MULTIVARIATE
STATISTICAL
METHODS

Third Edition

Donald F. Morrison

The Wharton School
University of Pennsylvania

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto



CONTENTS

1

Preface to the Third Edition Xiii
Preface to the First Edition XV
Some Elementary Statistical Concepts 1

1.1 Introduction 1.2 Random Variables 1.3 Normal
Random Variables 1.4 Random Samples and Estimation

1.5 Tests of Hypotheses for the Parameters of Normal Populations
1.6 Testing the Equality of Several Means: The Analysis of
Variance

Matrix Algebra 36

2.1 Introduction 2.2 Some Decfinitions 2.3 Elementary
Operations with Matrices and Vectors 2.4 The Determinant of a
Square Matrix 2.5 The Inverse Matrix 2.6 The Rank of a
Matrix 2.7 Simultancous Lincar Equations 2.8 Orthogonal
Vectors and Matrices 2.9 Quadratic Forms 2.10 The
Characteristic Roots and Vectors of a Matrix 2.11 Partitioned
Matrices 2.12 Differentiation with Vectors and Matrices

2.13 Further Reading 2.14 Exercises



PREFACE TO THE
THIRD EDITION

In this edition I have added a number of new topics, made current the
literature survey and references, increased the number of chapter
exercises and examples using actual data, and included an Appendix of
seven multivariate data sets.

Among the new methods are treatments of the T? test for paircd
sets of response variables, a test for outlying observation vectors, plots
and measures for assessing the normality assumption, multivariate
analysis of covariance with two treatment groups, linear discrimination
for two populations with unequal covariance matrices, procrustes rotation
of factors, clustering rules for multivariate data, and multidimensional
scaling. Other extensions are mentioned briefly in the text, or left as
exercises at the end of chapters. Some topics in the previous editions
which have become less important with the rise of the computer have
been omitted.

My approach to multivariate inference has continued to be a
pragmatic one based on the union-intersection and generalized
likelihood-ratio principles. 1 have shown a preference for computationally
feasible techniques whose required sampling distributions are known and
tabulated. Limitations of space and my intention to produce a methods
rather than theoretical text have precluded any development of bayesian
inference. The inclusion of computer-based topics has been limited to
avoid dependence on one or two statistical packages, or obsolescence as
the packages or languages change. Instead, the computer aspects of the
methods will be addressed in the exercise solutions manual.

The number of exercises at the ends of Chapters 4 to 9 has been
doubled. The data sets in Appendix B include the classic Anderson—
Fisher iris dimensions, financial ratios of healthy and insolvent firms, and
samples of forest soil chemical levels. Smaller sets are given in the
examples and exercises. I am very grateful to a large number of
investigators for permitting the inclusion of their data.



XiV  PRLFACL 10 THE THIRD FDITION

The previous cditions of thc book have been the basis for a
one-semester course in multivariatc methods for the past twenty years at
the University of Pennsylvania. The third edition was written with that
schedule in mind, and in the hope that the literature references and live
data sets would extend the student’s horizons beyond the immediate
topics.

I am indebted to Malcolm R. Heyworth, Thomas Bolland, Kcith
Eberhardt, and Gerald Beck for their comments on the sccond cdition,
and to Christopher Bingham, University of Minnesota; Anirban
Das Gupta, Purduc University; John J. Pecterson, Syracuse University;
James R. Schwenke, Kansas Statc University; Eric P. Smith, Virginia
Polytechnic Institute and Statc University; V. Susarla, SUNY at
Binghamton; Ram C. Tiwari, University of North Carolina at Charlotte;
and J. S. Verducci, Ohio State University for their reviews of the pro-
posed third edition. Their corrections and suggestions have had a very
positive effect on the book. Of course, any remaining errors are the
author’s sole responsibility, and 1 would appreciate being informed of
them.

Finally, I must make a special acknowledgement to my family for
their encouragement and paticnce during this lengthy project, and in
particular, to our son Norman for his help in computer support.

Donald F. Morrison



PREFACE TO THE
FIRST EDITION

Multivariate statistical analysis is concerned with data collected on
scveral dimensions of the same individual. Such obsecrvations are
common in the social, behavioral, lifc, and medical scicnces: the record
of the prices of a commodity, the reaction times of a normal subject to
several different stimulus displays, the principal bodily dimensions of an
organism, or a sct of blood-chemistry values from the same patient are all
cxamples of multidimensional data. As in univariatc statistics, we shall
assume that a random sample of multicomponent observations has been
collected from different individuals or other independent sampling units.
However, thc common source of cach individual obscrvation will
gencrally lead to dependence or correlation among the dimensions, and it
is this fcaturc that distinguishes multivariate data and techniques from
their univariate prototypes.

This book was written to provide investigators in the life and
behavioral scicnces with an clementary source for multivariate techniques
which appeared to be especially useful for the design and analysis of their
cxperimental data. The book has also been organized to scrve as the text
for a course in multivariate methods at the advanced undergraduate or
graduate level in the sciences. The mathematical and statistical prerequi-
sites arc minimal: a semester coursc in clementary statistics with a survey
of the fundamental sampling distributions and an exposure to the calculus
for the partial differentiations and integrals required for occasional
maximizations and cxpectations should be sufficient. The review of the
essential univariate statistical concepts in the first chapter and a detailed
trcatment of matrix algebra in the sccond makc the book fairly
sclf-contained both as a reference and a text. The standard results on the
multinormal distribution, the estimation of its parameters, and corrcla-
tion analysis in Chapter 3 are esscntial background for the developments
in the remaining chapters.

XV
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The selection of techniques reflects my experiential biases and
preferences. Attention has been restricted to continuous observations
from multivariate normal populations: no mention has been made of the
newer distribution-free tests and the methods for analysis of many-way
categorical data tables. It was felt that the implications of the T? statistic
for repeated-measurements experiments justified a lengthy discussion of
tests and confidence intervals for mean vectors. The multivariate general
linear hypothesis and analysis of variance has been developed through
the Roy union-intersection principle for the natural ease with which
simultaneous confidence statements can be obtained. In my experience
the Hotelling principal-component technique has proved to be exceed-
ingly useful for data reduction, analysis of the latent structure of
multivariate systems, and descriptive purposes, and its use and properties
are developed at length. My approach to factor analysis has_been
statistical rather than psychometric, for 1 prefer to think of the initial
steps, at least, of a factor analysis as a problem in statistical estimation.

For the preparation of this methods text I wish to acknowledge a
considerable debt to those responsible for the theoretical development of
multivariate analysis: the fundamental contributions of T. W. Anderson,
Harold Hotelling, D. N. Lawley, and the late S. N. Roy are evident
throughout. In particular the frequent references to S. N. Roy’s
monograph Some Aspects of Multivariate Analysis are indicative of his
influence on the presentation. For the many derivations beyond the level
of this book the reader has usually been referred to T. W. Anderson’s
standard theoretical source An Introduction to Multivariate Statistical
Analysis.

It is a pleasure to acknowledge those who have assisted at different
stages in the preparation of this book. My thanks are due to Samuel W.
Greenhouse for initially encouraging me to undertake the project. I am
especially indebted to Karen D. Pettigrew and John J. Bartko for their
thoughtful reading of several chapters and for offering suggestions that
have improved the clarity of the presentation. George Schink carefully
checked the computations of the majority of the examples. However, the
ultimate responsibility for the naturc and accuracy of the contents must
of course rest with the author. Finally, I wish to express my gratitude to
the many investigators who graciously permitted the use of their original
and published data for the examples and exercises.

I am indebted to A. M. Mood and the McGraw-Hill Book
Company for permission to reproduce Table 1 from the first edition of
Introduction to the Theory of Statistics. Tables 2 and 4 have been
abridged from tables originally prepared by Catherine M. Thompson and
Maxine Merrington, and have been reproduced with the kind permission
of the editor of Biometrika, E. S. Pearson. I am also grateful to Professor
Pearson and to H. O. Hartley for kindly permitting the reproduction of
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Charts 1 to 8 from Biometrika. I am indebted to the literary executor of
the late Sir Ronald A. Fisher, F.R.S., Cambridge, to Dr. Frank Yates,
F.R.S., Rothamsted, and to Messrs. Oliver & Boyd Ltd., Edinburgh, for
permission to reprint Table 3 from their book Statistical Tables for
Biological, Agricultural, and Medical Research. Charts 9 to 16 have been
reproduced from the Annals of Mathematical Statistics with the kind
permission of D. L. Heck and the managing editor, P. L. Meyer.

The preparation of the parts of an earlier version of the text as class
notes was made possible through the enthusiastic cooperation of the
Foundation for Advanced Education in the Sciences, Inc., Bethesda, Md.
Support for the use of some chapters in mimeographed form and clerical
assistance was kindly provided by Dean Willis J. Winn through funds
from a grant to the Wharton School of Finance and Commerce by the
New York Life Insurance Co. I am also grateful for the secretarial
assistance furnished by the Department of Statistics and Operations
Research and the Lecture Note Fund of the University of Pennsylvania.

Donald F. Morrison



CHAPTER

1

SOME
ELEMENTARY
STATISTICAL
CONCEPTS

1.1 INTRODUCTION

In this chapter we shall summarize some important parts of univariate
statistical theory to which we shall frequently refer in our development of
multivariate methods. Certain concepts of statistical inference will be
introduced, and some essential univariate distributions will be described.
We shall assume that the reader has been exposed to the elements of
probability and random variables and has an acquaintance with the basic
univariate techniques as applied in some substantive discipline.

1.2 RANDOM VARIABLES

Every statistical analysis must be built upon a mathematical model linking
observable reality with the mechanism generating the observations. This
model should be a parsimonious description of nature: its functional form
should be simple, and the number of its parameters and components
should be a minimum. The model should be parametrized in such a way
that each parameter can be interpreted easily and identified with some
aspect of reality. The functional form should be sufficiently tractable to
permit the sort of mathematical manipulations required for the estima-
tion of its parameters and other inferences about its nature.



2 MULTIVARIATL STATISTICAL MEETHODS

Mathematical models may be divided into three general classes:
(1) purely deterministic, (2) static, or deterministic with simple random
components, and (3) stochastic. Any obscrvation from a deterministic
model is strictly a function of its parameters and such variables as time,
space, or inputs of energy or a stimulus. Newtonian physics states that
the distance traveled by a falling object is directly related to the squared
time of fall, and if atmospheric turbulence, observer crror, and other
transient cffects can be ignored, the displacement can be calculated
exactly for a given time and gravitational constant. In the second kind of
model each observation is a function of a strictly deterministic component
and a random term ascribable to measurement crror or sampling
variation in either the observed response or the input variables. The
random components are assumed to be independent of one another for
different obscrvations. The models we shall encounter in the sequel will
be mainly of this class, with the further restriction that the random
component will merely be added to the deterministic part. Stochastic
models arc constructed from fundamental random cvents or components
to explain dynamic or evolutionary phenomena: they range in complexity
from the case of a sequence of Bernoulli trials as the model for a
coin-tossing experiment to the birth-and-death process describing the
size of a biological population. Most stochastic models allow for a
“memory” cffect, so that each obscrved response is dependent to some
degree upon its predecessors in time or neighbors in space. We shall
touch only tangentially on this kind of model.

Now let us define more precisely what is meant by the notions of
random variation or the random components in the second and third
kinds of models. We shall begin by defining a discrete random variable,
or one which can assume only a countable number of values. Suppose
that somc experiment can result in exactly one of k outcomes
E,, ..., E. These outcomes are mutually exclusive, in the sense that the
occurrence of onc event precludes that of any other. To cvery event we
assign some number p, between zero and one called the probability P(E;)
of that event. p, is the probability that in a single trial of the experiment
the outcome E, will occur. Within the framework of our experiment we
assign a probability of zero to impossible events and a probability of unity
to any event which must happen with certainty. Then, by the mutual
exclusiveness of the events, in a single trial

P(EIUE/')=1)I +p]

where the intersection symbol N denotes the event “E, and E;” and the
union symbol U indicates the event “E, and/or E,.” By the additive
property of the probabilities of mutually exclusive outcomes the total
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probability of the sct of cvents is
PEU---UE)=pi+ -+
=1

Now assign the numerical value x, to thc ith outcome, where for
convenience the outcomes have been placed in ascending order according
to their x, values. The discrete random variable X is defined as that
quantity which takes on the value x, with probability p, at cach trial of the
cxperiment. As an example, if the experiment consists of the toss of a
coin, the score of one might be assigned to the outcome heads, while
zero might be the tails scorc. Then x; =0, x, =1, and p, =1 —p,
p> = p, say. This random variable would be described by its probability
function f(x,) specifying the probabilities with which X assumes the
values () and I:

X; Jx)

0 1-p

1 2
We note that the total probability is unity and that we have implicitly
assigned a probability of zero to such irrelevant events as the coin’s
landing on edge or rolling out of sight. We have chosen not to assign a
numcrical value to the single paramecter p; this reflects the intrinsic
qualities of the coin as well as the manner in which it is tossed. It is only
for convenience or for lack of knowledge of the coin’s propertics that p is
ever taken as 1.

The random variables we shall encounter in the sequel will take on
values over some continuous region rather than a set of countable cvents
and will be called continuous random variables or continuous variates.
Both terms will be used synonymously. The continuous random variable
X defined on the domain of real numbers is characterized by its
distribution function
() F(x) = P(X =x) —e < x <%

giving the probability that X is less than or equal to some valuc x of its
domain. Since X is continuous, P(X = x) = 0. If F(x) is an absolutely
continuous function, the continuous analog of the discrete probability
function is the density function

@) fe) = 20

dx

Conversely, by the absolute-continuity property,

© FO) = [ ) du
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and from this integral definition follows the equivalent term cumulative
distribution function for F(x). Note that these definitions are perfectly
general: if the random variable is defined only on some interval of the
real line, outside that interval f(x) is defined to be zero, and to the left
and right of the interval F(x) is zero and one, respectively. When
weighted in proportion to their density function f(x), the values on the
interval are said to constitute the population or universe of the random
variable X.

The properties of a random variable are commonly visualized in
terms of its density function, and it is to that representation that such
names as rectangular or exponential refer. Figure 1.1 illustrates the
densities of three familiar variates. The distribution functions of the
rectangular and exponential variates follow by straightforward integra-
tions; the normal distribution function can be evaluated only by
numerical integration. ’

The functions of Fig. 1.1 involve parameters that determine their
positions and shapes. 3(a + b) of the rectangular density and u of the
normal function are location parameters, for their values specify
the positions of the densities on the real axis. The range b — a of the
rectangular variate, the single exponential parameter 8, and o of the
normal density are scale parameters, for changes in their values are
equivalent to changes in the units of the variates. Larger values of these
parameters imply a greater spread of the density function, and hence
more variation in the random variable. In general, if the density f(x;a,8)

can be written as
X —
5%
B

it follows that « is a location parameter and § is a scalc parameter. We
note that all density functions of that form contain the factor 1/8
associated with the differential element dx.

