
STA244 Midterm Exam 3/18/2004

1. A student was fitting a simple linear regression model to data

Y = β01n + β1X + e

with e ∼ N(0, σ2In) and X a n × 1 vector with X̄ = 100. Since theory suggested that when Xi = 0
that E(Yi) should be zero, the student set β0 equal to zero, forcing the fitted regression line to go
through the origin.

(a) What is the ordinary least squares estimate of β1 in this case?

(b) if β0 is actually not zero, is β̂1, the OLS estimate of β1, unbiased?

(c) The student decided to plot the residuals, ê = Y −Xβ̂1 versus the fitted values Xβ̂1 as a check
and observed the plot (shown on the next page). The student thought that fitted values and
residuals should be uncorrelated. Find the E(ê) if E(Y) = β01n + β1X with β0 not equal to zero.
Can you explain to the student why the residuals and fitted values appear to be correlated in the
residual plot?

(d) The student decided to go back to the computer output. Is there any evidence to suggest that β0

is not zero? Give appropriate test statistic, distribution and your conclusion.

(e) In the computer output, the F-statistic in the summary for the regression thru the origin is
3232000 with 1 and 99 degrees of freedom. What is the null model in this case? The alternative
model? Because the p-value is very small, and this F-statistic is much larger than the F-statistic
in the model with the intercept and X, does this mean we should accept the regression thru the
origin model? Explain. What can you conclude?

(f) The student noticed that the standard error for β̂1 is about 50 times smaller in the regression
thru the origin than in the model with the intercept and X, so that confidence intervals for β1

would be narrower in the regression thru the origin. Isn’t a narrower confidence interval always
better? Explain.
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Figure 1: Residual plot from model with regression thru the origin.

> summary(lm0) # model without intercept

lm(formula = Y ~ X - 1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

X 0.1999504 0.0001112 1798 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1112 on 99 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: 1
F-statistic: 3.232e+06 on 1 and 99 DF, p-value: < 2.2e-16

> summary(lm1) # Model with intercept

lm(formula = Y ~ X)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.821601 0.568709 17.27 <2e-16 ***
X 0.101677 0.005691 17.87 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05556 on 98 degrees of freedom
Multiple R-Squared: 0.7651, Adjusted R-squared: 0.7627
F-statistic: 319.2 on 1 and 98 DF, p-value: < 2.2e-16
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2. Assume that we have a sample of size n, Y = (Y1, . . . , Yn)′ from the model

Y = Xβ + e (1)

with e ∼ N(0, In) and X is n×p of rank p. Suppose we want to find an estimator of µ = Xβ, denoted
by µ̂, which minimizes expected quadratic error loss,

E[(µ− µ̂)T(µ− µ̂)].

where the expectation is taken with respect to the distribution of Y given β in (1).

(a) Ronald knew that out of all the linear unbiased estimates that ordinary least squares µ̂OLS ≡
Xβ̂OLS has the minimum variance, and suggested that as an estimator. Show that the expected
loss for using ordinary least squares is p. Hint: recall E(YTAY) = trace(AΣ) + µTΣµ where A is
a n× n symmetric matrix, Σ is the covariance of Y and µ is the E(Y).

(b) Thomas was not so worried about being unbiased and decided that his posterior mean of µ,
µ̂B ≡ g

1+gXβOLS, might be a better choice. Find the expected loss with using the estimator µ̂B .

(c) If µT µ = cn, for some constant c, can you suggest values of g such the Bayes estimator will do
better than ordinary least squares?
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3. Consider the simple linear regression model with one predictor,

Yi = β0 + β1Xi + εi i = 1, . . . , n (2)

εi
iid∼ N(0, σee) (3)

with independent, identically distributed normal errors with mean 0 and variance σee. Suppose that
we are unable to observe Xi directly, but instead observe Wi, a noisy version of Xi,

Wi = Xi + ui (4)

where ui
iid∼ N(0, σuu) represents measurement error in Xi. For i = 1, . . . , n, assume that the vector Xi

εi

ui

 iid∼ N

 µx

0
0

 ,

 σxx 0 0
0 σee 0
0 0 σuu

 . (5)

(a) Find the joint distribution of (Yi,Wi) given parameters (µx, β0, β1, σee, σxx, σuu)′ using the spec-
ifications given by equations (2 – 5).

(b) Let γ̂1 denote the ordinary least squares regression coefficient computed from the regression of Y
on W ,

γ̂1 =
∑n

i=1(Wi − W̄ )(Yi − Ȳ )∑n
i=1(Wi − W̄ )2

.

Find E[γ̂1] and show that as an estimator of β1, the regression coefficient in (2), that γ̂1 is biased
towards zero.

Hint: Recall that if Z = (Z1, Z2)′ has a normal distribution, with partitioned mean and covariance(
Z1

Z2

)
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
that Z1|Z2 is normal with mean µ1 + Σ12Σ−1

22 (Z2 − µ2) and covariance Σ11 − Σ12Σ−1
22 Σ21.
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