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1. Likelihood Principle

The “Likelihood Principle” asserts that for any inferential purpose, all of
the evidence from any observation X = x∗ about the parameter θ governing
the distribution of X ∼ f(x | θ) lies in the Likelihood Function

L(θ) ∝ f(x∗ | θ).

Bayesian and Classical statistics are both concerned with the function f(x |
θ), but use it in different ways— in Classical Analysis, measures of estimator
precision and of evidence against an hypothesis are based on the probabilities
with which X might take on various values “more extreme” than those
observed; this violates the LHP by relying on f(x | θ) for values of x other
than x∗. Bayesian analysis with a preselected prior distribution π(dθ) is
based on the posterior distribution

π(dθ | x∗) ∝ L(θ)π(dθ)

and so is consistent with LHP, but Objective Bayesian analysis in which
π(dθ) is selected by some formal rule (e.g., Jeffreys’ rule), once again uses
f(x | θ) for values of x 6= x∗ through dependence on the Fisher Information
I(θ) ≡ −E[∇2f(X | θ)].

In this section we will see what the LHP means, why it is appealing, and
why it is violated by both Classical and Object Bayesian analysis.

1.1. Example 0

A frequently cited example of LHP violation is actually the first glimpse of
the Stopping Rule Principle (SRP). Imagine two experimentors considering
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the question of H0 : θ ≤ 0.5 with alternative H1 : θ > 0.5 on the basis of
Bernoulli trials ξj = 1 w/prob θ, 0 w/prob 1 − θ. One of them chooses
Binomial sampling with a fixed n = 10 and observes X1 = 7 successes;
the other employs Negative Binomial sampling until 3 failures are observed,
which happens to occur after X2 = 7 successes. Their likelihood functions
are

L1(θ) =
(

n
x

)

θx(1 − θ)n−x L2(θ) =
(

α+x−1

x

)

θx(1 − θ)α

=
(

10

7

)

θ7(1 − θ)3 =
(

7+3−1

7

)

θ7(1 − θ)3

= 120θ7(1 − θ)3 = 36θ7(1 − θ)3

so both have the same likelihood; but the p-values against H0 are

p1 = Pr[X1 ≥ 7 | θ = 1/2] = 1-pbinom(6,10,0.5) = 0.171875
p2 = Pr[X2 ≥ 7 | θ = 1/2] = 1-pnbinom(6,3,0.5) = 0.089844

so H0 would be rejected at level α = 0.10 by the second experimentor but
not by the first.

A Bayesian with uniform prior θ ∼ Be(1, 1) would have in each case a
posterior θ ∼ Be(8, 4) distribution and so would find in each case P[θ ≤ 0.5 |
X = 7] = pbeta(0.5,8,4) = 0.1132813, but an Objective Bayesian would
find different Jeffreys prior distributions

I1(θ) = E
−∂2

∂θ2 [X ln θ + (1−X) ln(1−θ)] I2(θ) = E
−∂2

∂θ2 [X ln θ + α ln(1−θ)]
= E[X/θ2 + (1−X)/(1−θ)2] = E[X/θ2 + α/(1−θ)2]
= 1/θ(1−θ), so = α/θ(1−θ)2, so

π1(θ) =
√

I1(θ) π2(θ) =
√

I2(θ)

∝ θ−1/2(1−θ)−1/2 ∼ Be(0.5, 0.5) ∝ θ−1/2(1−θ)−1 ∼ Be(0.5, 0.0)

and so the two Objective Bayesians find different posterior distributions
π1(θ | X = 7) ∼ Be(7.5, 3.5) and π2(θ | X = 7) ∼ Be(7.5, 3.0) and dif-
ferent posterior probabilities P1[H0 | X = 7] = pbeta(0.5,7.5,3.0) =
0.07026183 and P2[H0 | X = 7] = pbeta(0.5,7.5,3.5) = 0.1020155, again
disagreeing at level 0.10.

