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Week 11. Testing Statistical Hypotheses

1. Statistical Hypothoses

Up to now we’ve been looking exclusively at the problem of estimation, of
trying to identify the value θ ∈ Θ of an uncertain parameter on the basis of
an observation x ∈ X of a random vector from some probability distribution
x ∼ f(x | θ) that depends on θ. Today we begin a new quest: again on
the basis of an observed value x ∼ f(x | θ), we seek to discover whether an
assertion about θ is true or false.

We can think about hypotheses (or “assertions” about θ) simply as subsets
H0 ⊂ Θ, interpreted as the set of θ ∈ Θ for which the assertion or hypothesis
is true; thus we would like to discover, on the basis of an observed value
x ∈ X, whether or not θ ∈ H0. We denote the complementary set by
H1 = (H0)

c = {θ ∈ Θ : θ /∈ H0}, and call it the alternate hypothesis.

There are many approaches to the problem of testing hypotheses; we will
consider the Frequentist approach, in both the original fixed-level version
and a variant (reporting P-values), and also the Bayesian approach, in both
the decision-theoretic and posterior probability versions.

2. Fixed-level Frequentist

If we feel constrained to answer the question “Is θ ∈ H0?” with a simple yes

or no, then we may also divide X up into two sets, the “rejection region” or
“critical region” R ⊂ X of those possible outcomes x ∈ X for which we will
conclude that H0 is false, and its complement Rc = X\R, the outcomes that
will not lead us to reject H0.
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Notice that there are four possibilities:

1. Reject a False Hypothesis: θ ∈ H1, and x ∈ R;

2. Reject a True Hypothesis: θ ∈ H0, and x ∈ R;

3. Accept a False Hypothesis: θ ∈ H1, and x /∈ R;

4. Accept a True Hypothesis: θ ∈ H0, and x /∈ R.

Two of these are good (1 and 4) in that we correctly discover the truthity
or falsity of the hypothesis; the other two constitute distinct errors, tradi-
tionally called a Type I error (2: rejecting a true hypotheis) and a Type

II error (3: failing to reject a false hypotheis).

We can quantify the performance of a test that rejects whenever x ∈ R

through the function
pow(θ) ≡ P[X ∈ R | θ],

the probabilty of rejection (as a function of θ ∈ Θ). Evidently we would
like pow(θ) to be small for θ ∈ H0 and large for θ /∈ H0; with that in mind,
define

α = supθ∈H0
P[X ∈ R | θ] = supθ∈H0

pow(θ)
β = supθ/∈H0

P[X /∈ R | θ] = supθ/∈H0
1 − pow(θ)

The first of these, α, is the (maximum) probability of a Type-I error; it is
called the size of the test. The second, β, is the (maximum) probability of
a Type-II error. Evidently α will be made small if we let R be small, but
only at the expense of making β larger; designing a hypothesis test involves
a compromise.

2.1. Example

Think of a jury’s choice in a criminal trial: the two possible errors of confict-
ing an innocent defendant, or of acquitting a guilty one, are quite different,
with different consequences for society; the US legal system is designed to
minimize the chance for the first of these errors, even at the expense of
increasing the second.

The traditional Frequentist approach constructs a suitable rejection region
R, as follows. First select some test statistic T : X → R intended to dis-
criminate between H0 and H1 by taking larger values typically for θ ∈ H1
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than for θ ∈ H0. For any number tc ∈ R we can then construct a rejection
region by R = {x ∈ X : T (x) ≥ tc}, i.e., we reject H0 in favor of H1 when
we observe T (X) ≥ tc. The size of the test (the largest possible probability
of a Type-I error) is

α = sup
θ∈H0

P[x ∈ R] = sup
θ∈H0

P[T ≥ tc | θ],

directly related to tc. The usual approach is to begin with a value in mind
for α (often α = .05 or α = .01) and then adjust tc to obtain a critical
rejection region satisfying P[x ∈ R | θ] ≤ α for each θ ∈ H0, i.e., set

tc ≡ inf
t<∞

{t : sup
θ∈H0

P[T ≥ t | θ] ≤ α}.

2.2. Example

In a digital signal processing example, the signal θ is known to be either
plus one or minus one; we observe this signal with noise, however, so X ∼
No(θ, 1/4). For any t ∈ R the rule that rejects whenever X > t will do so
with probability

pow(θ) = P[X > t | X ∼ No(θ, 1/4)] = Φ
(

2(θ − t)
)

,

so a test that rejects H0 for X ≥ tc will have error probabilities α =
pow(−1) = Φ(−2 − 2tc) and β = 1 − pow(+1) = Φ(−2 + 2tc). To achieve
level α = pow(−1) = 0.05 we must reject whenever X > tc = −1 − zα/2 =
−0.1776, for example, leading to β = Φ(−2.3552) = 0.0093 (see Figure (1)),

while a test at level α = 0.01 would reject whenever X > tc = 0.1632, with
β = 0.0471. The symmetric rule would be to reject H0 : θ = −1 whenever
X ≥ 0; this test has size α = β = Φ(−2) = 0.02275. An observed value
of X = 0.50 would be rejected, for example, which seems sensible since
P[X ≤ 0.50 | θ = +1] = Φ(−1) = 0.1587, so θ = +1 is perfectly plausible,
while P[X ≥ 0.50 | θ = −1] = Φ(−3) = 0.0013499, a minor miracle.

