STA244

Midterm Exam

1. A student was fitting a simple linear regression model to data

$$\mathbf{Y} = \beta_0 \mathbf{1}_n + \beta_1 \mathbf{X} + \mathbf{e}$$

with $\mathbf{e} \sim N(0, \sigma^2 I_n)$ and \mathbf{X} a $n \times 1$ vector with $\overline{X} = 100$. Since theory suggested that when $X_i = 0$ that $\mathsf{E}(\mathsf{Y}_i)$ should be zero, the student set β_0 equal to zero, forcing the fitted regression line to go through the origin.

- (a) What is the ordinary least squares estimate of β_1 in this case?
- (b) if β_0 is actually **not zero**, is $\hat{\beta}_1$, the OLS estimate of β_1 , unbiased?
- (c) The student decided to plot the residuals, $\hat{\mathbf{e}} = \mathbf{Y} \mathbf{X}\hat{\beta}_1$ versus the fitted values $\mathbf{X}\hat{\beta}_1$ as a check and observed the plot (shown on the next page). The student thought that fitted values and residuals should be uncorrelated. Find the $\mathbf{E}(\hat{\mathbf{e}})$ if $\mathbf{E}(\mathbf{Y}) = \beta_0 \mathbf{1}_n + \beta_1 \mathbf{X}$ with β_0 not equal to zero. Can you explain to the student why the residuals and fitted values appear to be correlated in the residual plot?
- (d) The student decided to go back to the computer output. Is there any evidence to suggest that β_0 is not zero? Give appropriate test statistic, distribution and your conclusion.
- (e) In the computer output, the F-statistic in the summary for the regression thru the origin is 3232000 with 1 and 99 degrees of freedom. What is the null model in this case? The alternative model? Because the p-value is very small, and this F-statistic is much larger than the F-statistic in the model with the intercept and X, does this mean we should accept the regression thru the origin model? Explain. What can you conclude?
- (f) The student noticed that the standard error for $\hat{\beta}_1$ is about 50 times smaller in the regression thru the origin than in the model with the intercept and X, so that confidence intervals for β_1 would be narrower in the regression thru the origin. Isn't a narrower confidence interval always better? Explain.

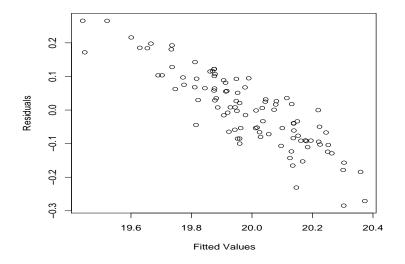


Figure 1: Residual plot from model with regression thru the origin.

```
> summary(lm0) # model without intercept
lm(formula = Y ~ X - 1)
Coefficients:
   Estimate Std. Error t value Pr(>|t|)
X 0.1999504 0.0001112
                          1798
                                <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1112 on 99 degrees of freedom
Multiple R-Squared:
                        1,
                                Adjusted R-squared:
                                                        1
F-statistic: 3.232e+06 on 1 and 99 DF, p-value: < 2.2e-16
> summary(lm1) # Model with intercept
lm(formula = Y ~ X)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       0.568709
                                  17.27
(Intercept) 9.821601
                                          <2e-16 ***
Х
            0.101677
                       0.005691
                                  17.87
                                          <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.05556 on 98 degrees of freedom
Multiple R-Squared: 0.7651,
                                Adjusted R-squared: 0.7627
F-statistic: 319.2 on 1 and 98 DF, p-value: < 2.2e-16
```

2. Assume that we have a sample of size $n, \mathbf{Y} = (Y_1, \ldots, Y_n)'$ from the model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e} \tag{1}$$

with $\mathbf{e} \sim N(0, I_n)$ and \mathbf{X} is $n \times p$ of rank p. Suppose we want to find an estimator of $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$, denoted by $\hat{\boldsymbol{\mu}}$, which minimizes expected quadratic error loss,

$$\mathsf{E}[(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})^{\mathsf{T}}(\boldsymbol{\mu} - \hat{\boldsymbol{\mu}})].$$

where the expectation is taken with respect to the distribution of **Y** given β in (1).

- (a) Ronald knew that out of all the linear unbiased estimates that ordinary least squares $\hat{\mu}_{OLS} \equiv \mathbf{X}\hat{\boldsymbol{\beta}}_{OLS}$ has the minimum variance, and suggested that as an estimator. Show that the expected loss for using ordinary least squares is *p. Hint: recall* $\mathbf{E}(\mathbf{Y}^{\mathsf{T}}\mathbf{A}\mathbf{Y}) = \operatorname{trace}(\mathbf{A}\Sigma) + \boldsymbol{\mu}^{\mathsf{T}}\Sigma\boldsymbol{\mu}$ where *A* is a $n \times n$ symmetric matrix, Σ is the covariance of \mathbf{Y} and $\boldsymbol{\mu}$ is the $\mathbf{E}(\mathbf{Y})$.
- (b) Thomas was not so worried about being unbiased and decided that his posterior mean of μ , $\hat{\mu}_B \equiv \frac{g}{1+g} \mathbf{X} \boldsymbol{\beta}_{\text{OLS}}$, might be a better choice. Find the expected loss with using the estimator $\hat{\mu}_B$.
- (c) If $\mu^T \mu = cn$, for some constant c, can you suggest values of g such the Bayes estimator will do better than ordinary least squares?

3. Consider the simple linear regression model with one predictor,

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \qquad i = 1, \dots, n \tag{2}$$

$$\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{ee}) \tag{3}$$

with independent, identically distributed normal errors with mean 0 and variance σ_{ee} . Suppose that we are unable to observe X_i directly, but instead observe W_i , a noisy version of X_i ,

$$W_i = X_i + u_i \tag{4}$$

where $u_i \stackrel{iid}{\sim} N(0, \sigma_{uu})$ represents measurement error in X_i . For $i = 1, \ldots, n$, assume that the vector

$$\begin{pmatrix} X_i \\ \epsilon_i \\ u_i \end{pmatrix} \stackrel{iid}{\sim} N\left(\begin{bmatrix} \mu_x \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{ee} & 0 \\ 0 & 0 & \sigma_{uu} \end{bmatrix} \right).$$
(5)

- (a) Find the joint distribution of (Y_i, W_i) given parameters $(\mu_x, \beta_0, \beta_1, \sigma_{ee}, \sigma_{xx}, \sigma_{uu})'$ using the specifications given by equations (2 5).
- (b) Let $\hat{\gamma}_1$ denote the ordinary least squares regression coefficient computed from the regression of Y on W,

$$\hat{\gamma}_1 = \frac{\sum_{i=1}^n (W_i - \bar{W})(Y_i - \bar{Y})}{\sum_{i=1}^n (W_i - \bar{W})^2}.$$

Find $\mathsf{E}[\hat{\gamma}_1]$ and show that as an estimator of β_1 , the regression coefficient in (2), that $\hat{\gamma}_1$ is biased towards zero.

Hint: Recall that if $Z = (Z_1, Z_2)'$ has a normal distribution, with partitioned mean and covariance

$$\left(\begin{array}{c} Z_1\\ Z_2 \end{array}\right) \sim N\left(\left[\begin{array}{c} \mu_1\\ \mu_2 \end{array}\right], \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12}\\ \Sigma_{21} & \Sigma_{22} \end{array}\right]\right)$$

that $Z_1|Z_2$ is normal with mean $\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(Z_2 - \mu_2)$ and covariance $\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$.