1.2. Example 1

Suppose X1 and X2 are independent with P[Xj = θ ± 1] = 1/2 for some
unknown θ ∈ R. The smallest 75% confidence interval for θ is

C(X1, X2) =

{

the point X1+X2

2
X1 6= X2

the point X1 − 1 X1 = X2
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Thus, 0.75 = Pr[θ ∈ C(X1, X2)] and with repeated use of this confidence
interval we would have θ ∈ C(X1, X2) exactly three-quarters of the time.

BUT, once we observe X1 and X2 it seems absurd to report 75% as the
confidence level— it should be 100%, if X1 6= X2, or 50%, if X1 = X2. From
a post-experimental view it seems silly not to condition on the observed
values of Xj.

1.3. Example 2 (Cox, 1958)

A laboratory has two measuring instruments (voltmeters, perhaps); the blue
one has an accuracy of ±0.01, the red one has an accuracy of ±0.05. The
experimentor uses whichever voltmeter is available each day; each is available
about half the time.

What accuracy should she report with her data?

1.4. Example 3

We observe a digital signal Xi ∼ No(θ, 0.25), where θ = ±1. To test H0 :
θ = −1 classically we might Reject whenever Xi > 0; this gives a test with
error probabilities (both Type I and Type II) Φ(−2) = 0.02275. If X = 0 is
observed we can reject H0 confidently, with a p-value of 0.0228, well below
the conventional 0.05 cut-off. BUT— is this really strong evidence against
H0 and in favor of H1 : θ = +1??? Is it really fair to reject H0 in favor of
H1 : θ = +1 at level α = .0228 when we observe X = 0?

1.5. Example 4

Suppose X is either one, two, or three, with probability distribution pθ for
θ = 0 or θ = 1, where pθ is given by the following table:

X
1 2 3

θ = 0 0.009 0.001 0.99

θ = 1 0.001 0.989 0.01

A test of H0 : θ = 0 at level α = 0.01 would reject H0 if X = 1 or X = 2,
and would accept H0 when X = 3; the Type-II error probabilities would be
β = .01, making this a test with fine pre-experimental properties.
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The outcome X = 1 is troubling, however; the rule above says we Reject H0

for X = 1, with α = 0.01, but the likelihood ratio is 9 : 1 in favor of H0 for
this outcome! How can we reject H0??

1.6. Example 5

Perhaps the most extreme example is due to Jiunn Hwang and George
Casella (1982), based on the famous James-Stein estimators. Willard James
and Charles Stein (1961) showed that in dimensions p > 2 the sample mean
X̄ is not an admissible estimator of the mean µ for data X ∼ No(µ, Ip); they
found a better (for L2 risk) estimator of the form

δJS(x) ≡
[

1 − p − 2

|x|2
]

x

(here |x|2 = Σxj
2 is the sqared length of our one observation). While having

lower risk than x, this is still inadmissible and is downright silly when Σxj
2

is smaller than p − 2; others (Baranchik in 1964 mentions it) showed that
the “positive-part James Stein estimator”

δJS+(x) ≡
[

1 − p − 2

|x|2
]+

x

is even better (we just truncate to zero when |x|2 < p − 2).

Now for Hwang and Casella: let α ∈ (0, 1) and find the 1−αth percentile of
the χ2

p distribution, χ2
p(1−α) ≡ qchisq(1-alpha,p). For sufficiently small

ε > 0, the confidence set

CHC(x) =

{

{θ : |θ − δJS+(x)|2 < χ2
p(1 − α)} if |x|2 > ε2

∅ if |x|2 ≤ ε2

is never larger than the classical confidence sphere

C(x) = {θ : |θ − x|2 < χ2
p(1 − α)},

has pre-experimental coverage probability exceeding 1 − α, and is empty if
|x| ≤ ε! Imagine reporting an empty confidence set with positive probability.

1.7. Birnbaum

In his 1962 JASA article, Alan Birnbaum proved the astonishing result that
the LHP is equivalent to the following two (rather benign-looking) principles:
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WCP (Weak Conditionality Principle): Suppose there are two experiments
E1 and E2 where the only unknown is the parameter θ, common to the
two problems. Consider the mixed experiment E∗ in which we select
i = 1 or i = 2 with equal probabilities, then perform experiment Ei;
then the resulting evidence about θ is that from experiment Ei, and
we can ignore the existence of the other (unperformed) experiment.