Random variables and their densities can be characterized in
another way. Let us think of the density f(x) of the variate X as the
function measuring the density of a continuous rod occupying the position
of the x axis. The kth moment of the rod about the origin of its axis is

@ pi= [ w0 ds

The first moment is the mean, expectation, or expected value

%

) E(X) = f xf(x) dx

—x

of the random variable and corresponds to the physical notion of the



SOME ELEMENTARY STATISTICAL CONCEPTS §

f(x) 0

x<a
Fo) =7 asz<h
0 b<x
x
a b
(a) Rectangular
f(x)
70 ()
sexpl—) 0<
fay=48 "\B) F
0 x<0
X

(b) Exponential

f(x)

— 2
- o 452

M

(c) Normal

FIGURE 1.1
Density functions.

horizontal center of gravity of the rod. The symbol E denotes the
operation of computing the expected value, and is called the expectation
operator. If ¢ and k are nonrandom quantities, these useful properties of
expectations hold:

(6a) E(c) =c¢
(6b) E(cX) = cE(X)
(6¢) E(k + ¢X) = k + cE(X)
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As an example, consider the rectangular density of Fig. 1.1. Then

1 b
E(X)=E_—af xdx

b

1 1

=b-—a2x
~ 46 +a)

As we might have reasoned from intuition, the mean value is the
midpoint of the limits of the density, and if we wished, we might
reparametrize the density function in terms of the mean as location
parameter and the range w = b — a as the scale parameter. The new
density is

2

a

0 —x<x<E(WX)—iw

h(x) = E(X) — w = x = E(X) + iw

0 EX)+iw<x<wx

Its functional form is unchanged, but its two parameters have different
interpretations.

The variance of a random variable is the cxpected value of the
squared deviations about its mean, or its second central moment. We shall
denote the variance of X as

var (X)
or occasionally where space is limited as
o2
By definition
1) var (X) = | [x = EQOPf(x) dx

- [ ax - BOP
- EOO) - [BQOF

and the symbol var applicd to any random variable will denote the
operation of computing its variance. If ¢ is a constant, the variance has
these properties:

(8a) var(¢) = 0
(8b) var (cX) = ¢?var (X)
(8¢) var (X + ¢) = var (X)
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The first merely states that a nonrandom variable has zero variance. The
squared-units naturc of the variance is rcflected in the second property,
for a change of scale of X by c units changes the variance by ¢?. The third
result follows immediately from the dcfinition (7) and states that the
variance is unaffected by changes in the origin of the X axis. It can be
shown that the variances of thc rectangular, exponential, and normal
densities of Fig. 1.1 arec (b — a)?, B?, and o?, respectively.

Frequently it is desirable to have a measurc of dispersion that is in
the original units of the variate. The standard deviation of X is the
positive square root of the variance

o, = +Vvar (X)

We notc that the natural parameters of the normal density of Fig. 1.1c
are the mean and standard deviation.

Independent variates. Earlier in the chapter wec referred loosely to
“independent” random variables. Now we shall give a precise definition
of independence. As we shall see in Chap. 3, it is possible to extend the
notions of distribution and density functions to scveral variatcs, and if we
write the joint distribution function of X, ..., X, as

) F(xi, ..., x,) = fj:---f:f(ul,...,u,,)du,---du,,

where f(u,...,u,) is the joint density, the variates are said to be
independent if and only if
(10) F(xl» RN} xp = [:I(xl) e F;,(X,,)

where F(x,) is the distribution function of the single variate X,.
Alternatively, independence holds if and only if the factorization

(“) f(xl»'--’xp)=ﬁ(xl)"'f;)(xr>)

of the joint density into the product of the individual densitics f(x,)
holds.

The product moment
(12) E(X’I\'I..-XI’;I)) = f ...f x’]‘l...xllﬁlzf(xl"'_,x’))dxl...dxp

of the variates X, ..., X, factors into the product
E(le‘) - E(Xf,”)

of the individual k,th moments if the variates are independent. It follows
from this result that the variance of a sum of independent random
variables is merely the sum of the individual variances:

(13) var (X, + --- + X,) = var (X,) + - -+ + var (X))
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Sources on probability and random variables. Certain of the large
number of basic texts on probability and random variables seem
particularly relevant to the purposes of this introductory chapter. A very
elementary treatment of probability as applied in biology has been
written by Mosimann (1968), while another lucid introductory text is that
of Goldberg (1960). Parzen’s book (1960) is an excellent survey at a more
intermediate level, while the two volumes of Feller (1968, 1971) are the
standard source for a comprehensive study of discrete and continuous
probability.

1.3 NORMAL RANDOM VARIABLES

In this section we shall describe some properties of a single normal
random variable in preparation for the subsequent results and techniques
that will be based upon the multivariate normal distribution. Recall that
the normal density function is

(1) fx) =\/21—naexp[—%(x ;M)Z] —o < x <o

and that its distribution function is given by the integral

o romghf e[
1 (x—u)o

=), o (—u?/2) du

- o(5*)
o

where ®(z) denotes the standard or unit normal distribution function
with zero mean and variance one. We shall denote the distribution of a
normal variate by the Wilks symbol N(u,0?); standardization of the
variate will of course be indicated by N(0,1).

Values of ®(z) are contained in Table 1 of the Appendix.
Conversely, the upper 100a percentage point of the unit normal
distribution is defined as that value z, such that

3) a=P(Z>z)
=1 - ®(z,)

These connections between percentage points and their probabilities are
illustrated in Fig. 1.2 for the normal density and distribution functions.
Now let us offer one justification for the reliance of much of
statistical methodology upon the assumption of a normal population. This
is the central-limit theorem, which states that variates which are sums of
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f(2)

d (2)

-2 -1 0 1z, 2
FIGURE 1.2

many independent and identically distributed effects tend to be normally
distributed as the number of effects becomes large. More formally,

If the random variables X, ..., Xy are independently distributed according to
some common distribution function with mean E(X,) = u and finite variance
var (X,) = 0°, then as the number of variates N increases without bound, the
variate

converges in distribution to a normal variate with mean zero and variance one.

A proof of this version of the central-limit theorem can be found in most
texts on probability and mathematical statistics. Feller (1968) has treated
other more general theorems which do not assume identical distributions
of the X;. One immediate consequence of the theorem is that the
function VN (X — p) of the sample mean

Xy + -+ Xp)

of a sequence of independent random variables whose common distribu-
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tion has mean p and variance ¢ tends to be distributed as a N(0,0?)
variate as N becomcs large.
We shall invoke one important property of the normal distribution

continually in the sequel. If X, ..., X, arc independent variates with
distributions N(u;,03), . .., N(4,,0?%), the linear compound

@) Y=aX +- - +aX,

is also normally distributed with mean Z a,u; and variance Z a’o?. We

shall sec in Chap. 3 that this result can be extendcd to a Imear compound
of dependent normal variates.

The chi-squared distribution. Many distributions can be derived from
different transformations upon a set of normal variates. One of the most
important is that of the chi-squared variate. If the variates X,, ..., X,
are indepcndently and normally distributed with mean zero and unit
variance, then

©) X=X+ + X
has the density function

—n/2
I(n/2)

and is said to be a chi-squared variate with n degrees of freedom. Since
we started with standard normal variates, the density contains no scale or
location parameters but only the single paramcter n. More generally, if
the X, arc independently distributed as N(p,, 07) variates, the quantity

Z .u': )2

has the chi-squared distribution with n degrees of freedom, for cach
squared term in the sum has becn standardized by its mean and variance.

Table 2 of thc Appendix contains percentage points of the
chi-squared distribution. We shall writc the 100« percentage point of the
chi-squared distribution with n degrees of freedom as

() Xeem
where of course @ = P(x* > x2..)-

6) &3 = )" Pexp(=x*2)  O0=p <=

The ¢ distribution. The ¢ random variable with n degrees of freedom is
defined as the quotient

z

Vixiin

8) t =
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of a standard normal variate z and the square root of an independent
chi-squared variate divided by its n degrees of freedom. ¢ is a dimension-
less quantity, and its density function.

IM(n + 1)/2] 1 _
VanT(n/2) (1 + £/n)"*D7?
depends upon the single degrees of freedom parameter n. Percentage

points of the distribution of ¢ are given in Table 3 of the Appendix. We
shall customarily write the upper 100a percentage point as ¢,,., or

(10) o= P(t>t,,)

0 <t <®

©) fo) =

The F distribution. The ratio
_ xiim
x5/n

of independcnt chi-squared variates divided by their respective degrees of
freedom has the F, or variance-ratio, distribution with density function

{ —_ M m " (m—2)/2 ﬂ ~(m+my2 - o
12) JF) = FoniDrni2) (n) F (1 + o F) 0<F<

We shall denote the 100« upper percentage point of the F distribution
with m, n degrecs of freedom by F,.,, ,:

(13) « = P(F>F,,,

It follows from the definition (11) of the F variate that the lower
percentage points can be obtained from the reciprocals of the upper
values with reversed degrees of freedom:

1

(11)

Fi_wmn=
(14) l1—a;m,n F

an,m

Table 4 of the Appendix gives upper percentage points of thc F
distribution.

Derivations and mathematical properties of these standard distribu-
tions can be found in many current sources, e.g., Hogg and Craig (1959),
Stuart and Ord (1987), or Mood et al. (1974). Extensive tables of the
distributions and their percentage points have been compiled by Pearson
and Hartley (1966), together with illustrations of their use.

1.4 RANDOM SAMPLES AND
ESTIMATION

Heretofore we have discussed random variables only in terms of the
abstract populations specified by their distribution or density functions.



12 MULTIVARIATE STATISTICAL METHODS

Occasionally these functions are known for some random phenomenon,
and it is possible to describe the process directly from its mathematical
model. More usually it is the case that neither the mathematical form of
the distribution nor its parameters are known, and it is necessary to go
beyond the realm of probability theory to the domain of statistical
inference to obtain estimates of F(x) or its parameters from finite samples
of values of the random variable. In this section we shall consider one
heuristic approach which leads to estimates with some desirable
properties.

Let us begin by supposing that the values or “realizations” of the
continuous random variable X can be observed and recorded.This is not
such an obvious requirement, for many phenomena of interest in the
physical or life sciences cannot be observed below threshold levels
established by the organism or the measuring equipment, and above
other levels the equipment may be saturated or paralyzed by the
frequency or intensity of the responses. It is also clear that even if the
values of X formed a continuum, the limitations of any recording or
measuring device would yield discrete observations. Nevertheless, we
shall treat such data as blood pressure in millimeters of mercury,
percentage of a certain content of a projective test, and reaction time in
milliseconds as observations from continuous populations. We shall
assume that the mathematical form of the density function
f(x;0y,...,6;) of X is known from substantive considerations, prior
experience, or other good fortune, although the values of the parameters
6; are unknown.

Next let us define the parameter space of a density. Suppose that
the density depends upon the single real parameter 6, as in the case of
the descending exponential or the normal distribution with mean g and
known unit variance. Then the parameter space of 0 is that portion of
the real line which contains all admissible values of 6. For the descending
exponential the parameter space would be the positive half of the real
line, for negative parameters would destroy the density property, and a
parameter of zero would lead to the trivial “‘sure-number’ distribution.
For the normal distribution with known variance the space would be the
entire real line. Similarly, the parameter space for the k-parameter
density would be some region of k-dimensional euclidean space. For
example, that of the normal distribution is the upper half of the (u,d?)
plane shown in Fig. 1.3.

Finally we must define the sampling or experimental units on which
the values of X will be observed. The available units must constitute a
homogeneous collection with respect to all characteristics which might
affect the values of the variate. If the random variable is the blood level
of free fatty acid (FFA) in normal adolescent American females, the
available sampling units should not include female subjects with
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a2
FIGURE 1.3
z A/ 4 77 u  Parameter space for the normal distri-
0 bution.

metabolic diseases, adolescent males, or prepubertal children of either
sex. The sampling units must be independent of one another and must
not possess common qualities which might lead to dependent values of
X. Clearly, a sequence of 10 daily FFA determinations in a single
subject would not yield the same information about the biological
population represented by that person as 10 single determinations of FFA
obtained from as many unrclated and independent individuals. We assure
such independence by drawing the sampling units randomly from the
available collection of units. The investigator who gathers data from the
nearest convenient source of subjects, be it students in Psychology 1 or a
group of paid volunteers, must risk whatever biases these nonrandom and
unrepresentative samples may contain.

Now suppose that N units have been selected at random. Their
observed values of X will be denoted by x,,..., xy. We shall cus-
tomarily distinguish such observations from the running value x of X by
the presence of subscripts. Our initial problem will be to estimate thc
parameters 6, by some suitable function of the observations. Such
estimates will be denoted by the parameter with a hat, or §,. We shall
call these quantities point estimates, for they are unequivocal single
values of 8, as opposed to the interval estimates of the next section. But
how should the function of the observations be chosen? Should wc
merely relate the parameters to the first few moments of the distribution
and then equate the sample moments to those of the population? Would
estimates using only extreme or middle values of the observations serve
as well as those which depended upon all the data? Intuition might lecad
us to many other estimators, or classes of functions of the observations,
and we should like to have some critiera for choosing among them. For
example, we might ask whether the cstimator possesses any of these
desirable propertics:

1. Unbiasedness. The expected value of the estimator should be its
parameter, or E(6) = 6, for all 6.

2. Consistency. As the sample size increascs without bound, § should
converge in probability to 6.
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3. Minimum variance. Frequently the estimate is chosen as that one
which has smallest variance among all unbiased estimators. If a
minimum-variance estimator docs not exist for all sample sizes, it is
possible to choose among competing estimators by the ratios of their
asymptotic variances. An cstimator with that smallest relative variance
is said to be efficient.

4. Sufficiency. An estimator @ is said to be sufficient if it contains all the
information in the observations for the estimation of 6. That is,
knowledge of the values x, . . ., x5 will provide no more information
than that contained in . Stated mathematically, the conditional
distribution of the x, for a fixed value of 6 does not depend on the
unknown parameter 6.

In a particular application each of these criteria must be weighed with
regard to the cost of sample observations, the speed with which the data
must be processed, and the conscquences of small biases or larger
variances on the investigator’s view of nature or the policy maker’s
actions. As we shall see, it is sometimes possible to remove bias by a
slight scaling or other redefinition of the estimate, while thc common
estimates of the various correlation measures to be discussed in Chap. 3
are computed in daily profusion with no concern for their biased nature.
In small samples the loss of efficiency in some short-cut estimators may
be offset by the ease with which they are computed.

Now let us consider a means for generating estimates known as the
method of maximum likelihood. While that procedure is a heuristic one,
or one¢ appealing more to intuition than to the real end of producing
estimates with “‘good” properties, it can be shown that its estimates often
have a number of desirable qualities. We begin by defining the likelihood
of the random sample of observations as the joint density of the variates
of the sampling units evaluated at x, ..., xu:

(1) L(Hll"'rek): lj]]f(XI; 0lx-~-10k)

The likelihood function is a relative measurc of the likelihood of the
particular sample x,, ..., x5. The maximum-likelihood mcthod of es-
timation directs that the estimates of the 8, be chosen so as to maximize
the function (1) for a given sample. If the likelihood has a relative
maximum, this can be accomplished by straightforward differentiation
and solution of certain equations. The vanishing of the derivatives is of
course only a necessary condition for a relative maximum, and the
sufficient conditions given by the second-order partial derivatives should
also be vcrified (see, for example, Hancock, 1960, Chap. 5). Absolute
maxima can frequently be determined by direct inspection of the
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likelihood. However, since the valucs of the variables which maximize a
function also maximize monotonic functions of it, and since the majority
of likelihoods encountered in statistical inference contain exponential
terms, it is usually more convenient to work with the natural logarithm
of the likelihood

) I6,,...,60)=InL(8,, ..., 0

Then, if the likelihood has a rclative maximum, the associated estimates
of the 6; can be found by solving the system of k simultaneous equations

G
30

J

3) =0 j=1...,k

for the estimates
(4) él yoe e (}k

If the equations possess multiple roots, it will be necessary to choose the
solution leading to the greatest likelihood.

