LATENT SPATIAL MODELING FOR SPECIES ABUNDANCE

Avishek Chakraborty Alan E. Gelfand
DSS, Duke University
Joint Work with J. A. Silander, A. Latimer & A. Wilson

March 27, 2009
Study region:: Cape Floristic Region (CFR) of South Africa

- Encompasses an area of around 90000 km²
- Rich in biodiversity; existence of \(\sim 9000 \) plant species
Objective

- Construction of map of species abundance over whole CFR
- Understanding the effect of climate and soil-type factors on species existence
- Analysis of the impact of land transformation on species abundance
- Determining possible areas and strategies for species conservation
Analysis of species distribution in Gelfand et al. (2003)

On a smaller domain (Kogelberg Hawequas subregion of ~1600 cells)

Worked with a 0/1 presence-absence type dataset

Fitted a two-stage hierarchical suitability/presence spatial model at areal level
To work with (ordinal) categorical abundance information rather than binary presence/absence
- Taking into account possible uncertainty in data reporting
- Dealing with the effect of land transformation statistics
- To study the species distribution on entire CFR
CFR consists of \(\sim 37000 \) 1min rectangular gridcells of approx. \(\sim 1.55 \times 1.85 \) km\(^2\).

Within cell \(i \), categorical abundance information collected at \(n_i \) many sampling sites.

Each site has a reported abundance category \(y_{ij} \in \{0, 1, 2, 3\} \), \(j = 1, 2, \ldots, n_i \).

\(y \) is an ordinal categorization of actual counts, which may range from 0 to thousands.
Want to assess the effect of environmental factors on the abundance pattern

Important covariates related to temperature, precipitation, soil-type

Covariate choice based on plant physiology and previous modelling

All covariate information \((x)\) given also at the resolution of 1min cells
Introduction

Data Description

Model

Computation

Analysis

Key feature :: large number of cells with $n_i = 0$ sampled sites.

Sites located within 10158 cells; around 28% of whole CFR

Sampling density varies with factors like distance from city/road, presence of a reserve etc.

Figure: (L) sampled cells (R) sampling distribution
For each cell, also given proportion of land transformed $(1 - u)$ within.

For a transformed location y must be 0

Including u in the model essential to explain high number of 0 reporting.

Figure: Transformation Map
Objective

- To construct *Potential Abundance* (PA) distribution \(p_i = (p_i(0), p_i(1), p_i(2), p_i(3)) \) for all cells within CFR
- PA conceptualized as abundance distribution in absence of land transformation, reporting inaccuracies and any other source of error
 - should be governed by environmental conditions and have spatial dependence
- Want to use latent layers ("abundance score") rather than discrete categorical distributions
Assumptions

- Within each cell PA distribution is same for all locations, \(p_i = p_s \) if \(s \in \text{cell} \ i \)
 - Can be viewed as block average \(p_i(k) = \frac{1}{|\text{cell} \ i|} \int_{\text{cell} \ i} p_s(k) \, ds \)
 - Can’t expect to learn point level distributions with areal level covariates

- Transformation is independent of species occurrence and reporting inaccuracies
At site \(j \) within cell \(i \), \(P(y_{ij} = k) = q_i(k) \) for \(0 \leq k \leq 3 \)

In absence of measurement error,
\[
q_i(k) = (1 - u_i)1_{k=0} + u_ip_i(k),
\]
where \(100 \times (1 - u_i)\% \) land is transformed within cell \(i \)

Model transition from \(p \) to \(q \) to be affected by both transformation and noise

Introduce the transition in latent variable scale rather than probability scale
Introduce z^p (*PA score*) as underlying continuous variables for PA distribution p

- $\{z^p(s), s \in D\}$ can be thought of potential abundance surface for a species

- z^p distribution is discretized at cut points α to generate p, $p(k) = P(\alpha_{k-1} \leq z^p \leq \alpha_k)$
During data collection, a noisy version of z^p, say z^q (centered at z^p) is recorded.

- The z^q distribution is categorized again at α’s to generate q.
- With zero noise, in absence of transformation, should have $p = q$.
- In practice, noise \equiv under/over reporting of categories or missing an occurrence.
y non informative about how to separate z^p, z^q surfaces

Ordinary MEMs like following not meaningful due to unidentifiability of scale

$$z^q \sim N(\cdot; z^p, \cdot)$$
$$z^p \sim N(\cdot; \mu, \cdot)$$

In above, one may marginalize and just work with z^q
We have a constraint on error ::

- Can't record a presence (at any category) if it was not there.
- \(z^p \leq \alpha_0 \Rightarrow z^q \leq \alpha_0 \), cant use a ordinary \(\phi(z^q|z^p) \)

Instead specify

\[
f(z^q|z^p, \sigma^2) = \phi(\cdot; z^p, \sigma^2)1_{z^p \geq \alpha_0} + \frac{\phi(\cdot; z^p, \sigma^2)1_{(-\infty, \alpha_0)}}{\Phi(\alpha_0; z^p, \sigma^2)}1_{z^p \leq \alpha_0} \tag{1}
\]

- Fits the error constraint
- In place of truncated normal can use any distribution on \(\mathcal{R}^- \), but like to
 - get identical \(z^q, z^p \) with \(\sigma^2 = 0 \)
 - interpretation of \(z^q \) surface to be actually centered around \(z^p \) surface
Can meaningfully talk about two layers
- z^q is the non-gaussian surface corresponding to the data
- z^p extracts the gaussian part of the surface
- Difference between the surfaces controlled by the parameters

