Splines

- **knots**: a sequence of increasing numbers $\xi_1 < \xi_2 < \cdots < \xi_m$ on some interval $[a, b]$.

- A function g defined on $[a, b]$ is a cubic spline w.r.t knots $\{\xi_i\}_{i=1}^m$ if the following two conditions are satisfied: (1) g is a cubic polynomial on each of the $m+1$ intervals, that is,
 \[
g(x) = d_i x^3 + c_i x^2 + b_i x + a_i, \quad x \in [\xi_i, \xi_{i+1}]
 \]
 where $i = 0, 1, \ldots, m$, $\xi_0 = a$ and $\xi_{m+1} = b$; (2) g is continuous up to the 2nd derivative, that is,
 \[
g^{(0,1,2)}(\xi^+_i) = g^{(0,1,2)}(\xi^-_i), \quad i = 1, \ldots, m.
 \]

All the cubic splines (w.r.t knots $\{\xi_i\}_{i=1}^m$) form a linear space of functions with $(m+4)$ degree of freedom. Below is a set of basis functions for that space:

\[
\begin{align*}
 h_1(x) &= 1; \quad h_2(x) = x; \quad h_3(x) = x^2; \quad h_4(x) = x^3; \\
 h_i+4(x) &= (x - \xi_i)^3, \quad i = 1, 2, \ldots, m.
\end{align*}
\]

- A cubic spline on $[a, b]$ is said to be a natural cubic spline (NCS) if its second and third derivatives are zero at a and b, that is, it is linear on the two extreme intervals $[a, \xi_1]$ and $[\xi_m, b]$. Because of the four additional constraints $d_0 = c_0 = d_m = c_m = 0$, the degree of freedom of NCS’s with m knots is m. One version of the basis functions can be found in the textbook (section 5.2.1).

Smoothing Splines

- **Roughness Penalty Approach** – Let $S[a, b]$ be the space of all “smooth” functions g on $[a, b]$ that have two continuous derivatives. Among all the functions in $S[a, b]$, we are looking for the minimizer of the following penalized residual sum of squares
 \[
 \text{RSS}(g, \lambda) = \sum_{i=1}^n [y_i - g(x_i)]^2 + \lambda \int_a^b [g''(x)]^2 dx, \tag{1}
 \]
 where the first term quantifies the goodness-of-fit to the data, the second term measures the roughness, and λ is a positive smoothing parameter.
parameter. The criterion (1) is defined on an infinite-dimensional space $S[a, b]$ (in fact, a Sobolev space). However, remarkably, it can be shown (by the following theorem) that when $n > 1$ the minimizer \hat{g} lies in a finite dimensional space, the space of natural cubic splines with knots at the n data points x_1, \ldots, x_n.

THEOREM 1: Let g be any differentiable function on $[a, b]$ for which $g(x_i) = z_i$ for $i = 1, \ldots, n$. Suppose $n \geq 2$, and that \tilde{g} is the natural cubic spline interpolant to the values z_1, \ldots, z_n at points x_1, \ldots, x_n with $a < x_1 < \cdots < x_n < b$. Then $\int g''^2 \geq \int \tilde{g}''^2$ with equality only if $\tilde{g} \equiv g$.

PROOF: Let $h(x) = g(x) - \tilde{g}(x)$. So $h(x_i) = 0$ for $i = 1, \ldots, n$. Want to show that
\[
\int \tilde{g}''(x)^2 dx \leq \int g''(x)^2 dx.
\]
It is because
\[
(1) \int g''^2 = \int (\tilde{g}'' + h'')^2
\]
\[
= \int \tilde{g}''^2 + 2 \int \tilde{g}'' h'' + \int h''^2
\]
\[
(2) \int_a^b \tilde{g}'' h'' dx = \tilde{g}''(x)h'(x)|_a^b - \int_a^b h'(x)\tilde{g}^{(3)}(x)dx
\]
\[
= -\sum_{i=1}^{n-1} \tilde{g}^{(3)}(x_j^+) \int_{x_j}^{x_{j+1}} h'(x)dx
\]
\[
= -\sum_{i=1}^{n-1} \tilde{g}^{(3)}(x_j^+)(h(x_{j+1}) - h(x_j))
\]
\[
= 0.
\]

Note that the result above will still hold true even if we change the square loss, the first term in (1), to other loss functions.

- **Generalized Ridge Regression** – Since the minimizer is a NCS, we can write it as
\[
g(x) = \sum_{i=1}^n \theta_i N_i(x),
\]
where \(N_i(x) \)'s are basis functions for NCS with knots at \(x_1, \ldots, x_n \). The criterion (1) can be written as
\[
\text{RSS}(\theta, \lambda) = (y - N\theta)^T(y - N\theta) + \lambda \theta^T \Omega \theta,
\]
where \(N \) and \(\Omega \) are \(n \times n \) matrices with \((N)_{ij} = N_j(x_i) \) and \((\Omega)_{ij} = \int N_i(x)^\prime N_j(x)^\prime \prime dx \). The solution is
\[
\hat{\theta} = \text{argmin} \text{RSS}(\theta, \lambda) = (N^T N + \lambda \Omega)^{-1} N^T y
\]
\[
\hat{y} = N\hat{\theta} = N(N^T N + \lambda \Omega)^{-1} N^T y = S_\lambda y.
\]
We will refer to \(S_\lambda \) as smoother matrix.

