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1. Likelihood Ratios

Let X1, X2, X2, ... be independent, identically distributed random variables
taking values in some space X , whose distribution has a probability density
function f(x | θ). If we believe that one of the two hypotheses

H0 : [θ = θ0] H1 : [θ = θ1]

is true but we are unsure which, we can compute the likelihood ratio against
the null hypothesis H0,

λn =
f1(x1)f1(x2) · · · f1(xn)

f0(x1)f0(x2) · · · f0(xn)

where we have simplified the notation by writing f0(x) for f(x | θ0) and
f1(x) for f(x | θ1).

A Likelihoodist Statistician would find the likelihood ratio λn to be the best
direct measure of the relative support of the data for these two hypotheses; a
Bayesian statistician with prior probabilities π0 = P[H0] and π1 = P[H1] =
(1−π0) would find the best measure to be the posterior probabilities

P[H0 | Xn] =
π0f0(x1)f0(x2) · · · f0(xn)

π0f0(x1)f0(x2) · · · f0(xn) + π1f1(x1)f1(x2) · · · f1(xn)

=
π0

π0 + π1λn
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or, equivalently, the posterior odds

P[H1 | Xn]

P[H0 | xn]
=

π1

π0
λn

Finally, the Classical (or Frequentist) statistician would rely on the Neymann-
Pearson Lemma, which asserts that the most powerful test of the hypothesis
H0 at level 0 < α < 1 upon observing λn = λ∗ is to Reject H0 in favor of
H1 if λ∗ ≥ cα, where

cα ≡ inf {c < ∞ : P[λn ≥ c | θ0] ≤ α}

and otherwise fail to reject, or equivalently to reject if and only if the “P-
value”

Pn ≡ P[λn ≥ λ∗ | θ0]

satisfies Pn ≤ α. This is “most powerful” in the sense that the “power”
P[ Reject H0 | H1] = P[λn ≥ cα | θ1] is larger than for any other test of
“size” P[ Reject H0 | H0] = P[λn ≥ cα | θ0] ≤ α.

Let’s explore how λn behaves as n → ∞, and from that see what inference
Likelihoodists, Bayesians, and Classical statisticians are likely to make.

1.1. Log Likelihood Ratio as a Random Walk

For any θ ∈ Θ the log likelihood ratio is a sum of independent random
variables

log λn =

n
∑

j=1

log
[

f1(Xj)/f0(Xj)
]

,

the jth of which has mean

µ = E[log
f1(X)

f0(X)
| θ]

=

∫

X

[log f1(x) − log f0(x)] f(x) dx

=

∫

X

[log
f1(x)

f(x)
− log

f0(x)

f(x)
] f(x) dx

= K(f : f0) − K(f : f1)

where K(f : g) is the “Kullback-Liebler Divergence” defined by

K(f : g) ≡
∫

X

− log
g(x)

f(x)
f(x) dx.
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This “divergence” satisfies K(f : f) = 0 for all f(x) and K(f : g) > 0 for all
other g(x), but is not symmetric and so is not (quite!) a distance metric. It
has many interesting properties, some described in the course text by Bickel

& Doksom (§2.2, 3.2) and others we will encounter below. By the Law of
Large Numbers, (1/n) log λn → µ as n → ∞ and hence λn ≈ enµ, so

lim
n→∞

λn = lim
n→∞

enµ =

{

0 if K(f : f0) < K(f : f1),

∞ if K(f : f0) > K(f : f1)

and, in particular, statisticians of all three paradigms will be lead to the
right conclusion in the limit as n → ∞ if either H0 is true, in which case
µ = −K(f0 : f1) < 0 and λn → 0, or H1 is true, so µ = K(f1 : f0) > 0 and
λn → ∞.

Similarly we can compute

σ2 = E[
(

log
f1(X)

f0(X)
− µ

)2 | θ] =

∫

X

[log f1(x) − log f0(x) − µ]2 f(x) dx

and, by the Central Limit Theorem,

lim
n→∞

P

[

log λn − nµ

σ
√

n
≥ z

]

= Φ(−z)

and hence the Likelihoodist, Bayesian, and Frequentist reports for large n
and a true hypothesis H0 : [θ = θ0] will be approximately

λn ≈ e−nK(f0:f1) → 0

P[H0 | x] ≈ π0

π0 + π1e−n K(f0:f1)
→ 1

Pn ≈ Φ

(

− log λn + nK(f0 : f1)

σ
√

n

)

∼ Un(0, 1)

while if H1 : [θ = θ1] is true they will be approximately

λn ≈ en K(f1:f0) → ∞
P[H0 | x] ≈ π0

π0 + π1en K(f1:f0)
→ 0

Pn ≈ Φ

(−nK(f1 : f0) − nK(f0 : f1)

σ
√

n

)

= Φ
(

− [K(f1 : f0) + K(f0 : f1)]
√

n/σ2
)

→ 0
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1.2. Martingales and Iterated Logarithms

Suppose that H0 : [θ = θ0] is true. At any fixed sample-size n, we have seen
how Classical and Bayesian testing methods behave. What happens as we
observe successively larger samples?