WSP (Weak Sufficiency Principle): Consider an experiment E and a suf-
ficient statistic T . Then if T (x1) = T (x2), the evidence about θ from
observing x1 is the same as the evidence about θ from observing x2.

Most statisticians agree with WCP and WSP but use methods inconsistent
with the LHP. Go figure.

1.7.1. Proof

To prove Birnbaum’s assertion we need to be more formal about exactly
what is meant by the terms. We begin by defining an “Experiment” to be
a triple E = (X ,Θ, fθ(x)) consisting of an outcome space X , a parameter
space Θ, and a family of probability density functions fθ(·) on X (with some
implicit reference measure— typically counting measure when X is a discrete
set and Lebesgue measure when X is a subset of Euclidean space), indexed
by θ ∈ Θ. We do not define the “evidence about θ ∈ Θ from observing x ∈ X
in experiment E”, but we introduce notation Ev(x,E) for this concept and
write the three principles above more formally as:

WCP (Weak Conditionality Principle): Suppose there are two experiments
E1 = (X1,Θ, f1

θ ) and E2 = (X2,Θ, f2
θ ) where the only unknown is the

parameter θ ∈ Θ, common to the two problems. Consider the mixed
experiment E∗ = (X∗,Θ, f∗

θ ) given by

X∗ ≡ (1, 2) × (X1 ∪ X2)

f∗

θ

(

(i, xi)
)

≡ 1

2
f i

θ(xi)

in which we select i = 1 or i = 2 with equal probabilities 1/2, then
perform experiment Ei. Then

Ev
(

(i, xi), E∗

)

= Ev(xi, Ei)

WSP (Weak Sufficiency Principle): Consider an experiment E = (X ,Θ, fθ)
and a sufficient statistic T . Then if T (x1) = T (x2), Ev(x1, E) =
Ev(x2, E).
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LHP (Likelihood Principle): Suppose there are two experiments E1 =
(X1,Θ, f1

θ ) and E2 = (X2,Θ, f2
θ ) where the only unknown is the pa-

rameter θ ∈ Θ, common to the two problems, and that there are two
points x∗

1 ∈ X1 and x∗

2 ∈ X2 and a number c > 0 for which

f1
θ (x∗

1) = cf2
θ (x∗

2) ∀θ ∈ Θ

Then Ev(x∗

1, E1) = Ev(x∗

2, E2).

Theorem 1 ((Birnbaum, 1962)) . WCP + WSP ⇒ LHP

Proof:

Construct E∗ as before and define a statistic T : X∗ → X∗ by:

T
(

(j, xj)
)

≡
{

(1, x∗

1) if j = 2 and xj = x∗

2

(j, xj) otherwise,

so T (x∗

1) = T (x∗

2) but otherwise T (x∗) leaves each xj fixed. To show that
T is sufficient we must show that the conditional distribution of x∗ given
T (x∗) = t does not depend on θ; that follows from direct calculation:

P
[

x∗ = (j, xj) | T
(

x∗) = t
]

=























c
c+1

if t = (1, x∗

1) and j = 1 and xj = x∗

1

1

c+1
if t = (1, x∗

1) and j = 2 and xj = x∗

2

1 if t 6= (1, x∗

1) and t = (j, xj)

0 if t 6= (1, x∗

1) and t 6= (j, xj)

Now Birnbaum’s theorem follows by noting that

Ev(x∗

1, E1) = Ev
(

(1, x∗

1), E∗

)

by WCP
= Ev

(

(2, x∗

2), E∗

)

by WSP
= Ev(x∗

2, E2) by WCP,

as claimed.

1.8. Stopping Rules

Probably the most celebrated consequence of LHP is the irrelevence of stop-
ping rules for making inference in sequential procedures. As (Edwards et al.
1963) wrote,
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“The irrelevence of stopping rules to statistical inference restores
a simplicity and freedom to experimental design. Many exper-
imentors would like to feel free to collect data until they have
either conclusively proved their point, conclusively disproved it,
or run out of time, money, or patience.”

