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1. Entropy

The entropy of a probability distribution on a finite set X (say, expressed
through a probability mass function p(x)) was introduced by Shannon (1938)
and further developed in (Shannon 1948), defined as:

H(p) ≡ −
∑

x∈X

p(x) log
(

p(x)
)

, (1)

the expectation of the negative logarithm of the p.m.f. itself. This is a
measure of the “randomness” of the distribution— for a given set X , it
attains a minimum at any point mass (where p(x0) = 1 for some x0 ∈ X and
p(x) = 0 for all x 6= x0), and achieves its maximum value of H(p∗) = log(n)
at the equiprobable distribution assigning probability p∗(x) ≡ 1/n to each
of the n = |X | points of X (you can prove this using Lagrange multipliers,
as below, or using the calculus of variations).

Three properties of H(p) are:

1. H(p) ≥ 0, and H(p) = 0 if and only if p(x0) = 1 for some x0 ∈ X ;

2. If X and Y are independent discrete random variables, then their
marginal and joint distributions satisfy

H(pXY ) = H(pX) +H(pY )

3. If we extend p from X to X ∪Y by (∀y ∈ Y) {p(y) = 0}, then H(p) is
unchanged.
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In fact these characterize H uniquely— Khinchine (1957) showed that any
function of discrete probability distributions satisfying these three properties
is necessarily H(p), up to an arbitrary scale factor.

For continuous (and more general) distributions it is more problematic to
define entropy in a useful way; the tempting definition

H(f) ≡ −

∫

X
f(x) log

(

f(x)
)

dx, (2)

is no longer invariant under changes in variables, as is Equation (1); is no
longer necessarily nonnegative or finite; and also depends critically on the
arbitrary choice of a dominating measure on X (here taken to be Lebesgue
measure). Nevertheless it is occasionally useful (we will use it below); a few
simple examples include

Un(a, b) f(x) = 1
b−a , a < x < b H(f) = log(b− a)

No(µ,Σ) f(x) = 1
q

det 2πΣ
e−

1

2
(x−µ)′Σ

−1

(x−µ) H(f) = 1
2 log det

[

2πeΣ
]

Ex(λ) f(x) = λe−λx, x > 0 H(f) = 1 − log λ

To solve the constrained optimization problem

Maximize: H(p) = −
∑

x∈X p(x) log
(

p(x)
)

Subject to: cj =
∑

x∈X p(x) gj(x), j = 1 · · · k

begin by seeking critical points of the Lagrangian,

L(p, λ) = H(p) +
∑k

j=0 λj

(

cj −
∑

x∈X gj(x)
)

,

where we constrain the probabilities p(x) to sum to one by introducing a
k+1’st constraint g0(x) ≡ 1 = c0. The solution, if one exists, is of the form

p(x) = e
Pk

j=0
λjgj(x),

where the k + 1 numbers {λj} are determined by the k + 1 constraints.

1.1. Kullback-Leibler

Motivated by Shannon’s notion of entropy, Kullback and Leibler (1951) de-
fined what we now know as the “Kullback-Leibler Divergence” (also called
“relative entropy”) between any two probability distributions on the same
(not necessarily finite) set X by

K(f : g) ≡

∫

X
−f(x) log

[

g(x)

f(x)

]

dx,
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where f(x) and g(x) denote density functions of the two distributions; if the
two distributions are discrete just replace the integral by a sum, and in fact
K(f : g) is well-defined for any two distributions even if they don’t have
densities (the Radon-Nikodym derivative g(dx)/f(dx) replaces the fraction
g(x)/f(x)). For finite sets X , the entropy H(f) introduce above can be
expressed as H(f) = n−K(f : p∗), where (as before) p∗(x) ≡ 1/n denotes
the equiprobable distribution.

The KL divergence K(f : g) is a measure of the discrepancy between the two
distributions, in the sense that always K(f : g) ≥ 0 and that K(f : g) = 0
if and only if f ≡ g, but it is not a distance because it fails both symmetry
(i.e., K(f : g) 6= K(g : f) in general) and the triangle inequality (i.e., there
are triplets f, g, h for which K(f : h) � K(f : g) +K(g : h)). It is closely
related to a notion of distance, however, as we will see in Section (1.2) below.
First,

Proposition 1 Let g > 0 be any positive integrable function on a set X in
Euclidean space. If the functional K(f : g) attains a unique minimum over
all positive measurable functions f(x) at some f̂ , then f̂(x) ≡ cg(x) where
c = 1/

∫

X g(x) dx.

Proof. For any integrable function h(x) on X satisfying
∫

X h(x) dx = 0,
the function

ψ(ε) = K(f̂ + εh : g)

will exhibit a local minimum at ε = 0. Taking derivatives, we have

0 = ψ′(0) =
d

dε |ε=0

∫

X
[f̂(x) + εh(x)]

{

log[f̂(x) + εh(x)] − log[g(x)]
}

dx

=

∫

X
h(x) log

[

f̂(x)

g(x)

]

+

∫

X
f̂(x)

[

h(x)

f̂(x)

]

dx

=

∫

X
h(x) log

[

f̂(x)

g(x)

]

.

