski’s inequality), we can con-
clude that [/ (8)|> < I(8)V(T(X)), or that

'O
> 70)

in particular, any unbiased estimator 7" of # must have risk
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()
bounded below by the celebrated Information Inequality. This result was
commonly referred to as the Cramer-Rao inequality, until Frechet’s earlier

discovery was widely recognized.

V(T(X))

2. Bayesian Central Limit Theorem

The observed information for a single observation X = x from the model
X ~ f(x|0) is
i(,z) = —V3logf(z]0);

evidently the Fisher (expected) information is related to this by I(0) =
E[i(0, X)|0]. The likelihood for a sample of size n is just the product of the
individual likelihoods, leading to a sum for the log likelihoods, and observed

information
n

i) = Y il0,x;)
j=1
If the log likelihood log f(z|f) is differentiable throughout © and attains
a unique maximum at an interior point 6,(z) € ©, then we can expand

log f(x|¢) in a second-order Taylor series for § = 0, () + ¢//n close to
0, () to find

m 1 R € n 2 N
logf(:z,"@) _ logf(l‘!én) + (6/\1/'7) Vo logf($|9n) + ( /\2/'7) Vg log f(l"en)
+o((e/v/n)?|V3log f(x|0,)))

~ 521 n oA
= log f(z|0,) +0— 5 ;Z(Hn,wj) + o(1)

~ 62 ~
~ log f(alfn) ~ S Eli(0n, X))

~ 52
= log f(z]0n) — 5 1(0),



where we have used the consistency of 6,, and have applied the strong law
of large numbers for i(f, X). Thus we have the likelihood approximation
f(x|0) ~ No(0,(z),nI(0,)), normal with mean the MLE 6,,(x) and precision
nI(6,) (or covariance %I(én)_l).

3. Exponential Families

Consider a sample X = (Xq,---,X,,) of some number n of independent
replicates, all from the same probability distribution with pdf or pmf f(x | 6)
of exponential family form

f(x]0)=exp [Z ni(0)ti(z) — B(0) | h(z);

i=1

since 1 = [, f(z | 0)de = e~ BO) [ e T@) b(z) dz, B(§) must be given

by
B(6) = log </ N1 @) () d:c> .
X

Many of the commonly-considered distributions can be written as exponen-
tial families with ¢ = 1 or 2, for suitable h, B, and {n;,t; }i<4. The likelihood
function for a random sample of size n from the exponential family is

L(0) =exp | > m:(0) > ti(x;) —nB(®)|,
i=1 j=1

which depends on the data only through the g-dimensional statistic 1" with
components T; = 3., ti(x;). This natural sufficient statistic (see below)
summarizes the data completely for any inference about 6.

It is often convenient to reparametrize exponential families to the natural
parameter n = n(0) € R4, leading (after rewriting the normalizing constant
B(0) as A(n)) to

fla|n) = er T A p(z)

for a sample of size n, where again A(n) = log ([ e @) h(x) dz). We can
calculate the moment generating function (MGF) for T'(X) as



Mr(s) = E[es'T(X)}
_ / e+ T@=nAM) 1T py2) dy
X

_ mAm) / ) T@) () da
X
_ A+ -A@)

so we can find its mean and (co)variance as

E[T] = V,logMr(0) = nV,A(n)
VIT] = VilogMr(0) = nVZA(n).

3.1. The Information Inequality

The Fisher Information about the natural parameter 7 from a single observa-
tion (n = 1) from an exponential family f(z | n) = exp (n-T'(z)—A(n)) h(z)
is given by

I(n) = =V log f(x | n) = V3 A(n),

so by Equation (1) the information in any parametrization is given by

1(0) = JTV2A(n) J
for J = 0n/0#. The natural sufficient statistic T'(z) has mean ¢ (0) =
E[T(X) [ 6] =V, A((8)).

In particular, for scalar (p = 1) exponential families, the Information In-
equality takes the form

V[T

Y

= '(n(0))
= V[T1,

so the lower bound is attained. This is not terribly surprising, since the
inequality was based on the covariance inequality for the random variables
T and Z = Vglog f(x | 0) = Vgn(0) - T(X) — VgB(0), which are related
by an affine transformation for scalar exponential families and hence are
perfectly correlated.



4. Objective Bayesian Analysis

Laplace in the 1700’s used the uniform prior distribution 7(f) = 1 in his
Bayesian statistical analysis, intending it to represent a complete absence of
knowledge about 8 before observing a data vector z € X', and leading to a
posterior density function

m(0 | ) o< f(z | 0)

proportional to the likelihood. As appealing as this is for a non-subjective
analysis, it is not invariant under reparametrization; for example, if we use
the uniform distribution 71(f#) = 1 for a binomial success probability 6 €
© = (0,1) then upon observing y successes in n tries this leads to

m(0 | z) < 6Y(1 —6)"7Y

the Be(1 + y,1 + n — y) posterior distribution, with mean 7 (Y) = E™ [0 |
yl = ;%’L, while a similar analysis using a uniform prior density for the (nat-
ural) logistic parameter n = log 1349 leads to the beta Be(y,n — y) posterior
distribution, with mean T5(Y’) = E™[f | y] = £. When 7 is accorded a
uniform prior the implicit prior for 6 is wo(6) = 1(n)n'(0) = ﬁ, the beta
Be(0,0), while the uniform density m1(f) = 1 is also the beta Be(1,1). For
large numbers of success y and failure n — y these two reference posterior
distributions are very close, but for small y or n — y they are not; which
should we use, and why?

Evidently the problem is that in transforming from 7 to 6 any prior density
7'(n) will be transformed to 7%(6) = | det J|7"(n(6)) where J = 9n/0; the
functional form of the priors in these two parametrizations cannot be the
same, because of the Jacobian. Harold Jeffreys noticed that, since the Fisher
Information I(6) = J7 V%A(n) J transforms bilinearly in .J, the recipe

m7(0) o< v/det I(0)

will give a prior density that transforms consistently to any parametrization:
my(0) o< +/detI(0)
= +/detJTI(n)J

= |det J|+/det I(n)

= |det J| 7 (n),



as required. In the case of Binomial data, for example, 1(f) = ﬁ SO
m7(0) 9%_1(1 — 9)%_1 is the Be(3, 1) distribution (also called the arc-
sin distribution, since it has CDF P[0 < ¢] = Zsin~'(v/?)), leading to a
Be(% +v, % +n —y) posterior distribution for the success probability 6 upon
observing y successes in n tries, with posterior mean E[0 | y] = (y+ %) /(n+1).