Perhaps two simple examples will help to describe the steps in
finding maximum-likelihood estimators.

Example 1.1. Let us determine the maximum-likelihood estimates of a and
b in the rectangular density defined in Sec. 1.2. The likelihood function of

the sample x,, ..., xy 18
L(a, b) = —
a,b)=——
(b —a)"
Clearly a cannot exceed the smallest observation, and b cannot be less than
the largest. If we denote the ordered observations by x(;, < - - - = x(y),
a=xp=--Sxm=b

The likelihood will be at its greatest value when b — g is as small as
possible consistent with the second set of inequalities, and the estimates
minimizing that range are

a = x“) b = X(N)

Example 1.2. The likelihood of the sample x,, ..., xy of N independent
normal random variables is

SN SERS B B DA
L(M,O ) - (2n)N.'2(02)N’2 CXP[ 202:-—2-1 (X, M) ]

and its logarithm is
N N 1 ,
I(p,0%) = —7In@27) - ZIn 0* - 7o I(x. - uy

1
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The partial derivatives with respect to u and o” are

dl(u, 0 1 &
T o 2} (x: — 1)
o) N 1 X
3 ~  20° 20",_2, & = w)

If we equate these to zero and cancel any extraneous factors, the
simultaneous equations (3) are

N

>x,— Nu=0

=1
N
2 (x, —uy —No>=0
-1

Solve the first for the estimate of u, and use that value in the sccond to
obtain the solution for the estimate of o

M=z
=

i~
]
==

Il
=

>
N
Il
|
Mz
~—~~
Rl
|
=
N
N

These estimates are intuitively plausible, for the population mean is merely
cstimated by the sample mean X, and the estimate of the variance is the
average squared deviation from the sample mean.

Let us determine whether ji and 6° are unbiased estimates. Replace
the vbservations by the random variables X, and take expectations:

B) = 3 2 B(X)

1 &
- N:—l”

The sample mean is an unbiased estimate of u. The expectation of &7
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involves more lengthy computations:

e - e[S - 42|

N

= %[NE(Xz) - —E(i S X,X,)]

1=1y=1

1 2 o _ 1

}—V—[NE(X ) — E(X?) — NE’Z E(X,X,)]

= v = DEGD) - SNV - DIEXOP]
 N-1,

& is not an unbiased estimate of the variance. However, if we replace the
divisor N in the original formula by N — 1, the bias will be eliminated and
the usual sample-variance expression

- N 1 2
— 2 -— —
v 2 8]
can be obtained.

Maximum-likelihood estimates are thus not necessarily unbiased,
although it is sometimes possible to remove the bias through multiplica-
tion by an appropriate factor.

1.5 TESTS OF HYPOTHESES FOR THE
PARAMETERS OF NORMAL
POPULATIONS

Statistical tests of hypotheses. Statistical inference can be divided into
two general areas. The first is concerned with the estimation of
distribution functions, thc parameters of such functions when their
mathematical form is specified, or the parameters of models built around
random variables. The second part addresses itself to the problem of
testing the validity of hypotheses about distribution functions and their
parameters or the parameters or components of mathematical models. In
the preceding section we touched briefly on one approach to estimation
through the maximum-likelihood principle. Now we shall summarize
some essentials of hypothesis testing, and subsequently we shall see how
these tests can be inverted to provide interval estimates for parameters.
Perhaps a simple example will help to motivate the testing problem
in terms of regions in the parameter space. It is known from extensive
experience that the grade point indices (GPl) of first-year students at a
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small liberal arts college have tended to be normally distributed with
mean 2.43 and variance 0.04. However, in the selection of the present
first-year class sevcral admission standards were raised, and it is
hypothesized that the mcan GPI of the population out of which those
students were drawn will be higher and the variance in turn will be a little
smaller. We may summarize thesc statements about the population
parameters in this fashion:

Original hypothesis: p =243 o> =0.04
Alternative hypothesis:  u > 2.43 0% < (.04

We shall designate the original description of the GPI population as the
null hypothesis; this will be conventionally denoted by H,,. The alternative
hypothesis will be denoted by H,. The assumption of normality is
common to both hypotheses and nced not be mentioned in their
statements. H, refers to the single point (2.43, 0.04) in the paramcter
space, and thercfore is called a simple hypothesis. The altcrnative
designates the shaded region of Fig. 1.4, and since that sct contains more
than one point, H, is called a composite hypothesis. An important class of
composite hypotheses is formed by those statements in which the values
of one or more parameters arc completely unknown. For example, if the
random variable X is normally distributed with unknown variance, the
hypotheses

Hy: p = po
and
Hy: p=p > p,
on thc mean alone specify vertical lines in the space of Fig. 1.3
terminating at u = p, and u = u, on the horizontal axis. Statistical tests
of such hypotheses would have to be constructed to be unaffected by the

unknown true value of o°.
It has been the purpose of much of the theory of statistical inference

a2

2

0 243
FIGURE 14
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to develop tests of the validity of these hypotheses based upon sample
observations. We shall prefer to consider testing only in terms of the
classical, or Neyman-Pearson, approach to two-decision rules, for the
subscquent multivariate tests will be of the classical sort. The rcader is
referred to Lindgren (1962) and Mood et al. (1974) for dctailed
discussions and examples of test construction; considerably more ad-
vanced trcatments with proofs of many of the thcorems can be found in
Kendall and Stuart (1979), Lehmann (1987), and Wilks (1962).

For the gencral casc let X be a continuous random variable with the
real numbers as its admissible values. The density function of X depends
upon the parameters 0y, ..., 8,. The sample space W of all possiblc
outcomes of N observations on X is then N-dimensional euclidean space.
A particular sample of observations will be written in vector form as
[x1, - .., xx] and will denote a point in the sample space. Let @, and w,
be any two disjoint (that is, having no points in common) regions of the
parametcr space Q. We shall set up these hypotheses about the
parameters of the distribution of X:

Hy: [0,, ..., 6]} is contained in w,

1 . . .

M H,: [6,,..., 6] is containcd in w,

On the basis of the sample observations we wish to decide in some
“optimal” fashion which hypothesis is tenable. Since certain scts of
observations would lead us to favor H, over H; and other data would
support the opposite preference, our decision rule should have this form:

5 Accept H,y if [x, ..., xy] fallsin W — w
@ Accept H, if [x,, ..., xy] falls in w

where w is a specified part of the sample space called the critical region or
rejection region for H,. If the true state of naturc as described by the
various parameters is specified by either H, or H,, the decision maker
can incur two kinds of error in the application of the dccision rule. An
error of the first kind, or a Type I error, consists of declaring H, the true
state when in fact H, is true. An error of the second kind, or a Type Il
error, is made upon the acceptance of H,, as truc when H, describes the
correct statc of nature. The correctness of the actions may be sum-
marized in this two-way table:

State of nature

Action H, true H, true
Accept truth of H, Correct Type II crror
Accept truth of H, Type I error Correct

The probabilities of the Type 1 and II errors provide measures of the
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efficacy of the decision rule. The probability a of the Type I crror is the
probability that the sample observations fall in the critical region w when
H, is true, or

3) a = P([x,, ..., xy] € w|H, truc)

where the symbol € denotecs membership in the set w and the vertical
bar indicates that the probability statement is conditional upon the truth
of the null hypothesis. « is called the size of the test. The probability of
the Type II error is

4) B=P(x,,...,xy] € W —w|H, truc)

The complement 1 — 8 of the second crror probability is called the
power of the test or decision rule. If the power is computed for a
continuum of parameter values, the resulting probabilitics constitute the
power function.

If the sample size is fixed, changes in the form of the critical region
that reduce « will also increase B, and conversely, minimization of 8 will
be at the expense of larger a. The classical approach to hypothesis testing
calls for a test of fixed size & whose rejection region is chosen so as to
minimize B or, equivalently, to maximize the power. If both hypotheses
are simple, i.e., of the form

0, = 0, 6, =0,
(5) H(): ....... H|: _______
0x = 6o 6, = 0,

the Neyman-Pearson lemma states that the most powerful test of size «
will have a critical region defined by this decision rule:

fx13040, ..., Oko) -+ - fxn; O1p, - - ., Oro)
>c

6) Accept H,if A =
) Pt Ho FEG O 8 f(ns vt - - s Be1)

and
Accept Hif A < ¢
where ¢ is a constant chosen such that
P(A<c|H) =«

The lemma defines the critical region as that set of points in the sample
space for which the likelihood ratio A is less than ¢. The proof of the
lemma is due to Neyman and Pearson (1933); numerous applications to
the derivation of standard tests may be found in the text of Mood et al.
(1974). A more general development of two-decision rules can bc
obtained by assigning monetary losses or other penalties to the Type 1
and Type 11 errors.

Note that the Neyman-Pearson lemma requires that both hypoth-
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eses arc simple, i.e., that the regions w, and w, of the parameter space
are points. Tests of composite hypotheses involving several parameters
can be constructed by the powerful generalized likelihood-ratio criterion

L(o
@ - 55
where
8) L(®) = f(x1; 010, - - - » Bko) - - - F(xn; B0y -+ -, Bro)
is the likelihood function maximized under the assumption that
Hy: [60y,...,60,] € w
is true, and L(Q) is the maximized likelihood for 6,, . . ., 6, permitted to

take on values throughout the entire parameter space Q. We accept H,, if
A>c
and otherwise accept the alternative
Hy: [6),...,0,]e Q- w

The constant ¢ is chosen so that P(A < ¢ | H, true) = a. When, as in the
case of composite hypotheses, the true size of the test is actually less than
or equal to &, we shall say that the test is of level a. It can be shown that
if H, is true and regularity conditions hold,

) x°=-2Ink

tends as the sample size increases to be distributed according to the
chi-squared distribution with degrees of freedom equal to the difference
of the dimensionalities of the parameter space 2 and the null hypothesis
subspace w or, equivalently, to the number of parameters determined by
H,. The generalized likelihood-ratio criterion is also due to Neyman and
Pearson (1928); examples of its use have been given by Mood et al.
(1974), while extensive discussions of its properties have bcen given by
Kendall and Stuart (1979) and Wilks (1962).

Tests on the mean of a normal variate with known variance. Let
X1, ..., Xy be a sample of indef Jlent observations on thc random
variable with distribution N(u,0%). e variance o° is known, although u
is not. On the basis of the samp e observations we wish to test the
hypothesis

(10) Hy: p = po

that the population mean has some specified value p, against the
alternative

(11) Hy: p=p>p
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that the mean is some larger value u,. By the Neyman-Pearson lemma
the most powerful test of size « is based upon the test statistic

(12) y = (x - M())\/N
g

whose critical region is
(13) z> 2z,

where z, is the upper 100« percentage point of the unit normal
distribution. In terms of the mean of the original observations we shouid
reject H, in favor of H, if

_ o
(14) X > M(] + v—ﬁzn,
and otherwise accept the null hypothesis. If the alternative hypbthesis

had been

(15) Hy:op=p < po
the same test statistic would be employed, although the critical region
would be

(16) z < —2z,

or, equivalently,
_ o
(17) X <l — VN e

The preceding tests and alternative hypotheses H,, H| are called
one-sided, for the direction of the change from u, to u, is clearly
indicated. When it is possible to make such predictions from subject-
matter considerations or prior investigations, the power of the tests will
be appreciably larger than that of the two-sided test with the alternative
hypothcesis

(18) HYy: p=pu # po

that allows for cither larger or smaller alternative values of thc mecan.
The test statistic is still (12), but the rejection region for a test of size « is

(19) 12| > zar
where z,, is the upper S50« percentage point of the unit normal
distribution. Equivalently, we rcject H, if either

(20) X > py + lzmz or x < py— iZn/z
VN VN

holds.
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Power curves for tests against thc three alternatives can be
constructed from tables of the normal distribution, and since they can be
found in most texts on statistical theory and methods, they will not be
reproduced here. In practice one usually selects a suitable value of & and
one or more tolerable f probabilities. The sample size N is then chosen
to achieve the minimum f that is consistent with budgetary limitations or
the size of laboratory or clinical facilities.

Finally, we note that the normal density function is a member of the
exponential family cited earlier in this section, and thus tests of such
composite hypotheses as

Hy w=py H: p>pg
or
Hy: p<py Hi: p>pg

arc uniformly most powerful.

Tests on means when the variance is unkmown. In most scientific
applications it is rare indecd that the population variancc is known, and
an important advance in statistical inference was achicved when W. S.
Gosset (publishing under the pseudonym “Student”) obtained the
distribution of the test statistic for composite hypotheses on the mean of
a normal distribution with unknown variance. The generalized likelihood-
ratio criterion for testing the hypothesis (10) against the alternative (11)
on the basis of N independent observations x,, . .., x, with mean ¥ and
variance s* leads to the test statistic

1) (= * - !‘u)\/N
S

If H, is true, t has the Student-Fisher ¢ distribution with N — 1 degrees of
freedom, and we reject the null hypothesis for a test of size « if
(22) t > tyn—y

where t,.n_; is the upper 100« pcrcentage point of the ¢ distribution
defined in the preceding section. Similarly, if the alternative hypothesis
had been (15), the rejection region would be defined by

(23) < —tan—

and for the two-sided alternative (18) the null hypothesis would be
rejected if

(24) It > tann—t

The power of tests involving the ¢ statistic can be computed from the first
of the Pearson-Hartley charts of Appendix A with degrees of freedom
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v, = 1 and v, = N — 1 and noncentrality parameter

(25) ¢ = | ;l‘0| (g)m

Then a sample size can be determined which will guarantee a power
probability above a specified minimum for fixed a.

Now consider that two random samples have been independently
drawn from normal populations with a common variance ¢ but possibly
different means p, and u,. Let the observations of thc samples be
Xi,--.s XN, Yis--., YN, The generalized likelihood-ratio criterion for
the test of the hypothesis

(26) Hy: py = u2
of equal population means against the alternative
(27) Hy: oy >,
leads to the test statistic
(28) t = = jNZ— y
D -0+ YO —y‘)2<, oy
N, + N, -2 N N,
For a test of size & we reject H, in favor of H, if
(29) E > LN+ N2

The rejection regions for the other alternative hypotheses Hi:  u, < u»
and HY: u, # u, are of course similar to (23) and (24) of the single-
sample tests.

Confidence intervals for means. The investigator who has carried out a
costly or intricate experiment is rarely satisfied to hear that the observa-
tions have merely rejected some hypothesis. If the findings show that the
new drug or treatment has some ‘‘significant” effect beyond that of the
placcbo or previous standard, the experimenter and the scientific
community would prefer to know not only the best cstimate of the
magnitude of this effect but also some range of reasonable values of the
effect parameter. Such statements of possible values are called confidence
intervals or, in contrast with the unequivocal point estimates of Sec. 1.4,
interval estimates.