Demmler & Reinsch (1975) constructed a basis with the so-called double orthogonality property, i.e.
\[
N^T N = I, \quad \Omega = \text{diag}(d_i),
\]
where \(d_i \)'s are a non-negative increasing sequence and \(d_1 = d_2 = 0 \) (Why?). Using this basis, we can write \(\hat{y} \) as
\[
\hat{y} = N \text{diag}\left(\frac{1}{1 + \lambda d_i} \right) N^T y = \sum_{i=1}^{n} \frac{1}{1 + \lambda d_i} (u_i^T y) u_i
\]
where \(u_i \) is the \(i \)-th column of \(N \). Now we can easily see the connection between the smoothing spline and the ridge regression.

Similar to the ridge regression, we define the effective degree of freedom of a smoothing spline to be
\[
df(\lambda) = \text{trace} S_\lambda = \text{trace} N^T N(N^T N + \lambda \Omega)^{-1} = \sum_{i=1}^{n} \frac{1}{1 + \lambda d_i}.
\]

• How to Choose the Smoothing Parameter – Let us pretend that we do not observe the \(i \)-th observation and instead use the remaining \(n - 1 \) observations to fit a smoothing spline (w.r.t a smoothing parameter \(\lambda \)). Denote the estimated curve by \(\hat{g}^{(-i)} \) (in contrast to \(\hat{g} \), the smoothing spline calculated from the full data). By definition, \(\hat{g}^{(-i)}(x) \) minimizes
\[
\sum_{j \neq i} [(y_i - g(x_i))^2 + \lambda \int_a^b [g''(x)]^2 dx].
\]
The quality of $\hat{g}^{(-i)}$ as a predictor on a new observation can be judged by how well the value $\hat{g}^{(-i)}(x_i)$ predicts y_i. The idea of cross-validation is to choose λ that minimizes the following score function

$$
CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left[y_i - \hat{g}^{(-i)}(x_i) \right]^2.
$$

(4)

At first sight, it seems necessary to solve n separate smoothing problems in order to calculate $CV(\lambda)$. However, we will show that the “deleted residual” $y_i - \hat{g}^{(-i)}(x_i)$ can be expressed in terms of $y_i - \hat{g}(x_i)$ and the ith diagonal element of the smoother matrix.

THEOREM 2: The cross-validation score (4) satisfies

$$
CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{g}(x_i)}{1 - S_\lambda(i, i)} \right)^2,
$$

(5)

where $S_\lambda(i, j)$ denotes the (i, j)-th entry of the smoother matrix S_λ.

PROOF: We will show that the following equality holds true,

$$
y_i - \hat{g}^{(-i)}(x_i) = \left(\frac{y_i - \hat{g}(x_i)}{1 - S_\lambda(i, i)} \right), \quad i = 1, \ldots, n.
$$

(6)

It suffices to show that it holds true when $i = 1$.

Define a vector y^*: $y^*_j = y_j$ for $j = 2, 3, \ldots, n$ and $y^*_1 = \hat{g}^{(-1)}(x_1)$. We claim that $\hat{g}^{(-1)}$ is the estimated smoothing spline for the n pairs of new observations $(x_i, y^*_i)_{i=1}^n$, by showing that $\hat{g}^{(-1)}$ minimizes

$$
\sum_{i=1}^{n} [y^*_i - g(x_i)]^2 + \lambda \int [g''(x)]^2 dx.
$$

The summation above is bigger than or equal to

$$
\sum_{i=2}^{n} [y^*_i - g(x_i)]^2 + \lambda \int [g''(x)]^2 dx,
$$

$$
\geq \sum_{i=2}^{n} [y^*_i - \hat{g}^{(-1)}(x_i)]^2 + \lambda \int [\hat{g}^{(-1)''}(x)]^2 dx
$$

$$
= \sum_{i=1}^{n} [y^*_i - \hat{g}^{(-1)}(x_i)]^2 + \lambda \int [\hat{g}^{(-1)''}(x)]^2 dx.
$$
Therefore

\[
y_1^* = \sum_{j=1}^{n} S_{\lambda}(1, j)y_j^*
\]

\[
= S_{\lambda}(1, 1)y_1^* + \sum_{j=2}^{n} S_{\lambda}(1, j)y_j
\]

\[
= S_{\lambda}(1, 1)(y_1^* - y_1) + \sum_{j=1}^{n} S_{\lambda}(1, j)y_j
\]

\[
= S_{\lambda}(1, 1)(y_1^* - y_1) + \hat{g}(x_1).
\]

Substituting \(y_1^* = \hat{g}(-1)(x_1)\), we obtain (6).

Generalized cross-validation is a modified form of cross-validation. The basic idea is to replace the individual factors \((1 - S_{\lambda}(i, i))\) by their average value, i.e.,

\[
\text{GCV}(\lambda) = \frac{1}{n} \frac{1}{(1 - n^{-1} \text{trace} S_{\lambda})^2} \sum_{i=1}^{n} \left(y_i - \hat{g}(x_i) \right)^2.
\]