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1. Asymptotic Inference in Exponential Families

Let Xj be a sequence of independent, identically distributed random vari-
ables from a natural exponential family

f(x | η) = h(x) eη·T (x)−A(η)

and let q denote the dimension of T and η. We have seen that the log
moment generating function for T (X) is A(ω + η) − A(η) and hence that
the mean and covariance for T are given respectively by

E[T | η] = ∇A(η) V[T | η] = ∇2A(η) = I(η), (1)

where we recognize the Hessian of A(η) as the Information matrix, both
expected (Fisher) and observed. The likelihood function upon observing a
sample of size n is

Ln(η) =
∏

h(xj) eη·
P

T (xj)−n A(η),

so the Maximum Likelihood Estimator (MLE) η̂n of η satisfies the equation

∇A(η̂n) = T̄n

Under suitable regularity conditions the Central Limit Theorem will ensure
that T̄n will have an asymptotically normal distribution with (by (1) mean
∇A(η) and covariance I(η)/n, so

√
n
[

∇A(η̂n) −∇A(η)
]
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will have an asymptotical No(0, I(η)) distribution. By Taylor’s Theorem we
can write

[

∇A(η̂n) −∇A(η)
]

= ∇2A(η)(η̂n − η) + O(|η̂n − η|2)
= I(η)(η̂n − η) + O(1/n),

from which we conclude

√
n(η̂n − η) ∼ No

(

0, I(η)−1
)

or, more casually, that η̂n has approximately a No
(

η, [n I(η)]−1
)

distribution—
so the Maximum Likelihood Estimator is consistent and efficient and asymp-
totically normal.

1.1. Unnatural Families

If we parametrize by some θ ∈ Θ other than the natural parameter η, but
still have a smooth mapping θ 7→ η(θ), we can note that η̂n = η(θ̂n), and
(again, by Taylor)

η(θ̂n) = η(θ) + J ′ (θ̂n − θ) + O(|θ̂n − θ|2),

where the Jacobian matrix J is given by Jij = ∂ηj/∂θi, so

√
n(θ̂n − θ) ∼ No

(

0, [J ′I(η)J ]−1
)

= No
(

0, I(θ)−1
)

and again we have consistency, efficiency, and asymptotic normality. In
one-dimensional families this leads to Frequentist confidence intervals of the
form

1 − α ≈ Pr
[

θ ∈
(

θ̂n −
Zα/2

√

n I(θ̂n)
, θ̂n +

Zα/2
√

n I(θ̂n)

)

| θ
]

where the “≈” is required both because the distribution of θ̂n is only ap-
proximately normal, and because I(θ̂n) is only approximately I(θ).

2. Bayesian Asymptotic Inference

The observed information for a single observation X = x from the model
X ∼ f(x|θ) is

i(θ, x) = −∇2
θ log f(x | θ);
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evidently the Fisher (expected) information is related to this by I(θ) =
E[i(θ,X) | θ]. The likelihood for a sample of size n is just the product of the
individual likelihoods, leading to a sum for the log likelihoods, and observed
information

i(θ, x) =
n

∑

j=1

i(θ, xj).

If the log likelihood log fn(x|θ) is differentiable throughout Θ and attains
a unique maximum at an interior point θ̂n(x) ∈ Θ, then we can expand
log fn(x|θ) in a second-order Taylor series for θ = θ̂n(x) + ε/

√
n close to

θ̂n(x) to find (for q = 1 dimensional θ)

log fn(x|θ) = log fn(x|θ̂n) +
(ε/

√
n)1

1!
∇θ log fn(x|θ̂n) +

(ε/
√

n)2

2!
∇2

θ log fn(x|θ̂n)

+o
(

(ε/
√

n)2|∇2
θ log fn(x|θ̂n)|

)

= log fn(x|θ̂n) + 0 − ε2

2

1

n

n
∑

j=1

i(θ̂n, xj) + o(1)

→ log fn(x|θ̂n) − ε2

2
E[i(θ̂n, X)]

= log fn(x|θ̂n) − ε2

2
I(θ̂n)

= log fn(x|θ̂n) − 1

2
n I(θ̂n)(θ − θ̂n)2,

where we have used the consistency of θ̂n and have applied the strong law
of large numbers for i(θ,X). Thus we have the likelihood approximation
fn(x|θ) ≈ No(θ̂n(x), nI(θ̂n)), normal with mean the MLE θ̂n(x) and preci-

sion nI(θ̂n) (or covariance 1
nI(θ̂n)−1).

Note that the prior distribution is irrelevent, asymptotically, so long as it
is smooth and doesn’t vanish in a neighborhood of θ̂n; thus we have the
Bayesian Central Limit Theorem,

πn(θ | x) ≈ No(θ̂n, [n I(θ̂n)]−1),

leading in the q = 1-dimensional case to Bayesian credible intervals of the
form

1 − α ≈ Pr
[

θ ∈
(

θ̂n −
Zα/2

√

n I(θ̂n)
, θ̂n +

Zα/2
√

n I(θ̂n)

)

| x
]

,
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just as before, but now with a completely different interpretation.