Supposc that a random sample of N observations has been drawn
from some population with continuous density f(x; 6). The 100(1 — a)
percent confidence interval for 6 is that set of values

(30) HL=0=t
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with limits computed from the percentage points of the distribution
function of the estimate 8 of 8 so that

(31) Pii=0=t)=1-a«a

« is usually taken as 0.05 or some smaller probability. 1 — « is called the
confidence coefficient of the interval. It is essential that the probability
statement be read as “‘the probability that the interval with end points
t),t, covers 6 is 1 — &,” for in our usage the parameter is hardly a
random variable. We also note that an infinity of confidence intervals
exists which satisfy (31); in most subsequent cases ¢, and t, will be
chosen so that the length ¢, — r, of the interval is shortest.

Confidence intervals for the mean of a normal population or the
difference of the means of two normal populations can be found from the
preceding tests of hypotheses. If N independent observations with mean &
have been collected on the N(u,o0?) variate with known variance, the
value of u, for which Hy: pu = y, is just rejected in favor of

Hy: op=py > p
by the test of size «, is given by

_ o
o =Xx — Wza,

Similarly, the smallest value of u, for which the size o — a, test of H,
against Hi: p = pu; < p, is rejected is

_ o
Mo =x + _\/_ﬁza—m

24y Za-q, are of course the upper 100a,, 100(ov — &,) percentage points

of the unit normal distribution. The 100(1 — &) percent confidence

interval for p is thus

o o

—_— =u=s=x
X \/Nz“' u )c+\/]le,,_¢,{l

and its length is (a/\/ﬁ)(z,,,1 + Z4_4,). But it can be shown that minimum
length is achieved when z,, = z,_,, or if @, = {a. The shortest interval
with coefficient 1 — o has the symmetric form

(32) x _Lza/zsﬂ =X +i2a/2
VN VN

Similarly, if o® is unknown, the 100(1 — «) percent confidence interval
for u is given by

(33) x - Lta/}N—l =p=x+ _s‘ta/zw—l
VA Vil
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where s is the sample standard deviation and ¢,,,.5—, is the upper 50«
percentage point of the ¢ distribution with N — 1 degrees of freedom.

Frequently it is nccessary to obtain a confidence interval for the
difference of the means of two normal populations with a common,
though unknown, variance. The observations from the first population
might have been collected as a control for thosc in the second sample that
had been obtained under a new trcatment or experimental condition.
Under the normality and common-variance assumptions the 100(1 — «)
percent confidence interval for the change attributable to the experimen-
tal condition is

(B34) X — Y = Silanmim—2 =M — U2 =X — § + Si_jlann+no-2

where X, y are the respective means of the first and second samples of N,
and N, observations and

. _ Z(x’_j)z+z(y’_};)2 1 1
(35) iy = \/ N, + N, — 2 (7\7, + ﬁz)

is the usual within-sample estimate of the standard deviation of the mean
difference.

Tests and confidence intervals for the variance. The multivariate tests
and confidence statements of the later chapters will generally be
constructed for means and other location parameters. However, for the
sake of completeness we shall touch upon some hypotheses and interval
estimates for the variance of a normal population. If the observations
Xy, ..., Xy constitute a random sample from N(u, 0%), the quantity

(N — 1)s?

o* o?

g (x; — %)
(36) ==

is distributed as a chi-squared variate with N — 1 degrees of freedom.
The generalized likelihood-ratio criterion for the test of the hypothesis

(37 Hy: o* = o}
against the alternative
(38) Hy: o*> d}
specifies that the rejection region for a test of size « is
(39) (—N_Tl)sz > Xan-1
Oy

where x2.n_; is the upper 100« percentage point of the chi-squared
distribution with N — 1 degrees of freedom. Similarly, the rejection
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regions for testing the null hypothesis against the alternatives H: o’ <
o2 and H}: ¢* # oj would be

N — 1)s?
(40) ¢ 2 ) < X%—a,N--]
Ty
and
N — 1)s? N — 1)s?
(41) (_‘_T)_ < Xi-ayn-1 OF (—2—) > Xern-1
(o1 Oy

respectively, where in the latter case o, + @, = a. In the strict sensc «,
and &, should be chosen so that the latter test is unbiased, i.e., its power
function is never less than its size @, but in most applications with
moderate to large sample sizes an equal split will suffice. Confidence
intervals for o> can be obtained dircctly from the rejection region {41),
and will be left as an exercise for the reader.

If independent samples of N; and N, observations have been
randomly drawn from the populations N(u,,0}) and N(u,,03), the
hypothesis

(42) Hy: o} =03
can be tested against the alternative
(43) H: 0%> 03

by the statistic

(44) F="

fal\q
[STS] PN

If the null hypothesis is true, the statistic has the F distribution with
degrees of freedom N; — 1, N, — 1, and the rejection region for a test of
size « is

(45) F > Fyn-1,m-1

Conversely, H, could be tested against the other one-sided alternative
Hi: 0% < 03 by the statistic

(46) F=5

51
whose critical region is
(47) F> Fa;Nz—l,Nl—l

Finally, for the two-sided alternative H}: o} # o3 the statistic (44) would
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be used with the critical region dcfined by
1

Fﬂfz;N)—l,N|—l

(48) F > Fch;N,—l,Nz--l or F<
where the partitioning a, = &, = 3 will generally suffice.

Some further reading. The source and seed of much of modern statistical
methodology can be found in Fisher’s classics (1969, 1972). Snedecor and
Cochran’s text (1989) has a tutorial quality in its style and organization,
and it treats basic methods in depth from the investigator’s viewpoint.
Dixon and Massey (1969) cover a wide variety of techniques. Hodges and
Lehmann (1964) have integratcd concepts of probability and statistical
theory with many practical examples of estimation and testing. Illustra-
tions of the normal-theory methods of this section can be found in the
innumerable basic texts currently available, e.g., Freund (1971).

1.6 TESTING THE EQUALITY OF
SEVERAL MEANS: THE ANALYSIS OF
VARIANCE

Suppose that a certain biochemical compound is known to be taken up by
the brain, although some evidence is available that the amount per gram
of brain tissuc appears to differ among the five strains of mice commonly
used in one laboratory. It will be assumed that the relative amounts
assayed from the brains of sacrificed mice are normally distributed with
the same variance o for each strain. Let p, be the population mean for
the jth strain. It is possible to construct a test of

(1) Hy: py=---=ps

against the alternative that somc means are different by the generalized
likelihood-ratio criterion, and furthermore, if H, is rejected, methods can
be obtained for making simultaneous tests on the mean differences with a
fixed Type 1 error probability for all comparisons.

In the general case of k strains, treatments, diagnostic catcgories, or
experimental conditions we begin by postulating that the ith observation
on the jth treatment (our generic term for whatever feature distinguishes
the k groups) can be expressed by the mathematical model

(2) x,-,=.u+‘r,+e,-,- i=l,.-.,1\,] j=1,...,k
where p = location parameter common to all observations
7; = effect peculiar to jth treatment
e, = normally distributed random variable with mean zero and

variance o?
The variate terms e, are distributed indcpendently of one another. The
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model is said to be linear or additive, for application of the jth treatment
increases u by the increment 7,, and the random disturbance also merely
adds or subtracts some amount from the parameters. We note that in the
simpler usage of the motivating example u, = u + t,. The hypothesis of
equal treatment effects can be written as

(3) Hy 7,=---=1

and we shall take as the alternative to H, the general model (2) for the
observations.

This is the simplest example of the general linear model underlying
statistical experimental design. The theory of estimation and hypothesis
testing in univariate linear models has been discussed in many texts;
those by Scheffé (1959), Graybill (1961), and Searle (1971) are especially
suitable for the theoretical background of this section and as.an
introduction to the treatment of multivariate models in Chap. 5.

The model is said to have fixed effects, for the pu, are parameters,
and any inferences from the observations can be made only with respect
to the particular k treatments in the study. If the treatments constituted a
random sample from a larger population (available laboratory tech-
nicians, experiments replicated at different times, or clinicians scoring
projective tests), the trcatment cffects would be random variables, and a
somewhat different approach would have to be employed in the analysis.
This fundamental distinction between the fixed (modcl I) and random
(model II) analysis-of-variancc models was first made by Eisenhart (1947)
and has been developed extensively by many other workers in cx-
perimental design. In the sequel we shall use multivariate techniques for
the exact analysis of the mixed model for a fixed number of treatments
applicd repeatedly to each member of a random sample of cxperimental
units.

The observations can be arranged as in the following table:

Treatment
1 k
X1 X4
LA XNk

Denote the total of the observations for the jth treatment by
NI

(4) T=21x,
I

and the mean of that treatment by ¥, = T;/N,. The sum of all observations
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will be denoted by

5) G=Ti+:---+T,
the total number of experimental units by

©6) N=N+- -+ N,

and the grand mean by ¥ = G/N. It is possible to write the total sum of
squares

J=1i-1
kK N ~2
_S S e
A WA N
as the sum of two independent components
k T 2
@) ssT=> N,(—’ - x)
=1 N/
416
=04 N
and
kN
) SSE = 24 Z (x:/ - j})2
J—le-1
kN k T2
T
= 23
Z:l i=1 ! 12‘1 NJ

These components can be summarized in the analysis-of -variance table
shown in Table 1.1. The statistic for the generalized likelihood-ratio test
of Hy is

(10)

TABLE 1.1
Analysis of variance

_ N kSST
"k — 1 SSE

Source Sum of squares  Degrees of freedom  Mean square
Treatments SST k-1 }cii_Tl
Within treatments (crror)  SSE N -k 1\7_S—Ek

Total
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and since when H, is true, SST/o0?, SSE/o? arc independent chi-squared
variates with k — 1 and N — k degrees of frcedom, respectively, the test
statistic has the F distribution with £ — 1 and N — k degrecs of freedom.
We reject H, with a test of level « if

(1) F > For-1 Nk

The power function for this analysis-of-variance test can be com-
puted from the Pearson-Hartley noncentral F-distribution charts of the
Appendix. The degrees-of-freedom parameters are vi = k — 1 and v, =
N — k, and the noncentrality parameter measuring the departure of the
population means of the treatments from the null hypothesis (3) is

VEN( - 577
¢ = oVk

or, in the case of equal treatment samples usually encountered in
experimental design problems,

(12)

NE
(13) -1

=T

In the latter expression the correction term has vanished from the usual
restraint 7, + + -+ + 7, = 0 imposed on thc treatment effects. Illustra-
tions of the use of ¢ and the power charts for selecting sample sizes
for the one-way design can be found in Scheffé’s text (1959, chap. 3).

Multiple comparisons of treatments. An analysis of variance culminating
in rejection of the hypothesis of equal treatment effects still has not
indicated those effects which may be equal or those which are probably
different. This is the problem of multiple comparisons, or simultaneous
inferences about the members of some family of hypotheses. The tests
are constructed so that the Type I error probability for the entire family
will be at most a. For an excellent treatment of the theory and methods
of multiple comparisons we rcfer the reader to Miller’s monograph
(1981). Two methods will be needed frequently in the later chapters, and
we shall introduce them now in the context of the one-way analysis of
variance.

The first technique is due to Scheffé (1953, 1959). Define a contrast
of the parameters 7, of the one-way model as any linear function

k
(14) 21 o,
p=
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whose coefficients have the property
k
(15) 2¢=0
j=1

Thus 7, — v, and 37, — (7, + 73 + 74) are contrasts, while 7, —
(3 + T,) is not. In the particular case of thc onc-way analysis-of-variance
model Scheffé has shown that the simultancous confidence intervals
with joint coefficient 1 — « for all contrasts of the 7; have the form

2
c
(16) X c% —s \/(k — DFppmin-k 2 NJ = D¢,
J

2

- C;

= 2 X, + S\/(k - 1)Fa;k—l.N—k 2 N’
. ]

where all summations are over the k treatments. Y ¢, %, is the sample

estimate of the contrast ¥, ¢;7,, and

| SS
t¥)) S =Ny _Ek

Note that s* Y. ¢?/N, is the estimate of the variance of the estimated
contrast. We accept the null hypothesis

k
(18) Hy X ¢1,=0
j=1

at the a level if the simultancous confidence interval for that contrast
includes the value zero. If, on the other hand,

2 X, > -"\/(k — DFop—1.n—s 2

C

~ N

Z|

or

2

- C
2 X, < —§ \/(k - 1)Fnr;k—l.N—k E NI
J

we reject H, in favor of the respective one-sided altcrnatives
H;: Y ¢t >0o0r Hi: Yt <0. The joint level of all such tests is a.

The second multiple-comparison technique is called the Bonferroni
method, for it is based on an inequality bearing that name. For this
procedurc we begin by restricting our attention to a family of m
confidence-interval statements H,, ..., H,, about thc parameters of the
linear model. The probability that H, is a true statement (that is, H, covers
the valuc of the ith parametric function) is P(H;), and the probability
that all statements are simultaneously correct is P(H, N --- N H,),
where the intersection notation H, N H, denotes the event ‘“‘both H,
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and H, are correct.” This probability is the simultaneous confidence
coefficient for the entire family of intervals, and we should like it to be at
least equal to some specified value 1 — a, where « will be called the
error rate for the family of statements. The calculation of the joint
probability is often difficult for practical statistical problems, and its value
may depend on unknown ‘“nuisance parameters” measuring the
intercorrelations of the H; statements. Instcad we usually must be content
with a lower bound

(19) PH,N---NH,)=1- ﬁn‘, P(H,)

where P(H;) = 1 — P(H,) is the probability that the ith individual state-
ment is not true. The bound is a simple example of the Bonferroni
inequalities (Miller, 1981, pp. 7-8; Feller, 1968, Chap. 4; David, 1956).
For a set of m simultaneous confidence intervals we usually assign cach
statement an error rate of &/m, so that the cocfficient for the family is at
least 1 — a.

The Bonferroni confidence intervals on m given contrasts

k
(20) \I’,=Zc,-,~'c, i=1,...,m
=1
of the one-way linear model parameters are
k ko2 K, ko2
= 1y = 1
(21) 2 Cl]x] - ta/(2m);N—k.s' 2 ﬁ = lIIl = Cijx] + tn/(2m);N—k,\' Z —
j= =1 N, p= i,

The decision rule for testing H,: W; = 0 is equivalent to that for the
Scheffé method: if (21) does not enclose the value zero, H, is rejected.
For all paired comparisons of the treatments, m = jk(k — 1), while for
successive comparisons (assuming some a priori ordering), m = k — 1. If
m is small the Bonferroni intervals may be shorter on the average than
those of the Scheffé technique, even though the true family confidence
coefficient is greater than the nominal value 1 — a. For very large m the
Bonferroni intervals will be impractically long.

A third method of multiple comparisons ascribed to Tukey (1953) is
also in common use for simple experimental designs, but since it has no
multivariate generalization or essential application in the later chapters
we shall not discuss it here. The reader is refcrred to Miller (1981) or any
thorough text on the analysis of variance.

Example 1.3. In a preliminary evaluation of the three tranquilizing drugs
time limitations and the possibility of residual effects decreed that each
subject could receive only one drug. Eighteen psychiatric patients with
similar diagnoses were rated with respect to anxicty on a seven-point scale.
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Six were randomly assigned to each of the thrce drugs, and after several
days each patient was rated blindly on the same scale. These changes in
anxiety ratings were obscrved:

Drug
A B c
4 0 1
5 2 0
3 1 0
3 2 1
4 2 2
2 2 2

Mean 35 1.5 1.0

The pertincnt sums are

3 6
T,=21 T,=9 Ti=6 G=36 2> >x2=106

J=11-—1

The sum of squares due to drugs is

2 2 2 3(‘)
M2IE 4 9+ 67 — %

SST

il

=21

and the total sum of squares is S = 106 — 72 = 34. The within-drugs, or
error, sum of squares follows by subtraction. These values are summarized
in the analysis-of-variance table:

Source Sum of squares Degrees of freedom Mean square F
Drugs 21 2 10.5 12.1
Within drugs 13 15 0.867

Total 34 17

Since F, ;5.5 = 6.36, we conclude that the hypothesis of equal drug effects
is not tenable at the 1 percent level. Furthermore consultation of the
F-distribution tables revcals that the observed F also cxceeds the critical
value for o = 0.001.