The Law of the Iterated Logarithm for random walks states that, with prob-
ability one, a random walk like log λn with i.i.d. steps of mean µ ∈ R and
variance σ2 > 0 will satisfy:

lim sup
n→∞

log λn − nµ

σ
√

2n log log n
= +1

lim inf
n→∞

log λn − nµ

σ
√

2n log log n
= −1

and, in particular, that if H0 is true (so that µ = −K(f0 : f1) < 0), then
with probability one there will be infinitely many numbers n ∈ N for which
log λn + nK(f0 : f1) > σ

√
n log log n, so that

Pn ≈ Φ

(

− log λn + nK(f0 : f1)

σ
√

n

)

< Φ(−
√

log log n) → 0.

Thus the P -value will fall arbitrarily close to zero, as n → ∞, lending
arbitrarily strong evidence against even a true hypothesis. (Note:

√
log log n

grows exceedingly slowly— for example, it only exceeds 1.645 for n > 3.2 106,
and only exceeds 1.96 for n > 1.7 1020).

If H0 is true then λn is a positive martingale starting at λ0 = 1, since

E[λn+1 | X1, ..., Xn] = λn

∫

X

f1(x)

f0(x)
f0(x) dx = λn

∫

X

f1(x) dx = λn

and so, by Doob’s Martingale Maximal Inequality, for any b < ∞ and N > 0,

P[ sup
n≤N

λn > b] ≤ E[λ0]

b
=

1

b

and hence if H0 is true the probability that the Bayesian posterior proba-
bility of H0 ever falls below any 0 < p < 1 is bounded above by

P
[

inf
n≤N

P[H0 | xn] ≤ p
]

= P
[

inf
n≤N

π0

π0 + π1λn
≤ p

]

= P
[

sup
n≤N

λn ≥ π0(1−p)

π1 p

]

≤ π1

π0

p

1 − p
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as n → ∞ so, unlike Classical methods, Bayesian methods will not give
arbitrarily strong evidence against a true hypothesis.

1.3. Martingales and Sample Size

If H0 is true we have seen that λn is a positive martingale starting at λ0 = 1.
For any 0 < a < 1 < b let τab be the stopping time

τab ≡ inf{n ≥ 0 : λn /∈ (a, b)}

(the first time λn either exceeds b > 1 or falls below a < 1) and denote by pab

the probability that λn exceeds b before falling below a, pab = P[λτab
≥ b].

Then Doob’s theorem applied to the two martingales λn and log λn − nµ
give us

E[λτab
| H0] ≈ (1 − pab)a + (pab)b

= 1 =⇒
pab =

1 − a

b − a
E[log λτab

− µτab | H0] ≈ (1 − pab) log a + (pab) log b − µE[τab | H0]

=
(b − 1) log a + (1 − a) log b

b − a
− µE[τab | H0]

= 0 =⇒
E[τab | H0] = −(b − 1) log a + (1 − a) log b

(b − a)K(f0 : f1)

and, in the limit as b → ∞,

E[inf{n ≥ 0 : λn < a} | H0] =
log(1/a)

K(f0 : f1)

so the sample-size needed to reach a posterior probability of P[H0 | ~xn] =
π0

π0+π1λn
> 1 − ε for a true hypothesis H0 : {xj ∼ f0(x)} has expectation

n ≥
log π1

π0
+ log 1−ε

ε

K(f0 : f1)

and, similarly, if H0 is false and xj ∼ f1(x), then

E[inf{n ≥ 0 : λn > b} | H1] =
log b

K(f1 : f0)
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and the sample-size needed to achieve a posterior probability of P[H0 | ~xn] =
π0

π0+π1λn
< ε for a false hypothesis is

n ≥
log π0

π1
+ log 1−ε

ε

K(f1 : f0)
.

Evidently the sample-size needed varies directly with the logistic of the de-
sired posterior probability, and inversely as the Kullback-Liebler discrepancy
between f0 and f1.

2. Kullback-Liebler and Fisher Information

For small ε > 0, a second-order Taylor-series approximation of the KL di-
vergence from f(x | θ) to f(x | θ + ε) gives

K
(

f(x | θ), f(x | θ + ε)
)

=

∫

X

− log
f(x | θ + ε)

f(x | θ)
f(x | θ) dx

≈
∫

X

[

−ε∇ log f(x | θ) − ε2

2
∇2 log f(x | θ)

]

f(x | θ) dx

= I(θ)ε2/2

or, in q > 1 dimensions, εTI(θ)ε/2. This suggests a close link between KL
divergence and the “Information Metric” notion of the distance between
different distributions,

dI(θ0, θ1) =

∫ θ1

θ0

√

I(θ) dθ (in q = 1 dimension)

= inf
γ

∫ 1

0

√

γ̇T

t I(γt)γ̇t dt

where the infimum is over all differentiable paths γ from γ0 = θ0 to γ1 = θ1;
evidently, for near-by θ0, θ1,

K
(

f(x | θ0), f(x | θ1)
)

≈ dI(θ0, θ1)
2/2

≈ 1

2
(θ1 − θ0)

′I(θ)(θ1 − θ0).
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