First we illustrate the problem:

Imagine that a client enters your statistical consulting office reporting that
she has taken n = 100 observations from Xj ∼ No(θ, 1), and wants to test
H0 : θ = 0 against the two-sided alternative H1 : θ 6= 0 at level α = 0.05.
The classical procedure gives a p-value of p = 2Φ(−√

n|x̄n|), and rejects H0

whenever p ≤ α or, equivalently, when
√

n|x̄n| ≥ zα/2.

When you learn that her data show x̄100 = 0.20, the problem seems easy—
evidently the p-value is p = 2Φ(−2.00) = 0.0455 < α, leading to rejection.
But when by chance you ask “Why did you take n = 100 observations?”
and learn that the answer is “Because that was enough to get significance,”
your answer has to change.

If her intention was to reject if
√

100|x̄100| ≥ k for k = z.025 = 1.96, and oth-
erwise to take another 100 observations and see if that leads to significance,
i.e., to

√
200|x̄200| ≥ k, then the true probability of a Type-I error is

p = Pr
[

|Z1| > k or |Z1 + Z2| > k
√

2
]

or about 0.0768 for k = 1.960, so her test does not have its nominal size α =
0.05. To achieve this size she would have to reject when either

√
100|x̄100|

or
√

200|x̄200| exceeds k = 2.12. Since hers do not, we now must change our
advice and say she cannot reject H0!

It is (or should be!) disturbing that the evidential import of her results
should depend on her intentions, and not on the data and experiment. Even
more alarming, most experiments are begun without a clear picture of when
to stop taking data, so this “silly example” is in fact the usual situation.
Let’s describe sequential experiments more precisely.

Let X be the outcome space for each observation xj ∼ fθ(x), and let X j be
the set of j-tuples ~xj = (x1, ..., xj) in the j-fold Cartesian product. Under
the assumption of independence the joint pdf is

f j
θ (~xj) ≡

j
∏

i=1

fθ(xi).
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Now we can define for each m ≥ 0 the “fixed sample-size m experiment” by

Em =
(

Xm,Θ, fm
θ

)

.

A randomized stopping rule is a sequence of functions τj : X j → [0, 1] with
the interpretation that we proceed sequentially, deciding at each stage m ≥ 0
to stop with probability τm(~xm) and otherwise to continue to continue to
stage m + 1, taking another observation xm+1 ∼ fθ(x). The rule is proper
if it stops almost surely, and is nonrandomized if τj ∈ {0, 1} for each j. For
any proper scoring rule we can construct an experiment

Eτ =
(

X τ ,Θ, f τ
θ

)

X τ = N × ∪∞

j=0X j

f τ
θ

(

(m,~xm)
)

=

m−1
∏

j=0

(

1 − τj(~xj)
)

τm(~xm)

m
∏

j=1

fθ(xj)

One proper stopping rule is

τ1
j (~xj) =

{

0 j < m

1 j ≥ m,

leading to the fixed-sample-size experiment Eτ1 = Em; another is our client’s,

τ2
j (~xj) =























0 j 6= 100 and j < 200

0 j = 100 and
√

j|x̄j | < zα/2

1 j = 100 and
√

j|x̄j | ≥ zα/2

1 j ≥ 200

These stopping rules gave different inference in the classical procedure above;
evidently that procedure is not consistent with the:

SRP (Stopping Rule Principle): For any stopping rule {τm},

Ev
(

(m,~xm), Eτ

)

= Ev(~xm, Em)
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But clearly any procedure consistent with LHP automatically obeys the
SRP, since the likelihoods in the two cases are

f τ
θ

(

(m,~xm)
)

=

m−1
∏

j=0

(

1 − τj(~xj)
)

τm(~xm)

m
∏

j=1

fθ(xj)

∝
m
∏

j=1

fθ(xj)

= fm
θ (~xm).

Thus Bayesian analysis with any fixed prior leads to procedures in which
the stopping rule is irrelevent– in our client’s case, for example, a Bayesian
with a uniform prior density would find the same credible interval

(1 − α) = P[θ ∈ x̄m ± zα/2/
√

m]

for either the sequential or the fixed-sample-size experiment, while the classi-
cal procedure and also Bayesian analysis with some “objective” priors would
not lead to the same inference for both experiments.
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