Now we shall usc the Scheffé multiple-comparison procedure to
determine which drugs are different. A simultaneous confidence coefficient
of 0.99 will be chosen, and thus

Vk = DFyo12.15 = 3.567

First compare drugs B and C by computing the confidence interval for
T, — T;3. Here ¢, =0, ¢, =1, ¢3=—1, and the cstimated population
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standard deviation of X, — X5 is
V0.867(1 + ) = 0.5376

The confidence interval is
—1R2=1-1,24

and since this extends well across the zero value, we conclude that the
hypothesis of cqual drug B and C effects cannot be rejected at the 0.01
level.

Similarly, the 99 percent simultaneous confidence interval for the A
and B effect difference is

().08 = T| - Tz = 3.92
and it is possible to accept the alternative hypothcesis
H: 1,>1

at the 0.01 level. It might also be of intcrest to determinc whether drug A is
different from the average effect of drugs B and C. Here ¢, = 1, ¢, = -3,
¢, = —5, and the estimated standard deviation of the estimate of that
contrast is

VO.867(% + 24 + 23) = 0.4653
The estimate of the contrast is of course 2.25, and the confidence interval is
059 =1, — 3(7, + 13) = 3.91

Drug A appears to be distinct from the essentially equivalent remaining
drugs.

The Bonferroni simultaneous confidence intervals for the pair-wise
contrasts with confidence coefficient at least 0.99 arc

013=1, —1,=3.87
—1.37 b9 T — T3 = 2.37
0.63 =1 — 1, <437



CHAPTER

2

MATRIX
ALGEBRA

2.1 INTRODUCTION

In Chap. 3 we shall see that a multidimensional random variable is
merely an ordered collection

(X, ..., X,]

of single variates. By “ordered” we mecan that the variate describing the
ith facet of cach sampling unit drawn from the population always appears
in the ith position of the sequence. The number of variates p in the array
is always specified and will remain unchanged throughout the problem or
analysis at hand. For examplc, supposc that the components of the
variate are the weights of female rats in a particular strain at birth and at
10, 20, and 30 days of age. Then the weights could be described by the
random variable [X,,X;,X;,X,] with some distribution in four-
dimensional spacc. If those weights were recorded in a sample of N rats,
the observations might be summarized in the array

XNt "t XNg

whose rows correspond to different rats. Such lincar and rectangular
arrangements of numbers are known respectively as vectors and matrices,
and rules for their manipulation constitute that part of linear systems

36
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known as matrix algebra. That algebra is the virtual language of
multivariate analysis, particularly in its most common and important part
based upon the multidimensional normal distribution. Indeed, it is almost
inconceivable that the techniques could have been developed without the
convenience, facility, and elegance of matrices.

In this chapter we shall summarize a number of properties,
operations, and theorems of matrix algebra needed in the sequel. Further
results and proofs of certain of the theorems can be found in the
references cited at the end of the chapter.

2.2 SOME DEFINITIONS

Let us assume that we have at our disposal some elements which behave
according to certain sets of axioms, for example, the real or complex
numbers. We define a matrix

(1) A =] et
Ay A

as a rectangular ordered array of the elements. The general term of the
matrix will be written as a,;, where the first subscript will always refer to
the ith row, and the second to the jth column. The dimensions of a
matrix are important, and a matrix with r rows and ¢ columns will be
referred toas r X c.

In opposition to a matrix we shall call the usual numbers and
variables of everyday unidimensional transactions scalars. A scalar is of
course a 1 X 1 matrix. In the initial sections of this chapter we shall think
of matrices as composed of real scalar elements. Later we shall treat
matrices whose elements arc themselves matrices of smaller dimensions.

A wvector is a matrix with a single row or column. We shall
customarily write the n-component column vector

Xy
@ x=1:

xn
in lowercase boldface type. Similarly, a row vector
3) X' =[x, ..., x,]

consists of a single row of n elements. Either vector specifies the
coordinates of a point in n-dimensional euclidean space, and the
connection with the physical or analytical notion of a vector is immedi-
ately apparent if we think of that point as the terminus of a line segment
starting from the origin of the coordinate axes.
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The prime attached to a row vector means that x' is the transpose of
the column vector x. In general, if A is any r X ¢ matrix, the transpose of
A is the ¢ X r matrix A' formed by interchanging the roles of rows and
columns:

(4) Al =] v e
a, 0 A Ay Q.

If a matrix is square and equal to its transpose, it is said to be symmetric.
Then a, = a, for all pairs of i and j. For example,

30 -1
A= 01 2
-1 2 -4
is symmetric, while
23
o[} )
12

is not. For brevity we shall frequently omit thc duplicated lower
elements. The elements a; of a square matrix occupy what are called the
main diagonal positions. The sum of these diagonal elements is called the
trace of A, and will be denoted by

n
trA = 2 a;
11
Certain matrices are particularly important. The identity matrix

(6) I=]--°------:

is a square matrix with onc in each main diagonal position and zeros
elsewhere. The p X p diagonal matrix

(7) D(a,) =] -,

has the elements a4, . . ., a, in its main diagonal positions and zeros in all
other locations. Some of the a, may be zero. In the sequel diag (A) =
D(a;,) will denote the diagonal matrix formed from the square matrix A.
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A p X p triangular matrix has the pattern

tih 2 tl,ﬂ
@ SR
0 0 top
The r X ¢ null matrix
0 0]
(9) 0= -veer..
0 --- 0]

has zero in each of its positions. Occasionally we shall also nced the
vector

(10) i =001

and the matrix

(11) | DR
with unity in every position.

2.3 ELEMENTARY OPERATIONS WITH
MATRICES AND VECTORS

The operations of addition, subtraction, and multiplication of ordinary
scalar arithmetic can bc carried over to matrices if certain rules are
followed. The matrix analog of division is a bit more complicated and will
be deferred to a later section.

Equality. Two r X ¢ matrices A and B arc said to be equal if and only if
) a, = b,

for all pairs of i and j.

Addition. The sum of two matrices of like dimensions is the matrix of
the sums of the corresponding clements. If
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then

(2) A+B=] -t
a, + brl ceeoa,t brr

One matrix is subtracted from another of like dimensions by forming the
matrix of differences of the individual elements. Thus,

A+B=B+A
3) A+(B+C)=(A+B)+C
A-B-C=A-B+C

If the dimensions of the matrices do not conform, their sums or
differences are undefined.

Multiplication by a scalar. The matrix A is multiplied by the scalar ¢ by
multiplying each element of A by c:

4 A= vt

ca, - Cay

Matrix multiplication. For the matrix product AB to bc defined it is
necessary that the number of columns of A be equal to the number of
rows of B. The dimensions of such matrices are said to be conformable. 1f
A is of dimensions p X r and B is r X g, then the ijth element of the
product C = AB is computed as

r

(5) cu = 2 alkbk]

k1
This is the sum of the products of corresponding elements in the ith row
of A and jth column of B. The dimensions of AB arc of course p X gq.
For example, if

6 5 4
A=[_I (2) ?] B=] -1 1 -1
0 2 0
then
AB - [ 16) + 2(—1) + 3(0)  1(5) +2(1) + 3(2)  1(4) + 2(~1) + 3(0)]
—1(6) + 0(—1) + 1(0) —1(5) + O(1) + 1(2) —1(4) + O(=1) + 1(0)

_[ 4 13 2]
-6 -3 —4
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The product BA is undefined, for the two rows of A do not conform with
the three columns of B.

The distributive and associative laws hold for matrix multiplication:
AB + C) = AB + AC
6
©) A(BC) = AB(C)

However, the commutative law does not hold for matrix multiplication,
and in general it is not true that AB = BA. For this reason the order of
multiplication is crucial, and we shall speak of the product AB as formed
from premultiplication of B by A or by postmultiplication of A by B. For

example, let
1 2 3 -17
A= [2 3] B= [—1 1.

i1 _[1 37
AB_[s 1] BA = 1 1.

Then

Neither are the products equal, nor is the symmetry of the original
matrices preserved in the multiplication.

Multiplication of any matrix by a conformabie identity matrix leaves
the matrix unchanged. Premultiplication by the diagonal matrix with

elements dy, . . ., d, has the effect of multiplying each element in the ith
row by d;:

dyay, d,a.
(7) D(d’)A =] e e

drarl ot drarc

Postmultiplication by a similar ¢ X ¢ diagonal matrix multiplies each
element in the jth column by 4;.

A matrix can be regarded as specifying a linear transformation of
the vectors in one space to those of another. If x has m components and y
has n components, it is possible to express a transformation from the
m-dimensional coordinate system of the elements of x to the n-
dimensional space of those of y in matrix form as

M i " Gim Xy
(8) = e .
Yn (2 R o Xm

= Ax

Transformation to a third set of variables specified by the p-component
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column vector z could be represented as
® z = By
= BAx

and thus the product of two or more matrices can be thought of as the
matrix of the resultant of a succession of linear transformations.

Example 2.1. It is often nccessary in the social sciences to convert several
disparate scores collected on individuals to a scale with a common origin
and unit. If x,, is the score of the ith individual on the jth measure and %,
and s, are thc sample mecan and standard deviation of that measure, one
common transformation is the z score

The transformed observations can be computed conveniently by some
simple matrix operations. Write thc original scores as the N X p data

matrix
X1 X ip
X=]| e,
Xat Xnp |
and form the diagonal matrix
- .
- 0
Sy
D = ] « s o s & s o s s s
1
0 —_—
— SP -

from the sample standard deviations. If we introduce the N X N matrix

with one in every position, the N X p matrix Z of standard scores can be
computed as

1
Zz= (l - NE)XD

Postmultiplication of E by X has the effect of summing each column of the
data matrix.

Vector inner products. The inner product of two vectors with the same
number of elements is defined to be the sum of the products of the
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corresponding elements:
341
(10) Xy=[x,....5] :
Yp

P
le:,)’i
i-

Since the inner product is a scalar, X'y = y’x. The inner product of x with
itself is the sum of squares of the clements of x.

Inner products have important geometrical interpretations. The
inner product of x with itsclf is called the squared length of x, for it is the
square of the distance from the origin of the p-dimensional coordinate
system to the point specified by the elements of x. More generally, the
distance betwcen the points with coordinates given by x and y is

an =S -]

=1
The cosine of the angle 8 between the vectors x and y is
x'y
(xix)l/Z(ny)UZ
Such division of the vectors by their respective lengths is called
normalization, and it is easy to see that as the normalized vectors become

coincident, their inner product tends to unity. Similarly, vectors at right
angles to each other have an inner product of zero.

(12) cos 6 =

Example 2.2. In three-dimensional space the vectors
x' =11,0,0]
y =1[0,1,0]
2z’ =[0,0,1]
can be construed as specifying the three coordinate axes. The vector
e =[1,1,1]

makes an angle with the same cosine V3/3 with x', y', and z' and
characterizes the equiangular line in three-space. The numbers V3/3 are
called the direction cosines of the line. Similarly, the vectors

v =[1,1,0]
v =1, ~-1,0]

make an angle of 90° in the xy plane of the space. u’ and v’ each have an
angle of 45° with x’, and their angles with y’ are 45 and —45°, respectively.
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Transpose of a matrix product. If the matrix A is conformable for
postmultiplication by another matrix B, it is easily verified that the
transpose of their product is equal to the product of their transposes
taken in the opposite order:

(13) (AB)' = B'A’
More generally, if A,, ..., A, are conformable,
(14) (Ar--A) = Ap- - -A]

We shall need these properties frequently in the later chapters.

24 THE DETERMINANT OF A SQUARE
MATRIX

Associated with every square matrix is a unique scalar number called its
determinant. The formal definition of the determinant of the n X n
matrix A is the sum

(1) E : I’ E (_1)aalha2iz' Ay,

of all products consisting of one element from each row and column and
multiplied by —1 if the number of inversions of the particular permuta-
tion j,j,- - -j, from the standard order 1,2,...,n is odd. The sum is
taken over the set P of all n! permutations of the column subscripts. The
number of inversions « in a particular permutation is the total number of
times in which an element 1s followed by numbers which would ordinarily
precede it in the standard order 1,2,...,n.

The determinant of A will be written as |A|. The determinants of
the three smallest square mairices follow from the formal definition as

lawn| = an

ay apz| _
= apndyx — a)ay

@)

4z Qax

a,, G2 a3
a11a3033 + A1202343, + A1387,83;
Az G dx;| =
—Q 302,031 — 41142303 — Q1247433
43y Q43 ds3
It is more convenient to compute the determinants of larger matrices by
different methods. Define the minor of the element a; of A as the
determinant of the matrix formed by deleting the ith row and jth column
of A. The cofactor of a; is the minor multiplied by (—1)'*/ and will be
written as A;. It can be shown that the determinant of the square matrix
A can be expressed in terms of the cofactors of the elements of any given
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row or column as
3) |A| = a5 Ay + - +a,A,  i=1,...,n
=a1jAll-+"'+a,,]A,,,- j=1,...,n

For the simplest application of this rule we note that the matrix of
cofactors for the general 2 X 2 matrix is

@) [ an _aZI]

I—"alz a

and the value of the determinant follows immediately.

Example 2.3. Let us evaluate the determinant of the matrix

3 0 0 O
1 2 0 1
-1 -3 2 -1

5 4 3 2

Note immediately that the first row contains a single nonzero element, so
that it will be necessary to compute the cofactor only of the (1,1) element.
If we expand that cofactor in terms of the cofactors of its first row, the
original determinant is equal to
-3 2
ERIME

2
3(2 3

The method of cofactors is efficient only for small matrices or for
patterned matrices with an abundance of zero elements. We shall
consider a more practical technique in Sec. 2.6.

Certain properties of determinants will prove to be useful in the
later chapters:

2’_

1. The determinant of a diagonal matrix is merely the product of the
diagonal elements. Similarly, the determinant of a triangular matrix is
the product of its diagonal elements.

2. If the elements of a single row or column of the n X n matrix A are
multiplied by the scalar ¢, the determinant of the new matrix is equal
to ¢ |A|. If every element is multiplied by ¢, then |cA| = c" |A].

3. If two columns (or rows) of a square matrix are interchanged, the sign
of the determinant is reversed.

4. 1t follows directly from Property 3 that if two columns or two rows of
a matrix are equal, the determinant must be zero. Thus, proportional
rows or columns of a matrix indicate a determinant of zero.

5. The determinant of a matrix is unchanged by adding a multiple of
some column to another column. A similar result holds for rows.
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6. If all clements of a row or column of a square matrix are zero, the
determinant is zero.

7. If A and B are each n X n matrices, the determinant of AB is cqual
to the product of the individual determinants.

8. The sum of the products of the elements of a given row of a square
matrix with the corresponding cofactors of a different row is equal to
zero. A similar result holds for columns.