BUT what if we observe X = 0? The rule says to reject, at level α = .02275,
but here the evidence against H0 is ambivolent (X = 0 offers evidence
against H1 just as strong as the evidence against H0), in stark contrast to
X = 0.5. For this reason, many classical statisticians prefer:

3. Frequentist p-value

A variation on the fixed-level testing introduced above is the reporting of
“p-values,” or “observed significance levels.” The p-value is defined to be:
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Figure 1. Relationship of α, β, and tc.

The maximum probability of observing evidence against the null
hypothesis H0 at least as strong as that actually observed, if the
null hypothesis is true.

Evidently the definition begs the question of just what constitutes “strong
evidence” against H0. To implement the definition we once again begin by
selecting a test statistic T : X → R intended to discriminate between H0

and H1 by taking larger values typically for θ ∈ H1 than for θ ∈ H0, but
now calculate for the observed value t = T (X)

p = sup
θ∈H0

Pr[T ≥ t | θ].

In the Example above, the p-value is simply

p = Pr[X ≥ x | θ = −1] = Φ(−2 − 2x)

which at least distinguishes the level of evidence, although it still does not
balance this evidence against that for H1.

In this example it was clear which outcomes constituted “stronger evidence”
against H0; it is always easy whenever both H0 and H1 are “point hy-
potheses” that specify θ exactly (say, as θ0 and θ1, respectively), for the
Neyman-Pearson lemma then asserts that the “best” statistic T to use is
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(any monotone function of) the likelihood ratio

λ =
f(x | θ1)

f(x | θ0)

or, for n i.i.d. observations from the same density,

λn =
f(x1 | θ1) · · · f(xn | θ1)

f(x1 | θ0) · · · f(xn | θ0)

In the Normal example of H0 : X ∼ No(µ0, σ
2) vs. H1 : X ∼ No(µ1, σ

2), for
example,

f(x | H1)

f(x | H0)
=

e−(x−µ1)2/2σ2

/
√

2πσ2

e−(x−µ0)2/2σ2/
√

2πσ2
∝ ex(µ1−µ0)/σ2

,

so T (x) = sgn(µ1 − µ0) ·
∑

Xi will do (or T (x) = x in our digital signal
processing example where µ0 < µ1 and n = 1).

The likelihood ratio is “best” in the sense that it maximizes the power

pow(θ) = P[T ≥ tc | θ]

for θ /∈ H0, over all possible statistics T ; the Neyman-Pearson lemma ex-
presses formally the simple idea that the best way to separate the space
X of possible outcomes into those R ⊂ X where we reject H0 and those
Rc ⊂ X where we do not reject, is to sort X on the basis of the likelihood
ratio λ = f(x | θ1)/f(x | θ0).

Here’s a sketch of the proof of the Neyman-Pearson lemma. For any tc > 0,
let R ≡ {x : λ ≥ tc} be a likelihood ratio test of size α = P[X ∈ R | θ0]
and of power 1 − β = P[X ∈ R | θ1]. Now let R∗ be the rejection region
for any other test of the same size α = P[X ∈ R∗ | θ0]. Then the power
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P[X ∈ R∗ | θ1] of the competing test is

(1 − β∗) =

∫

R∗∩R

f(x | θ1) dx +

∫

R∗\R
f(x | θ1) dx

≤
∫

R∗∩R

f(x | θ1) dx +

∫

R∗\R
[tc/λ(x)]f(x | θ1) dx

=

∫

R∗∩R

f(x | θ1) dx +

∫

R∗\R
tc f(x | θ0) dx

=

∫

R∗∩R

f(x | θ1) dx +

∫

R\R∗

tc f(x | θ0) dx

≤
∫

R∗∩R

f(x | θ1) dx +

∫

R\R∗

λ(x) f(x | θ0) dx

≤
∫

R∗∩R

f(x | θ1) dx +

∫

R\R∗

f(x | θ1) dx = (1 − β),

so the LRT is most powerful.

When either or both of H0 and H1 is composite, it is common to use the
generalized likelihood ratio defined by

λ =
supθ1∈H1

f(x | θ1)

supθ0∈H0
f(x | θ0)

or, if for some statistic T (x) the likelihood ratio f(x | θ1)/f(x | θ0) is always
a monotone function of T (x) for all θ0 ∈ H0 and θ1 ∈ H1, to use T (x). This
is essentially equivalent to using λ∗ ≡ f(x | θ̂)/ supθ0∈H0

f(x | θ0). Why?