Since this integral must vanish for all functions h(x) satisfying
∫

X h(x) dx =

0, it follows that f̂(x)/g(x) must some constant c; the result follows.
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1.2. Kullback-Leibler and Fisher Information

For small ε > 0, a second-order Taylor-series approximation of the KL di-
vergence from f(x | θ) to f(x | θ + ε) gives

K
(

f(x | θ) : f(x | θ + ε)
)

=

∫

X
−f(x | θ) log

[

f(x | θ + ε)

f(x | θ)

]

dx

≈

∫

X
−f(x | θ)

[

ε∇ log f(x | θ) +
ε2

2
∇2 log f(x | θ)

]

dx

=
1

2
I(θ) ε2

or, in q > 1 dimensions, εTI(θ)ε/2. This illustrates the close link between
KL divergence and the “Information Metric” Riemannian distance between
different distributions,

dI(θ0, θ1) =

∫ θ1

θ0

√

I(θ) dθ (in q = 1 dimension)

= inf
θ

∫ 1

0

√

θ′t
TI

(

θt

)

θ′t dt

where the infimum is over all differentiable paths θ from θ0 to θ1, and where
θ′t is the velocity vector (d/dt)θt; evidently, for near-by θ0 ≈ θ1,

2K
(

f(x | θ0) : f(x | θ1)
)

≈ dI(θ0, θ1)
2,

and for any θ0, θ1,

dI(θ0, θ1) = inf
θ

lim
n→∞

n
∑

i=1

√

2K
(

f
(

x | θ(i−1/n)

)

: f
(

x | θi/n

))

.

Roughly, KL is half the square of a distance measure, and small open KL
“balls” are also small open Information-metric balls.

2. Prior and Posterior Distributions

A number of authors have used information-theoretic (i.e., entropy-based)
ideas and/or Kullback-Leibler divergence in the search for Bayesian prior
distributions that are as diffuse as possible, in hope of expressing no prior
knowledge about a parameter θ ∈ Θ, beginning with statistician Dennis
V. Lindley (1956) and physicist Edwin T. Jaynes (1957a; 1957b). There
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is a thriving “Max-Ent” community of (mostly Bayesian) statisticians and
economitricians, among them ISBA founder Arnold Zellner. The most
widely successful approach, in my opinion, is that of Bernardo (1979) (de-
veloped more fully in Berger and Bernardo 1992), which we now sketch.

Bernardo, motivated by Lindley (1956), sought (initially) to maximize the
KL divergence between the prior and posterior distributions, looking for an
extremum π for the expected value (under the marginal distribution for X)
of the KL divergence from the prior π(θ) to the posterior π(θ | X),

K(π : π|X) =

∫

X

{
∫

Θ
−π(θ | x) log

[

π(θ | x)

π(θ)

]

dθ

}

m(x) dx,

where m(x) ≡
∫

Θ f(x | θ)π(θ) dθ is the marginal density function for X
and where π(θ | x) = m(x)−1 f(x | θ)π(θ) is the posterior (or conditional)
density for θ, given x. The initial attempt hit three obstacles: the opti-
mum often doesn’t exist; when it does, it is often a discrete distribution
concentrated on a few points, obiously a poor candidate for a prior distri-
bution expressing minimal prior information; and even if it does exist and
isn’t discrete, it can be very difficult to compute. All three difficulties were
overcome by the artifice of imaginging a large sample of size n, rather than
a single observation, and eventually taking a limit as n → ∞; thus we try
to maximize

K(π : π|Xn
) =

∫

Xn

{
∫

Θ
−π(θ | xn) log

[

π(θ | xn)

π(θ)

]

dθ

}

m(xn) dnx, (3)

where m(xn) ≡
∫

Θ

{

∏n
j=1 f(xj | θ)

}

π(θ) dθ. Writing

H(p) =

∫

−p(θ) log[p(θ)] dθ

for any p.d.f. p(θ), we can re-write Equation (3) as

K
(

π : π|Xn

)

= −H(π) +

∫

Xn

m(xn)H
(

π(θ | xn)
)

dnx

=

∫

Θ
π(θ) log π(θ) dθ

+

∫

Xn

[
∫

Θ
f(xn | θ)π(θ) dθ

]

H
(

π(θ | xn)
)

dnx

=

∫

Θ
−π(θ) log

[

exp

{

−

∫

Xn

f(xn | θ)H
(

π(θ | xn)
)

dnx

}

/π(θ)

]

dθ(4)
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A calculus-of-variations argument shows that, under suitable regularity con-
ditions, any expression (like Equation (4)) of the form

∫

π(θ) log[f(θ)/π(θ)] dθ
is maximized by a solution of the form π(θ) ∝ f(θ); thus the optimal π(θ)
will be of the form

π(θ) ∝ exp

{
∫

Xn

−f(xn | θ)H
(

π(θ | xn)
)

dnx

}

(5)

From Bayes’ theorem and the Bayesian CLT we know that (also under suit-
able regularity)

π(θ | xn) = m(xn)−1 f(xn | θ)π(θ)

≈

√

det
( n

2π
I(θ)

)

exp
{

−
n

2
(θ − θ̂)′I(θ)(θ − θ̂)

}

and hence that

H
(

π(θ | xn)
)

≈
q

2
log(2πe/n) −

1

2
log det

(

I(θ)
)

,

since the normal p.d.f. p ∼ No(µ,Σ) in q dimensions has entropy H(p) =
(1/2) log det(2πeΣ), so we have

π(θ) ∝ exp

{
∫

Xn

−f(xn | θ)H
(

π(θ | xn)
)

dnx

}

≈ exp

{

−
q

2
log(2πe/n) +

1

2
log det

(

I(θ)
)

}

∝
√

det I(θ), (6)

giving Jeffreys’ prior a new motivation.

Bernardo and Berger do not recommend this choice for parameters of di-
mension q > 1; instead they have an elaborate argument for how to build
what they call Reference Priors, one dimension at a time, for the goal of es-
timating “parameters of interest” in the presence of “nuisance parameters”.
Take a look at the references below for more details.
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