2.5 THE INVERSE MATRIX

We are now ready to define the matrix analog of scalar division. The
inverse of the square matrix A is that unique matrix A~' with elements
such that

(1) AAT = AT'A =1

It is possible that A~' does not exist, just as it is not possible to perform
scalar division by zero. Then A is said to be singular. Matrices whose
inverses exist are called nonsingular.

The elements of A™' can be computed from two results of the
previous section. Form the matrix of cofactors

) C=| - vereriii.

called the adjoint of A. Then the inner product of the ith row of C and
the Ath row of A is equal to |A| if i = h and to zero if i # h. If we take
the transpose of C and divide each element by |A|, we have the desired
inverse

1, 1
l IAl 11 IAl ni
3) A= L
4 4
IAl 1n |A| nn

It should be apparent from this definition that the inverse exists if and
only if |A| is not zero. Computation of A™' by cofactors is very inefficient
in most practical applications, and we shall consider other methods in
Sec. 2.6.

We shall frequently use these properties of inverses:

1. The inverse of a symmetric matrix is also symmetric.
2. The inverse of the transpose of A is the transpose of A™'.
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3. The inverse of the product of several square matrices is equal to the
product of the inverses in rcverse order:

@ (ABC)"'=C 'B'A"!

4. If ¢ is a nonzero scalar, (cA)™' = 1/cA™".

5. The inverse of a diagonal matrix is a diagonal matrix consisting of the
reciprocals of the original elements.

Example 2.4. The inverse of

2000
0400
A’oo%z
0 01 2
is
o 0 0
o' o0 o0
A'= '
00 1 =
00 -1+ 3

2.6 THE RANK OF A MATRIX

Two p-component vectors are said to be linearly dependent if the
elements of one vector are proportional to those of the second. Thus, the
row vectors

x’ = [1,(), "‘1] yl = [47 07 _4]
are linearly dependent, while
w =[2,-1,0,7] v =16,2,0,0]

are linearly independent. A set of k vectors of equal dimensions is called
linearly independent if it is impossible to write any vector of the set as
some linear combination of the remaining vectors. That is, the vectors
Xy, ...,X; form a linearly independent set if there do not exist scalars
¢y, - - -, ¢ such that for some vector x, in the set

CX, =CX  + -+ X+ CuiXpyy ot Xy
The vectors
X =[1,-1,2] y=[20-1] =z=[0-25

constitute a linearly dependent set, for z' = 2x’ — y’, while the unit
vectors

' =[1,0,00 w=[0,1,0] v =][0,0,1]

are independent.
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Example 2.5. Suppose that a cognitive test consists of six subscalcs. The
first three measure certain verbal facilities, and their scores ar¢ summed to
give what is called the verbal score. The last thrce reflect some motor and
spatial skills, and their total is called the performance score. Finally, the
sum of the six tests is used as a general measure of cognitive ability. The
test has been administered to a large number of subjects, and it is proposed
that the nine scores be used in an attempt to relate intclligence to other
measures obtained on the individuals. However, if each sample of
observations on a score is regarded as an N-component vector, it is
immediately apparent that only six of the nine vectors arc linearly
independent, and no new information has been gained from the three
derived scores. We shall see in the later chapters that the inclusion of these
linear compounds may preclude certain kinds of statistical analyses.

Now let us formalize the degree of lincar independence in a set of
vectors as the rank of the matrix formed from the vectors. Assume for
the moment that the number of vectors k doecs not exceed the
dimensionality p of the vectors. Then the rank of

(1) X =

is the number of linearly independent row vectors in the matrix. Rank
may vary from zcro for any null matrix to k for a matrix of full rank. If,
on the other hand, the number of rows in X exceeded the number of
columns, the rank of X would be the number of linearly independent
columns. In cither case, it can be shown that the rank of the matrix is a
unique number, regardless of whether it is computed from rows or
columns. It follows from Property 4 of Sec. 2.4 that

the matrix A is of rank r if it contains at least one nonzero r X r minor, and no
nonzero minor of dimensionality greater than r.

Example 2.6. The matrix

1 2 3 4
36 9 12
4 3 2 1
-1 3 7 11
8 6 4 2

has rank two, for it can be shown that the sccond row is equal to three
times the first row, row four is equal to the difference of rows two and
three, and row five is twice the third row. The only lincarly independent
rows are the first and third, and thesc are said to form a basis for the five
row vectors.
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Rank has these important properties:
1. The rank of A’ is equal to that of A. This follows from the
equivalence of the row and column definitions of rank.
2. The rank of A’A is equal to that of A. Similarly, the rank of AA’ is
equal to the rank of A.
3. The rank of A is unchanged by pre- or postmultiplication of A by a
nonsingular matrix.

Elementary row and column operations. The rank of a matrix is
unchanged by these elementary row and column operations:

1. Interchange of any two rows (columns).
2. Multiplication of each element of a row (column) by a scalar constant.

3. Addition of a row (column) whose elements have been multiplied by a
scalar constant to another row (column).

These transformations can be represented by nonsingular matrices. Row
operations are performed by premultiplication of the given matrix by the
elementary operation matrix, while column operations follow from
postmultiplication. By Property 3 of the preceding paragraph such
nonsingular transformations leave the rank invariant. By choosing the
proper sequence of row or column operations we can reduce a matrix to a
form consisting only of linearly independent rows or columns, and
thereby determine its rank.

Example 2.7. The matrices

010 c 00 100
E,=|100 E:=]|0 10 E;=|d L 0
001 0 01 0 01
can be used to make elementary transformations on the first two rows of
51
A=|-2 3
32
giving
-2 3 5¢ ¢ 5 1
EA = 51 EA=|-2 3 EAA=|5d-2 d+3
3 2 3 2 3 2
Example 2.8. Let us use elementary row operations to compute the rank of
the matrix
1 0 2
-3 21
A =
-1 2 5
306
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Note immediately that the last row is equal to the first row multiplied by 3.
Row three is equal to row two plus twice row one. The appropriate row
operations reduce A successively to

1 0 2 1 0 2
-3 21 an -3 21
-1 2 5 000

000 000

Since the remaining rows are linearly independent, we conclude that A is of
rank two.

Both row and column operations can be applied simultancously to
any m X n matrix to reduce it to its canonical form

1 0 0
Q) F=[0 -~ 1 -~ 0
0 0 0

of one in the first  diagonal positions and zero everywhere else. This
means that for every matrix A there exist clementary row and column
transformation matrices Ry, ...,R,, C,,...,C, such that

(3) RI . 'R|AC| . 'Cq = PAQ
=F

is the canonical form of A. But if A is square and of full rank n, then row
operations alone produce

(4) RI)...RIA=I
and
5) Al = R, R

Hence, the same sequence of elementary row operations that reduces A
to the identity matrix transforms the n X n identity matrix to the inverse
of A. This property of clementary transformations provides us with a
powerful tool for inverting matrices: we merely write down the n X 2n
matrix

(6) A 1)

and apply elementary operations to cach row with the aim of transform-
ing the first n columns to the identity matrix. When this has been
accomplished, A~' will appear in the last n columns. For symmeric
matrices this method had been formalized as the abbreviated Gauss-
Doolittle technique (Dwyer, 1951).
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Example 2.9. The successive transformations in the inversion of

1 1 2
A=|2 33
3 -1 8
are shown below:
1 1 2100
2 33010
3 -1 80 01
2 1 00
1 =21 0

1 1
0 I -
0 -4 2 -3 01

1 0 3 3 -1 0
o1 -1 =2 1 0
00 -2 -1 4 1

1 0 0 —135 5 1.5

010 35 -1 =05
0 01 55 =2 =05

and
—13.5 5 1.5
A'= 35 -1 =05
55 -2 =05

The determinant of a matrix can also be computed by elementary
row or column operations, for by Property 5 of Sec. 2.4 those
transformations do not alter its valuc. The process, called pivotal
condensation, consists of reducing the matrix to triangular form, from
which thc determinant is computed as the product of the diagonal
elements. If row operations are used, the matrix is written with the
largest element of the first column in the (1,1) position. That element is
used as the pivot for reducing the remaining elements of the column to
zero. This rearrangment and reduction is continued until the triangular
form is attained. Choice of the greatcst element is in the intcrests of
numecrical accuracy.

Example 2.10. Let us evaluate the determinant of the matrix

105 -2 0
6 3 21
4 5 12 3
51 3 8

A=
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We begin by subtracting appropriate multiples of the first row from the
remaining rows:

100 5 -2 0
0 0 32 1
0 3 12.8 3
0 -15 4 8

Since the (2,2) element is zero, we interchange the second and third rows of
the matrix, and compensate for the resulting change of sign in the
determinant by multiplying each element of the new second row by —1:

10 5 -2 07
0 -3 -12.8 -3
0o 0 32 1

0 —-15 4 8

A single row operation in the second column transforms this to

10 S5 -2 0
0 -3 -128 -3
0 0 32 1
| 0 0 104 9.5

Finally we have
10 5 =2 0
0 -3 -128 -3
0 0 32 1
0 0 0 6.25_

and the determinant is

|Al

(10)(—3)(3.2)(6.25)
= —600

Generalized inverse matrices. Several generalizations of the inverse

matrix have been proposed for rectangular matrices of any rank. One

generalized inverse that is useful for solving systems of linear equations is
defined as the matrix G satisfying

(7) AGA = A

A is p X g and of rank r, while G is necessarily ¢ X p and of the same
rank as A. Other kinds of generalized inverses exist, e.g., those due to
Penrose (1955) which satisfy the additional conditions

8) GAG =G (GA) = GA (AG) = AG
Their properties have been discussed at length by Graybill (1983), Searle
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(1966, 1971), and Searle and Hausman (1970); more advanced treatments
have been written by Albert (1972), Boullion and Odell (1971), and Rao
and Mitra (1971). However, the restricted form defined by (7) will suffice
for our purposes.

Our matrix G can be computed from the canonical reduction (3) of
A. We write
D 0]

©) PAQ = [0 0

where D is an r X r diagonal matrix (not necessarily the identity) and the
null matrices have appropriate dimensions. P and Q are the respective
products defined in (3) of the row and column elementary matrices. We
introduce the g X p matrix

S

Then G = QF P is a generalized inverse of the matrix A, as one may
verify by replacing A in (7) by its representation P"'FQ~'. G is not a
unique matrix, unless of course A is squarc and nonsingular.

Example 2.11. Let us find a generalized inverse of the matrix A in
Example 2.8. The row operator matrices which reduce the third and fourth
rows to null vectors are

1 000 1 000
0100 0O 1 00
R=1 00 Re=1_ -1 10
-3 0 0 0 0 1
Then
1 0 00
0 100
P =RR, = -2 -1 10

| -3 0 0 1

The column transformations which reduce PA to a diagonal canonical form
are

10 0 1 0 -2
C = 31 -4 C,=]01 0
00 1] 0 0 1
and
1 0 -2
Q=C¢C, = % 1 _;
00 1
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Then
1 00
2 0 I 0 00
F=PAQ = 00 0 F =|03 00
00 0 0000
and
1 000
G=|3 100
00 00
is one generalized inverse of A.
2.7 SIMULTANEOUS LINEAR
EQUATIONS
The set of equations in the unknowns x,, . .., X,
ayxy + -+ aXx, =
(1) e e
Ay Xy + o0t Ay Xpn = Cn

is called a system of m-simultaneous linear equations in n unknowns and
can be compactly written in matrix form as

2 Ax =c¢

where A is the m X n matrix of the coecfficients, x’ = [x,, ..., x,], and
¢ =[ci,...,Cm) The general system Ax =c of m equations in n
unknowns possesses a solution if and only if the m X (n + 1) augmented
matrix

(A«

is of the same rank r as A. Otherwise the system is said to be
inconsistent. It is essential to distinguish between homogeneous systems,
for which ¢ = 0, and nonhomogeneous systems. We shall consider three
types of equations that are particularly relevant for our purposes.

Nonhomogeneous system: A square and nonsingular. Since A~ exists,
the unique solution to the system is

3) x=A"¢

This follows from premultiplying both sides of equation (1) by AL
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Example 2.12. The inverse matrix of the system
Xyt x— x5 = 1
—X + X2 + X3 = —1

x|"X2+X';=l

(=
N -

(=2 e
= ol

N -

The solution is

xy = 3(1) + 0(=1) + 3(1)
=1

xz = (1) + 3(=1) + 0(1)
=0

xy = 0(1) + 3(=1) + 3(1)
=0

Nonhomogeneous system: A m X n and of rank r. If the condition on
the ranks of the coefficient and augmented matrices is satisfied, a solution
may be found by selecting any r linearly independent equations and
solving for r of the n unknowns in terms of the constants ¢, and the
remaining n — r variables.
Example 2.13. The equations
X, +x,=2
x +x,=1

can be interpreted geometrically as defining parallel lines in the x,x, plane.
Since they do not intersect, the system cannot have a solution. The rank of
the coefficient matrix
N
11

is one, while that of the augmented matrix
[1 1 2]
111
is two.
Example 2.14. The system
2, + 3, —x; =1

X, + X2 =2
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has coefficient and augmented matrices of rank two. Write the equations as
Zx‘ + 3x2 =1+ X3
X, = 2 — X3
and solve for x,; by substitution. The general solution is given by the vector
[5(_5 + 4.x3), 2 - X3, X3]
wherein x, can assume any value.
Homogeneous systems of equations. It is not possible for a homogeneous
system of linear equations to be inconsistent, for the rank of [A 0]
is the same as that of A. Every homogeneous system is satisfied by
the trivial null solution x’ = [0, ...,0], and in fact if the rank of the
coefficient matrix is equal to the number of unknowns n, this is the only
solution. Hence a homogeneous system will have a nontrivial solution if
and only if the rank r of A is strictly less than n, and it is always possible
to find n — r linearly independent solutions of the system such that any
linear combination of these solutions is itself a solution. In statistical
applications we shall frequently encounter systems with as many un-
knowns as equations; such systems have nontrivial solutions if and only if
their coefficicnt determinants vanish.
Example 2.15. The system
3x —2x,=0
5x, + x, =
defines two lines in the x,x, plane that intersect at the origin. Hence the
only solution is the trivial one [0,0].
Example 2.16. In the system
X, — X3+ 2x;=0
X, +3x,—2x;=0
3, + x,+2x;=0

the third equation is equal to the sum of twice the first plus the second, and
the rank is thus two. The single independent solution may be determined in
units of x, by solving the system

X, — Xy = —2x,
x, + 3x, = 2x,
The general solution for the original set is, in units of x,,
X = =X

X2 = X3
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Example 2.17. The system
X+ xX,— x3— x,=0
— 2%, +3x;3+ x4,=0
X, — Xo+ 2x; =0
3x, + x; - 2x, =0
is also of rank two. The first and third equations can be solved conveniently
in terms of x; and x, to give the solution vector
[3(=x3 + x4), 3(3x; + x4), x5, x4

If we set x5 equal to zero and x, equal to one, and alternatively set x; to
unity and x, to zero, we shall have these linearly independent values of the
solution vector:

[%s %’ 0’ 1]
[_%7 %’ 1,0]

Since any linear combination of these solutions is also a solution, the most
general solution to the original system is

x, = 3(a — b)
X2 = 3(a + 3b)
x;=b
X,=a

for arbitrary a and b.