In presence of transformation, modify the previous equation as

$$f(z^q | z^p_{\geq 0}, \sigma^2) = u \phi(\cdot; z^p, \sigma^2) + (1 - u) \frac{\phi(\cdot; z^p, \sigma^2)\mathbf{1}_{(-\infty, \alpha_0)}}{\Phi(\alpha_0; z^p, \sigma^2)}$$

Alternatively, separate transformation, then introduce z^p, z^q and work with (1) (no change in model summaries)
This specification supports inflated number of zero abundances

- For \(z^p \) we work with \(f(z^p) = \phi(\cdot; x^T \beta + \theta, \tau^2) \)

- \(\theta \) is the set of spatial random effects

- A CAR prior structure is assumed for \(\theta \) with a prefixed neighborhood matrix \(W \).
Graph

\[x \xrightarrow{\beta} z^p \xrightarrow{\sigma^2} z^q \xrightarrow{\alpha} q \xrightarrow{\alpha} y \]

\[\theta \xrightarrow{\alpha} p \]

\[\text{Joint Work with J. A. Silander, A. Latimer & A. Wilson} \]

Avishek Chakraborty, Alan E. Gelfand DSS, Duke University

LATENT SPATIAL MODELING FOR SPECIES ABUNDANCE
Assume sampled sites are within first m of total s cells

Define $\Theta = (\alpha, \beta, \sigma^2, \tau^2)$

$L(y|z^q, \alpha, u) = \prod_{k=0}^{3} [1_{z^q \in (\alpha_{c-1}, \alpha_c)}]^{1(y=k)}$.

\[
\pi(z^p, z^q, \Theta | \cdot) \propto \prod_{i=1}^{m} \prod_{j=1}^{n_i} L(y_{ij} | z^q_{ij}, \cdot) p(z^q_{ij} | z^p_{ij}, \cdot) p(z^p_{ij}) \pi(\theta_{1:s}) \pi(\Theta) \]

\[
\pi(\theta_{1:s} | \eta) = CAR(\eta_0, W) \]

\[
\pi(\Theta) = \pi(\alpha) \pi(\beta) \pi(\sigma^2) \pi(\tau^2) \]
Due to latent nature of z^p, z^q, not possible to simultaneously learn all elements of Θ.

Mean will be interpretable only up to fixed scale.

As a convention, assume $\alpha_0 = 0$.

Scale parameters like σ, τ need to be fixed.

- Extent of nongaussianity in the observed data a function of (μ, σ, τ).
- Relative to fixed σ^2, τ^2, μ an indicator of the departure of z^q surface from z^p.
- Estimation of mean surface not of interest in absolute scale, but for comparison.
- For any β sign is important, not the magnitude.
Only nontrivial part is to sample from \(\pi(z^q, z^p|\cdot, \cdot) \)

For an observed \(y > 0 \) simulate \(\pi(z^q|z^p, \cdot), \pi(z^p|z^q, \cdot) \), truncated normals within appropriate intervals

A 0 value of \(y \) can occur in 3 ways

(i) the species was not there originally; prior prob. \(\pi_1 = P(z^p \leq 0) \)

(ii) untransformed, but the species could potentially be there, but the location is transformed; prior prob. \(\pi_2 = (1 - u)P(z^p \geq 0) \)

(iii) untransformed location, the species was there, but missed it during data collection; prior prob. \(\pi_3 = uP(z^p \geq 0, z^q \leq 0) \)
Conditional on \(y = 0 \), sample the possible event using Bayes rule.

For case (i), (ii) sample using \(\pi(z^p | \cdot), \phi(z^q | z^p, \cdot) \).

Case (iii) can be sampled

- either by an M-H step for \(z^p | \cdot \) followed by sampling \(\pi(z^q | z^p, \cdot) \)
- OR a Gibbs-within-Gibbs framework of drawing \(\pi(z^p | z^q, \cdot) \) and \(\pi(z^q | z^p, \cdot) \)
Computational Issues

- Have to introduce a \((z^q, z^p)\) pair for each site; \(\sim 50000\) are there
- Independence of \((z^p, z^q)\) across sites enables block updating
- Computationally demanding is sequential update of spatial random effects
- Parallel updating scheme of dividing the region into disjoint sets along with a set of "boundary cells" based on \(W\)
Worked so far with six species

Want to look at following diagnostics

- Covariate effects
- Potential abundance classification probabilities
- Transformation adjusted probabilities
- Uncertainty in estimating probability distribution
Covariate Effect

Avishek Chakraborty, Alan E. Gelfand DSS, Duke University LATENT SPATIAL MODELING FOR SPECIES ABUNDANCE
Covariate Effect
Covariate Effect

- Avishek Chakraborty, Alan E. Gelfand
- DSS, Duke University
- Joint Work with J. A. Silander, A. Latimer & A. Wilson
- LATENT SPATIAL MODELING FOR SPECIES ABUNDANCE
Abundance Distribution (prrepe)
Abundance Distribution (prcyna)
Abundance Distribution (prrepe)
Uncertainty
Future work on this includes ::

- Constructing similar abundance maps for broader family of species
- To come up with a unified measure of abundance rather than reporting categorical probabilities
- Extending the model to bivariate data to analyze competing or co-existent family of species

Reference ::