3.1. Examples

In the normal-mean testing example of H0 : X ∼ No(µ0, σ
2) vs. H1 : X ∼

No(µ, σ2), with σ2 and µ unspecified, the likelihood ratio becomes

λ =
supµ∈R, σ2>0(2πσ2)−n/2 exp

(

− n[S2 + (x̄ − µ)2]/2σ2
)

supσ2>0(2πσ2)−n/2 exp
(

− n[S2 + (x̄ − µ0)2]/2σ2
)

=
(2πS2)−n/2e−n/2

(2π[S2 + (x̄ − µ0)2])−n/2e−n/2

= [1 + t2/(n−1)]n/2,

where t ≡
√

n − 1(x̄ − µ0)/S is Student’s t statistic; evidently Gossett’s
two-sided Student t-test is just the likelihood ratio test for H0.
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4. To Test or Estimate?

One way to implement a classical test at level α of the hypothesis H0 :
µ = µ0 with two-sided alternative H1 : µ 6= µ0 for normally-distributed
data xi ∼ No(µ, σ2) would be to construct a (1 − α)-confidence interval
[Lx, Rx] and reject H0 if µ0 6= [Lx, Rx]; this is exactly equivalent to the
likelihood ratio test. Similarly the usual one-sided tests may be implemented
by first constructing one-sided confidence intervals (−∞, Rx] and [Lx,∞]
and checking to see whether or not the hypothesized µ0 lies inside them.

This offers an important advantage over both fixed-level and p-value testing—
it gives a meaningful quantitative report of how “wrong” a rejected hypoth-
esis might be, when H0 is rejected, or of how close the test came to rejecting,
when H0 is not rejected.

5. Posterior Probabilities and Bayes Factors

The p-value is small when H0 is dubious, and is always between zero and
one; it is common for näıve users to misinterpret p as “the probability H0 is
true.” While that probability is meaningless in the Classical paradigm, it is
exactly the measure the Bayesian statistician uses to test hypotheses:

P[H0 | X = x∗]

is well-defined whether or not H0 and H1 are composite hypotheses. It does
require a prior probability, however.

In the Normal Means example with prior probabilities π0 and π1 for H0 :
µ = µ0 and H1 : µ = µ1, for example,

P[H1 | X = x]

P[H0 | X = x]
=

π1(2πσ2)−1/2e−(x−µ1)2/2σ2

π0(2πσ2)−1/2e−(x−µ0)2/2σ2

=
π1

π0
e(x−µ̄)(µ1−µ0)/σ2

where µ̄ = (µ0 + µ1)/2 so, in the Signal Processing example where it may
be natural to regard θ = ±1 as equally likely so π0 = π1 and µ̄ = 0,

P[H1 | X = x]

P[H0 | X = x]
= e8x

P[H0 | X = x] =
1

1 + e8x
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and, in particular, P[H0 | X = 0] = 1/2, as expected.

Notice that the Bayesian posterior odds P[H1|X=x]
P[H0|X=x] may be written as the

product of two terms, the prior odds π1

π0
(which depend on the prior but

not on the data) and the likelihood ratio B = L(x|θ1)
L(x|θ0)

; this latter factor
is sometimes called the Bayes Factor. It is easy to compute the posterior
probability of either hypothesis from B and π; for example,

P[H0 | x] =
π0

π0 + π1B
.

5.1. Precise Hypotheses with Composite Alternatives

Bayesian hypothesis testing is simple and appealing when both hypotheses
specify θ ∈ Θ precisely, with a suitable (perhaps reference) discrete prior dis-
tribution is available; and also when both hypotheses are composite, with a
suitable (perhaps reference) diffuse prior distribution. The common situa-
tion in which one tests a precise hypothesis H0 : θ = θ0 against a composite
alternative (such as H1 : θ 6= θ0) requires more delicacy, however.

A continuous prior distribution π(dθ) with a density π(θ) will give zero
probability to any lower-dimensional set like {θ0} under both the prior and

posterior distributions, so P[H0 | x] = 0 for all data x with such a prior.
In many applications this is a reflection of the real phenomenon that a
hypothesis that θ is exactly equal to any specific value would be false; no coin
falls heads with probability 0.500000000± 0, for example, and no treatment
is identical in effect to the control. Usually a precise hypothesis is merely
a concise way of describing that θ is approximately equal to θ0, without
belaboring exactly what “approximate” means in this context.

Here are three ways of implementing Bayesian testing of precise hypotheses
with imprecise alternatives:

1. Use a mixed prior, with a non-zero point mass at θ0 and the remainder
of the prior mass diffuse. This requires some thought about how that
remainder ought to be distributed— in particular, it is seldom possible
to use an improper “reference” prior here, and the choice of which
prior to use will sometimes affect inference. A common approach is
to consider a class of prior distributions (for example, unimodal ones
that are symmetric about θ0), and report the range of possible Bayes
factors.

2. Use a continuous prior, replacing the point null hypothesis with a
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composite one of the form H0 : |θ − θ0| < ε. This requires that the
investigator be more specific about what sort of approximation the
point hypothesis entails.

3. Use a diffuse prior (proper or not) and perform estimation, rather than
testing. Report an interval estimate for θ, and note whether or not θ0

lies in the interval.

6. Interesting Reading

Morris DeGroot found settings in which the misinterpretation of p-values
as posterior probabilities is harmless because the two happen to be close
together (DeGroot 1973); (ISDS’ own) Jim Berger and Delampady found
settings in which the misinterpretation is hopelessly wrong (Berger and De-
lampady 1987).
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