Solution by generalized inverses. Rao (1962) has shown that the system
Ax = ¢ of m consistent equations in n unknowns has the solution

4) x* =Gec + (GA - I)z

where G is a generalized inverse of A defined by equation (7) of Sec. 2.6, I
is the n X n identity matrix, and z is any n X 1 vector of arbitrary
constants. We note that the term containing z vanishes when G = A '. The
algebraic properties, computing methods, and illustrations of such solutions
have been treated by Basilevsky (1983), Graybill (1983), and Searle (1971,
1982).

Example 2.18. We shall obtain solutions to the equations of Examples 2.14
and 2.16 by the method of generalized inverses. For the first system, P =1
and

1 -3 2
o-lo 1) w=[p ]
[0 0 1
1 -3 10 -2
G=|0 1 GA=|01 1
[0 0 00 0©
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The most general solution is
X' =[-205 +4z),2 + 25, — 2

For Example 2.16,

1 00 11 -1 100
P=]-1 10 Q=|0 1 1 F=|01!o
-2 -1 1 00 1 (0 00
340 1 0 1]
G=|-, 10 GA=|01 -1
000 00 0]

If we let z; equal —x; the general solution is x' = [—x3, x3, x;3].

Numerical methods for linear equations. Perhaps the most common
direct means of solving a system of rank r in r unknowns is the
Gauss-Doolittle elimination method. As we have indicated before, this
technique amounts to reduction of the system to triangular form by
elementary row operations, followed by a backward solution of the new
equations until all unknowns have been obtained. The usual form of the
scheme supposes a symmetric coefficient matrix, but generalized proce-
dures are also available. The reader is referred to Dwyer (1951),
Faddeeva (1959), Graybill (1961), and Ralston and Rabinowitz (1978) for
discussion and worked examples of the Gauss-Doolittle method.
Another efficient direct solution is the square-root method. If the
original system has been reduced to a square nonhomogeneous form
Ax = c of full rank r, it can bc shown that the coefficient matrix can be
factored into the product of a triangular matrix T and its transpose:

A=Tr'
It is first necessary to determine the elements of T by a sequence of
quadratic recurrence relationships. Then, letting y = T'x, the triangular
system

Ty =¢
can be solved backward for the elements of y. Finally, it is necessary to
solve the other triangular system

Tx=y

for the original unknown vector x. The expressions for the elements of T
and efficient arrangements of computing worksheets have been given by
Dwyer (1951) and Faddeeva (1959).

Often it is necessary to find explicitly the inverse of the coefficient
matrix rather than the solution to its equations. This is especially true in
regression analysis, for the sampling variances and covariances of the
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least-squares estimates of the regression parameters are determined from
the elements of the inverse. Inversion of the matrix may be formulated as
the solution of r systems of equations with a common coefficient matrix A
but with constant vectors ¢, the successive columns of the » X r identity
matrix. Solution of the systems can be carried out compactly by the
abbreviated Gauss-Doolittle method. Details and examples of this
procedure can be found in the texts of Dwyer and Graybill. Alterna-
tively, with the computer language APL (STSC, 1986) inverse matrices
can be calculated on a microcomputer with a single primitive function
operation. Most of the matrices in the sequel were inverted in that way.

The preceding methods based upon elementary row operations are
all exact, in the sense that a finite number of arithmetical operations will
lead to a solution with an accuracy dependent only upon the precision
maintained at each step in the computations and of course upon the exact
or approximate nature of the coefficients in the original matrix. lterative
methods start with an approximation or plausible guess at the solution
and repeatedly correct these trial values until they converge with a
specified degree of accuracy to the actual solution. Perhaps the most
familiar iterative technique for solving systems of linear equations is the
Gauss-Seidel method (Faddeeva, 1959; Hotelling, 1943; Ralston and
Rabinowitz, 1978). Convergence of this algorithm is highly dependent
upon the magnitude of the elements in the coefficient matrix. Necessary
and sufficient conditions for convergence have been considered by
Faddeeva, together with other iterative methods possessing accelerated
or more general convergence properties.

2.8 ORTHOGONAL VECTORS AND
MATRICES

In Sec. 2.3 we introduced the expression

x'y
(x/x)l/Z(ny)IIZ
for the cosine of the angle between the vectors x and y and saw that if
their inner product vanished, the vectors must lie at right angles to one
another. Such vectors are called orthogonal, or orthonormal if their
lengths have been normalized to unity. An orthogonal matrix T is a
square matrix whose rows are a set of orthonormal vectors. Hence
@) T = T'T

=1

(1) cos 6 =

and the inverse of T is merely its transpose T'. A simple 2 X 2 orthogonal
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o
10
This is the transformation matrix of a reflection of the points in the xy

plane about the 45° line. A more gencral orthogonal matrix of that
dimension is

® T-|

matrix is

cos 6 sin 9]
—sin @ cos 6

and is interpretable as the transformation matrix for a rotation of the
xy coordinate axes through an angle 6. That is, if x and y were the
coordinates of a point under the old axes, the point would have
coordinates :

u=xcos + ysin 8

)

v=—xsin@ + ycos 8

after a rigid rotation of the axes through an angle of 6 degrees. Larger
orthogonal matrices can be constructed by the Gram-Schmidt or-
thogonalization process (Hohn, 1964, Chap. 7) by starting with one
normalized row and building up the matrix according to the requirement
of mutual row orthogonality. For example, the Helmert matrix

1 1 L
Vi V3 V3
1 1
=% v ¢
1 1 2
| V6 Vo Vo6 |

is one particular 3 X 3 orthogonal matrix.

The n X n orthogonal matrix T is interpretable as the matrix of the
linear transformation equivalent to a rigid rotation or a rotation followed
by a reflection of the n coordinate axes about their origin. Distances in
the space are unchanged by this rotation, for if we make the
transformation

y=Tx
then
x'x = y'T'Ty
=yly

and the sums of squares are invariant.
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Orthogonal matrices have these useful properties:

1. The columns of an orthogonal matrix are orthogonal.

2. The determinant of an orthogonal matrix is always either 1 or —1.
Since |TT'| = |I] = 1 and |T| = [T'|, |T| = 1.

3. The product of orthogonal matrices of the same dimension is itself
orthogonal. That is, a succession of rigid rotations and reflections of
the coordinate axes is expressible as a single rigid rotation and
appropriate reflections.

2.9 QUADRATIC FORMS

A quadratic form in the variable x, . . ., x, is an expression of the type
(1) f(xl’ < ,x,,) = allx% + a22x§ +oeee 4+ armxlzl

+ 2'a12x1x2 + 0+ 2alnxlxn + -4+ 2an—l,nxn—-lxn
= 2 2 ayXix;
11 =1
where a;, = a,. Some of the 4, may be zero. We notc immediately that
the quadratic form can be written in the matrix notation as

x'Ax

where x' = [x,,...,x,] and A is the n X n symmetric matrix of the
coefficients. The simplest quadratic form is merely f(x) = a;,x? the
equation of a parabola in the single variable x. Quadratic forms in which
the x; are random variables play an important role in both univariate and
multivariate statistical theory. For example, the sum of squared devia-
tions about the sample mean

@ S -0 = 3oy (2x)

can be written as a quadratic form in the obscrvations x, with matrix

N-1 -1 -1 ]

e

-1 N-1 -1

3) A=| N N N
-1 -1 N -1
| N N N |
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A symmetric matrix A and its associated quadratic form are called
positive defirite if x' Ax > 0 for all nonnull x. If x'Ax = 0, the form and
its matrix are called positive semidefinite. Similar definitions apply for
negative definite and semidefinite quadratic forms. An indefinite form can
assume either positive, zero, or negative values. We shall need the
special properties of positive definite and semidefinite matrices and
quadratic forms frequently in the sequel.

Positive definite quadratic forms have matrices of full rank. Tt is
possible by repeatedly completing squares to reduce such a form in n
variables to the form

(4) dly%+"'+dnyi

containing only squares of the new variables y, and with coefficients
d; > 0. Similarly, a positive semidefinite quadratic form can be reduced to

(5) dyy; + - +d,y?

where all coefficients are positive, and r < n is the rank of the form
matrix. However, these properties are not convenient means of deter-
mining the nature of the form, and we shall now statc a necessary and
sufficient condition for positive definiteness or semidefiniteness. From the
matrix form the sequence of leading principal minor determinants

a, dp
6 =1 =a P2 =
(6) Po P 11 2 4y ay
apn a,
po= | cov pn= A
ay, e a,

If A is of rank r it is said to be regular if p, # 0 and no two consecutive p;
in the sequence py, py, . . ., p, are zero. It is always possible to put any
symmetric matrix into regular form by interchanging rows and, simul-
taneously, the corresponding columns. Then, if A is a regularly arranged
matrix,

1. A necessary and sufficient condition for positive definiteness is that
p,>0fori=1,...,n.

2. A necessary and sufficient condition for positive semidcfiniteness is
that p; > 0, ..., p, > 0 and the remaining n — r p, equal zero, where
r may equal n.

Example 2.19. The matrix
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has the leading-principal-minor-determinant sequence p, =1, p, = 4,
p.=0, p; =0, and so it is not regularly arranged. We can reorder the
rows and columns to give the new matrix

with the sequence p, =1, p, =2, p, =8, p; = 0. The matrix and its
quadratic form are positive semidefinite of rank two.

Example 2.20. The matrix (3) of the sample sum of squares is a particular
case of the patterned matrix with a common diagonal element @ and equal
off-diagonal elements b. The determinant of such an i X i matrix is

(@ — b) 'la + (i — 1)b]

so that the leading principal minor determinants of (3) are
1
po=yIN =1 (-1

The first N — 1 of these are positive, while the Nth is always zero. The sum
of squared deviations is then a positive semidefinite quadratic form of rank
N -1

2.10 THE CHARACTERISTIC ROOTS
AND VECTORS OF A MATRIX

The characteristic roots of the p X p matrix A arc the solutions to the
determinantal equation

n |A — Al =0
The determinant is a pth-degree polynomial in A, and thus A has just p

characteristic roots. The Laplace expansion of the characteristic deter-
minant enables us to write the characteristic polynomial as

(2) A=A = (=AY + S(=2Y "+ (AP 2+ - = S5, A+ |A]

where S, is the sum of all i X i principal minor determinants. S, is merely
the sum of the diagonal elements of A, or tr A. It follows immediately
from the theory of polynomial equations that:

1. The product of the characteristic roots of A is equal to {A|f.
2. The sum of the characteristic roots of A is equal to the trace of A.

Example 2.21. The matrix

—_ N —
N = -
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has trace 6 and three 2 X 2 principal minor determinants equal to

21
1 2

| =3

while |A| = 4. The characteristic equation of A is
M—6A2+91—-4=0

and its roots are 1,1, and 4.

In the sequel we shall frequently need these properties of charac-
teristic roots:

1. The characteristic roots of a symmetric matrix with real elements are
all real. i

2. The characteristic roots of a positive definite matrix are all positive.

3. If an n X n symmetric matrix is positive semidefinite of rank r, it
contains exactly r positive characteristic roots and n — r zcro roots.

4. The nonzero characteristic roots of the product AB are equal to the
nonzero roots of BA. Hence the traces of AB and BA are equal.

5. The characteristic roots of a diagonal matrix are the diagonal elements
themselves.

Associated with every characteristic root A, of the square matrix A
is a characteristic vector X; whose elements satisfy the homogencous
system of equations
3) [A - Adlx, =0
By the definition of the characteristic root the determinant of the system
vanishes, and a nontrivial solution x, always exists. We note immediately
that the elements of the vector are determined only up to a scale factor.
Many of the characteristic vectors we shall encounter in the sequel will be

computed from symmetric matrices. The characteristic roots and vectors
of such matrices have these important properties:

1. If 4, and A, arc distinct characteristic roots of the symmetric matrix A,
their associated vectors x, and x, are orthogonal. This is readily
apparent if we premultiply the definitions of the vectors

Ax, = Ax, Ax, = Ax
by x; and x;, respectively. But this implies that
AXX, = A XX,

and since A; # A,, wc conclude that the vectors are orthogonal.
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2. For every real symmetric matrix A there exists an orthogonal matrix P
such that

) P'AP =D

where D is the diagonal matrix of the characteristic roots of A. The
normalized characteristic vectors of A can be taken as the columns of
P. Even if the characteristic roots are not distinct, it is still possible to
select the elements of their vectors to give a mutually orthogonal set
of characteristic vectors.

These properties of symmetric matrices have an important implica-
tion for quadratic forms. If we apply the orthogonal transformation

5) x = Py
to the p variables in the quadratic form x'Ax, the form becomes
6) x'Ax = y'P'APy

= y'Dy

=Ayi+ -+ Ay

where the A, are the characteristic roots of the coefficient matrix, and 7 is
the rank of the form. Any real quadratic form can be reduced to a
weighted sum of squares by computing the characteristic roots and
vectors of its matrix.

Example 2.22. The characteristic vector of the largest root of Example 2.21
must satisfy the equations
=2t + x5+ x3=0
Xy =22+ x3=0
Xp+t Xp—2x;3=0

If we arbitrarily set x;; equal to one and solve the first two non-
homogeneous equations, the characteristic vector is

x =[1,1,1]

and of course any nonnull vector [a, a, a] is a characteristic vector for
A; = 4. The vector associated with the double root A, = A, = 1 must satisfy
the system with the single linearly independent equation

X21 + x5 + X3 = 0
The most general solution to this is the vector
[a, b, —a — b]

and by properly selecting @ and b we can generate two linearly independent
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characteristic vectors for the double root. Note that any choice of a and b
will give vectors orthogonal to the first vector [1, 1, 1]. We may elect to
choose a and b in the second and third vectors to continue this
orthogonality. For example,

x| = 10,1, -1]
x = [-2,1,1]

Example 2.23. Square matrices with the property
AA = A

arc called idempotent and play an exceedingly important role in the thcory
of the analysis of variance. The characteristic roots of an idempotent matrix
are either zero or onc, and a quadratic form with such a matrix can be
reduced to a sum of r squared terms. It is easy to check that the matrix (3)
of Scc. 2.9 is idempotent and that it is thercforc possible to make the
transformation

S, —EY =y 4y

into a sum of squares of N — 1 new random variables whose statistical
independence follows from the orthogonality of the transformation.

Numerical methods for calculating characteristic roots and vectors
have been described by Bodewig (1956), Faddeeva (1959), Householder
(1953), and Ralston and Rabinowitz (1978). The APL Plus version
(STSC, 1986) of the APL computer language contains functions for
extracting characteristic roots and vectors of symmetric and general
square matrices. In Sec. 8.2 we shall describe an iterative scheme for
computing the largest roots of small matrices with a calculator.

Bounds for characteristic roots have been obtained by a number of
algebraists. Such results have been collected and summarized by Marcus
and Minc (1964).

2.11 PARTITIONED MATRICES

Frequently we shall find it convenient to think of certain rows and
columns of a matrix as grouped together because of common characteris-
tics of their associated variables. Such a matrix can be written as an array

(1) A= e,
.
of submatrices A; containing r; rows and c; columns, where it is obvious

that all submatrices in a given row of A must have the same number of
rows and each column must be composed of matrices with a like number
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of columns. Operations with partitioned matrices are akin to those in the
ungrouped case, except that the nonscalar nature of the elements must be
kept in mind. The sum of the partitioned matrices A and B whose
submatrices have similar dimensions is

A]I + B” Aln + Bln
(2) A + B e I
_Aml + Bml e Amn + an
The product of the partitioned matrices A and B is
n n
z AUBH Z Alle
3) AB = | - '.:.l ............ f:' .......
Z Am/B/l U 2 AnuBm
| =1 J-=1
The dimensions within cach submatrix product must conform; if the
submatrices of A have respective column numbers ¢y, . .., ¢,, thosc of B

must have the row dimensions ¢,, ..., c,.