3. An Example

Let Xi be Bernoulli random variables with P[Xi = 1] = θ for some θ ∈
Θ = (0, 1); this is an exponential family with natural parameter η = η(θ) =
log θ

1−θ and natural sufficient statistic (for a sample of size n) Tn = ΣXj ,
hence with log normalizing factor A(η) = log(1+ eη) = B(θ) = − log(1− θ),
i.e. with likelihood

L(θ) =
∏

pTn(1 − p)n−Tn = eηTn−n log(1+eη)

and hence with MLE’s and (1 × 1) information matrices

θ̂n = Tn/n = X̄n Iθ = 1
θ(1−θ)

η̂n = log Tn

n−Tn
= log X̄n

1−X̄n
Iη = eη

(1+eη)2
,

so Iη(η̂n) = Tn(n − Tn)/n2, Iθ(θ̂n) = n2/(Tn(n − Tn)), and 95% confidence
intervals would be

0.95 ≈ Pr[η̂n − 1.96/
√

nI(η̂n) < η < η̂n + 1.96/
√

nI(η̂n)]

= Pr[log
Tn

n − Tn
− 1.96

√

Tn(n − Tn)/n
< η < log

Tn

n − Tn
+

1.96
√

Tn(n − Tn)/n
]

This can be written as an interval 0.95 = Pr[Ln < θ < Rn] for θ = eη/(1 +
eη), with left and right endpoints

Ln(Tn) = Tn/
[

Tn + (n − Tn) exp
(

+ 1.96/
√

Tn(n − Tn)/n
)]

Rn(Tn) = Tn/
[

Tn + (n − Tn) exp
(

− 1.96/
√

Tn(n − Tn)/n
)]

;

for examle, with T100 = 10 successes in n = 100 tries, the endpoints are
L100(10) = 10/[10 + 90 exp(1.96/

√
9)] = 1/[1 + 9 exp(0.6533)] = 0.05465

and R100(10) = 1/[1 + 9 exp(−0.6533)] = 0.17597, while with T100 = 50 the
interval endpoints would be are L100(50) = 50/[50 + 50 exp(1.96/

√
25)] =

1/[1+exp(0.392)] = 0.40324 and R100(50) = 1/[1+exp(−0.392)] = 0.59676.

Intervals for θ can be made directly using

0.95 ≈ Pr[θ̂n − 1.96/

√

nI(θ̂n) < θ < θ̂n + 1.96/

√

nI(θ̂n)]

= Pr[θ̂n − 1.96

√

θ̂n(1 − θ̂n)/n < θ < θ̂n + 1.96

√

θ̂n(1 − θ̂n)/n],
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an interval with endpoints L100(10) = 0.10−1.96
√

0.09/100 = 0.10−1.96×
0.30 = 0.0412, R100(10) = 0.10 + 1.96 × 0.03 = 0.1588 for T100 = 10, and
L100(50) = 0.50 − 1.96

√

0.25/100 = 0.10 − 1.96 × 0.05 = 0.402, R100(50) =
0.50 + 1.96 × 0.05 = 0.598 for T100 = 50. Recall that the exact 95%
confidence intervals for θ are qbeta(0.025, Tn,n-Tn+1), qbeta(0.975,

Tn+1,n-Tn) in general, or [qbeta(0.025, 10,91), qbeta(0.975, 11,90)]

=[0.0490, 0.1762] for T100 = 10 and [qbeta(0.025, 50,51), qbeta(0.975,

51, 50)] = [0.3983, 0.6017] for T100 = 50. In summary,

L100(10) R100(10) L100(50) R100(50)
Normal, based on η: [0.05465, 0.17597] [0.40324, 0.59676]
Normal, based on θ: [0.04120, 0.15880] [0.40200, 0.59800]
Exact Frequentist: [0.04900, 0.17622] [0.39832, 0.60168]
Exact Bayes (1.0,1.0): [0.05564, 0.17456] [0.40364, 0.59636]
Exact Bayes (0.5,0.5): [0.05258, 0.17012] [0.40317, 0.59683]
Exact Bayes (0.0,0.0): [0.04951, 0.16557] [0.40270, 0.59730]

Evidently the normal approximations to the Frequentist intervals are both
rather close, but a bit too narrow (hence cover θ with a bit less than the
promissed 95% probability). Of course the approximations improve with
increasing n and become worse for smaller n. The intervals based on the
natural parameter are very close to the Bayesian credible intervals. All the
approximations are better near the middle of the range (θ ≈ 1/2) than near
the endpoints.
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