When the clements of partitioned matrices must be shown, as in
numerical examples, it will be convenient to separate the submatrices by
dashed lincs or appropriate spacing.

Example 2.24. Let

1 OE 3 1 1
-2 3.1 2
a=|2200 e=|20
112 301
Then
10 4
7 -1
AB=|
9 3

It is also possible to express the inverse of a nonsingular partitioned
matrix in terms of its submatrices. In the particularly important case of

A11 A12
4 N
( ) A21 A22

where A;; and A,, are both square and by their principal-minor nature
nonsingular, it can be verified that

() A=
[ (An - A12A2_21A21)—1 _(Au - Alez_zlAzl)mlAlei-zl ]
—AZAN(AL — ARALA)TT AL + AR AL(AL - ARALAL) A LAY
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An alternate expression can be obtained by reversing the positions of A,
and A,, in the original matrix.

Frequently it is necessary to compute the determinant of the
partitioned matrix (4). If A, is nonsingular,

(6) |A] = |Anl 1Ay — AyATA |
If A,, is nonsingular,

™ |A| = Azl - A — ApAR'A,|

Example 2.25. The preceding expressions for the inverses and deter-
minants are often valuable in practical computation if the submatrices are
small or conveniently patterned. If

1 01 11
0o 12 2 2
A=13 -1 4 00
3 -1 040
3 -1 00 4

we can compute A ' by partitioning the matrix in terms of the first and
second and third to fifth rows and columns. Then

100

1 0 4
A= [0 ]] A =10 % 0
0 0 &

3 3
Ay — AIZAZZIAZI = [_4 ;]
p)

- 10 -3
(Au - A|2A22|A21) '= [ ]

18 -5

Lo i o=
A|2A£21=[1 T T] AJA,, =3 -}
2 2 2 31
a r
Hence
10 -3 -1 -1 -1
18 =5 -2 -2 -2
A'=[-3 1L ; i i
-3 1L 4 3 a
-3 1 & i

The determinant of A can be computed from (6) or (7) to be 16.

The two forms of the partitioned inverse (5) lead to a useful matrix
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identity. If we equate the alternative expressions for the (1,1) submatrix
of A™', we have

(8) (A — ApAL'A) ™ = AT + AT'A(An — AuATAL) TALAT
In particular, if A is p X p and nonsingular, b is a p X 1 vector, and c is
a scalar, then we have Bartlett’s (1951) form of the identity:

c

n—-1 __ -1 __
) (A +cbb)™ = A7 —

A7'bb’'A™!

Example 2.26. We shall use (9) to compute the inverse of the p X p matrix

a c C
K=|¢ ¢ c
cc - a
Let A =(a—c),b =][1,...,1], and write E = bb’. Then
1 c

K'=

a -—cl—(a —~c)a + c(p — 1)]E
or a matrix with a common diagonal element
a+ (p—2)c
(@—o)a+ (p—1)]
and off-diagonal elements each equal to

c
T @=-o)fa+ (p - 1)]

2.12 DIFFERENTIATION WITH
VECTORS AND MATRICES

In the later chapters we shall need formulas for finding the partial
derivatives of likelihoods and other scalar functions of vectors and
matrices. Let f(x) be a continuous function of the elements of the vector

x’ =[xy, ..., x,] whose first and second partial derivatives
ofx)  Ff(x)
ox, Ox; Ox,

exist for all points x in some region of p-dimensional euclidean space of
interest to us. Define the partial derivative operator vector as
3
x4

1) 2=
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Application of it to f(x) yields the vector of partial derivatives

)

I (x)
ox,
I _| .
ox )
af (x)
ox

P

The following functions and their derivatives are especially important:

1. If f(x) is constant for all x,
0
I |,
3) x|
0
2. f(x) = a'x:
o _ |
4) ox
a,,
Note that the columnar form of the derivative vector is unchanged if
we write f(x) = x'a.
3. To compute the vector of derivatives of the quadratic form x’ Ax write
e L N\ Y \
XAx = > >, a,xix, = a;x; + 2x, > ax, + 2, D apx,x,
o e s
and differentiate with respect to x,. If we let a; be the ith row of the
symmetric matrix A, the partial derivative of the quadratic form with
respect to x, is
P
2a)x = 2 ) a;x,
J=1
and the vector of partial derivatives is
ox'Ax
©) = 2Ax
ox
In particular, the vector of derivatives of the sum of squares x'x is
merely 2x.
4. In the more general quadratic function
(6) h(x) = (a — Cx)'K(a — Cx)

let K be an N X N symmetric matrix, C = [C,,...,C,]isan N X p
matrix of constants, and a is an N X 1 vector. If we let u = a — Cx,
the derivatives of h(x) can be computed by the chain rule:
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Oh(x) _ & 3(u'Ku) du,

) ax 2 ou ox
= —2u'KC; i=1,...,p
and
h
8) %S‘—) = —2C’K(a — Cx)

5. The matrix of second-order partial derivatives of a function of p
variables is called the hessian matrix:

Ffx) P
5 ox? dx, 3x,
C)] H = If®) = e
ox' ox , 5y
) P
axl ax,, ax,z,

For example, the hessian matrix of f(x) = x’Ax is merely 2A. The
hessian is necessarily symmetric if our original conditions of continuity
and cxistence of all first and second derivatives are satisfied by f(x).

Determination of maxima and minima. A necessary condition for a
maximum or minimum of f(x) at x = x,, is that

(10) %’9 =0

at that point. Such a value of the function is called a stationary maximum
or minimum, as opposed to a global extremum which might exist on the
boundary of the admissible region of x, or as a cusp or other form at
which the derivatives were undefined. A sufficient condition for a
maximum at the point x, satisfying (10) is that the hessian matrix
evaluated at X, is negative definite. Similarly, a positive definite hessian is
a sufficient condition for a stationary minimum. If the hessian is
semidefinite the test fails, and higher-order terms in the Taylor expansion
of f(x) must be examined in the vicinity of the stationary point. If the
hessian is an indefinite matrix x,, that point is neither a maximum nor a
minimum.

As an application of these rules let us determine the stationary
extremum of the function A(x) given by (6). By equating (8) to the null
vector we see that the stationary point must satisfy the system of linear
equations

(11) C'’KCx = C'Ka
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and if C'’KC is of full rank p,
(12) x = (C'’KC)"'C'Ka

If K is positive definite and C has rank p, the hessian 2C'KC will be
positive definite and the solution (12) will minimize h(x).

Maximization subject to constraints. Frequently it will be necessary to
maximize or minimize one function f(x) subject to a constraint g(x) = ¢
on the values of x. Although one might be able to handle this problem by
eliminating one variable by the constraint, a more general and efficient
method is that of Lagrange multipliers. The mathematical basis for that
technique can be found in most modern calculus texts, e.g., Courant
(1966) or Hadley (1964). Essentially, we form a new function

(13) h(x,2) = f(x) — Alg(x) = ¢]
For a constrained stationary value these conditions must be met:
Oh(x,A) _of(x) . 9g(x)
(14a) ox  ox A ax
=0
oh(x,A)
(14b) FYR g(x) + ¢

=0

The second condition is of course nothing more than the original
constraint. In practicc one must solve the equations (14a) for x after
eliminating A by algebraic manipulation or from the nature of the
equations.

As an example, let us find the maximum value of the quadratic
function f(x) = x'Ax, where A is a positive definite matrix, subject to
the constraint x'x = 1. Then

h(x,A) = x'Ax — A(x'x — 1)
and (14a) is the system of linear equations
(15) [A=-Allx=0

defining the characteristic vectors of A. Premultiplication by x’ and use of
the constraint yields A = x'Ax; clearly, if that quadratic form is to be a
maximum then A must be the greatest characteristic root of A, and x its
associated vector. The constraint directs that the vector be normalized to
length one. Similarly, the minimum value of f(x) subject to the condition
would be given by the characteristic vector corresponding to the smallest
characteristic root.
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Sufficient conditions for maxima and minima in the presence of one
or more constraints have been given by Hancock (1960, pp. 114-116) and
in certain more current texts, e.g., Goldberger (1964, pp. 45-48).

The derivative of the determinant of the n X n matrix A with
respect to its element a; can be found from the expansion of A in the
cofactors of the ith row or jth column. By the first expansion,

oAl 2
(16) EI; B au'(a:lAil ot g Ayt aA)
= A,
If A is symmetric,
IIAl _
17) 2q, A

and it can be shown from more general formulas for derivatives of
determinants, whose clements are in turn functions of other variables,
that

SIA| _
da,,

(18) i

In the sequel it will be necessary to differentiate quadratic forms
and other scalars with respect to elements of their constituent matrices. If
X is an m X n matrix with general element x;;, its derivative with respect
to that element is

X
ax,

(19)

where J; is the m X n matrix with a one in the ijth position and zeros
everywhere else. If X is symmetric,

12).4 S
The rule for differentiating a matrix product is similar to that for
scalars. Suppose that the elements of the conformable matrices X and Y
are functions x;(z), y;(z) of some variable z. Then

XY oX Y
= X —
oz oz Y+ oz

This formula leads to a means of differentiating the inverse of the square
nonsingular matrix X. Write

eay)

I=XX"'
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Then
-1
_§_I_ = J.,-X_l + X§§—
ax,,' 3)6,;
=0
and
) Gl -1 -

(22) ox, = -X"J;X

If X is symmetric,
ax—l _ {—X_IJ,','X—I i =]
XTI, )X i

23
(23) o
Many other formulas for matrix and vector differentiation have been

given in a series of papers by Dwyer and MacPhail (1948), Dwyer (1967),
and Tracy and Dwyer (1969).

2.13 FURTHER READING

The texts of Basilevsky (1983), Browne (1958), Graybill (1983), Hadley
(1961), Hohn (1964), Perlis (1952), Searle (1966, 1982), and Searle and
Hausman (1970) serve well both as surveys of matrix algebra and as
sources for the proofs of the results of this chapter. Horst (1963) has
developed matrix operations at a more verbal level for workers in the
social sciences. Frazer, Duncan, and Collar (1963) have discussed a wide
variety of topics in the algebra and numerical-analysis methods of
matrices. A more advanced treatment motivated by physical and prob-
abilistic applications has been written by Bellman (1970). Householder
(1964) has given a theoretical development of numerical techniques for
the solution of systems of linear equations, matrix inversion, and
extraction of characteristic roots. Roy’s monograph (1957) contains in its
appendices a wealth of special theorems on partitioned matrices, quad-
ratic forms, and characteristic roots.

2.14 EXERCISES

1. Let

1 2 -1 32 -1
A=|-13 -1] B= 23 1] C=|-
2 2 4 -1 1
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Perform those matrix operations that are defined:

(a) A+B (b) A-2B (c)A'+B dA+C
(e) (A+B) (f) GA' -2B)
2. If
3 2 1 1221 _; ;
P=|2 5 -1 Q=|1 11 4] R= 3 -1
- 1 2 1
1 -1 3 2 2 9
1 2 :;
X = 0l y=1]3 z=
-1 2 -3
-4
compute those matrix products that are defined:
(@) PQ (b)) PQR  (c) QR'  (d) '
(&) xy (f) xPx  (g) xPy (h) P(x+Yy)

3. If A is the general n X n matrix and j and E have the patterns defined in Sec.
2.2, interpret these expressions:

(@) j'A (b) Aj (c) diag (EA) (d) diag (AE)
(e) ' (f) Ej (g) E?
4. Which of the following matrices are commutative under multiplication?
310 111 300 210
A=|1 2 1| B=|1 1 1| C=]0 3 0] D=]1 2 1
012 111 00 3 01 2
5. Calculate the determinants of these matrices using the most convenient
methods:
[4 2 0 1 08 05 5 00
@) |5 3 0 ()08 1 0.6 ©0]0 3 0
|6 9 2 05 06 1 [0 0 1
2 01 1 1
1 4 -1 (2) 2 3 2 02333
d |3 12 -3 (e) 5 0 1 0 @l 3100
|0 35 7 04 0 1 13010
1 3 0 0 1

6. Compute the inverses of these matrices:

51 =2 a b b
@] 26 3 ® |b a b
| -1 0 3 b b oa
4 3 21
-

> 00 0321

|0 8 6 (d)
06 s 0021
- 0001
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7. Use elementary row or column operations to calculate the ranks of these

matrices:
1 2 3 4 5
1 021 1 0 -1 31
1 1 20 2 1 1 0 1
@1 -1 22 ® | 63 8§ -5 3
1 1 20 -1 2 6 -2 3
11 2 =30
8. Find a generalized inverse of the matrix

345

A=}14 5 6

5 6 7

and use it to solve the system of equations x’A’ = [0, 1, 2].
9. Determine the solution to the system of equations

2, — X+ X3= 2

X, +4x, — 2x; = —1

2, +2x,+ x3= 0

10. Verify that the system of homogeneous equations
X+ xo+ x3=0

X, +2x,— x;=0

3x, +3x;=0

has a nontrivial solution and obtain all linearly independent solutions to the
system.
11. Determine the rank of the system of equations

26, + X2+ x5 =0
x;p+ 20— x3+3x,=0
X1 — Xp+3x;—4x,=0

3x; —4dx; + Txy =0

and compute its solution by the method of generalized inverses.
12. Identity those vectors of the set
t =[31%3,1]
u =[1,0,-1,0]
2 2
v [Zod]
2 2

that are orthogonal or orthonormal, and compute the angles of each pair of
vectors.
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14.

16.

17.

18.

19.
20.

21.
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Verify that the matrix
S Vi1 -
2 2
V2 V6 V2
4 4 2
V2 V6 V2
"4 4 2]

is orthogonal.
Write the matrix of the quadratic form

22 — 20, x, + X3 + 4x,x, — 3x2

and determine whether it is positive definite.

Classify the following matrices as positive definite or positive semidefinite:
4 1 2 [ 1 0 -1 2 1 -1
@1 4 -1]| (b) 01 0] () 12 1
2 -1 4 | -1 0 1 -1 1 2
Given the matrix
2 V2 0
A=|V2 2 V2
0 V2 2

compute its characteristic roots and vectors, and determine the orthogonal
matrix reducing it to diagonal form.

SRR

compute the sums and products of the characteristic roots of
(¢) A'B (b) AB '
From the matrix of the function

fx,y,z) = 4x* + 4y? + 227 + dxy + 2xz + 2yz

can you determine its extremal properties at the pointx =y = z = (?
Maximize f(x) = (a’x)* subject to the constraint x'x = 1.
Minimize the function

flx,y) = x> + 2axy + y?

where |a] = 1, under the condition xy = 1. What is the geometrical inter-
pretation of this problem?
Using expressions (5) and (7) of Sec. 2.11, show that the determinant of the
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p X p matrix A can be written as

|A| = 1/(a,'- - -ai")
= a,,,,/(a,‘,'- . .aél)
where a!' = (1, 1) element of the inverse of the j X j matrix formed from the
last j rows and columns of A

a,, = ppth element of A



