Moments

Raw moment:

\[\mu'_n = E(X^n) \]

Central moment:

\[\mu_n = E[(X - \mu)^2] \]

Normalized / Standardized moment:

\[\frac{\mu_n}{\sigma^n} \]

Moment Generating Function

The moment generating function of a random variable \(X \) is defined for all real values of \(t \) by

\[
M_X(t) = E[e^{tX}] = \begin{cases}
\sum_x e^{tx}P(X = x) & \text{If } X \text{ is discrete} \\
\int_x e^{tx}P(X = x)dx & \text{If } X \text{ is continuous}
\end{cases}
\]

This is called the moment generating function because we can obtain the raw moments of \(X \) by successively differentiating \(M_X(t) \) and evaluating at \(t = 0 \).

\[
M_X(0) = E[e^0] = 1 = \mu'_0
\]

\[
M'_X(t) = \frac{d}{dt}e^{tx} = E\left[\frac{d}{dt}e^{tx}\right] = E[Xe^{tx}] \\
M'_X(0) = E[X] = \mu'_1
\]

\[
M''_X(t) = \frac{d}{dt}M'_X(t) = \frac{d}{dt}E[Xe^{tx}] = E\left[\frac{d}{dt}(xe^{tx})\right] = E[X^2e^{tx}] \\
M''_X(0) = E[X^2] = \mu'_2
\]

Moment Generating Function - Properties

If \(X \) and \(Y \) are independent random variables then the moment generating function for the distribution of \(X + Y \) is

\[
M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t)
\]

Similarly, the moment generating function for \(S_n \), the sum of iid random variables \(X_1, X_2, \ldots, X_n \) is

\[
M_{S_n}(t) = [M_X(t)]^n
\]
Moment Generating Function - Unit Normal

Let $Z \sim \mathcal{N}(0, 1)$ then

\[
M_Z(t) = \mathbb{E}[e^{tZ}] = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx
\]

\[
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2-2tx}{2}} \, dx
\]

\[
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-t)^2}{2} + \frac{t^2}{2}} \, dx
\]

\[
= e^{t^2/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-t)^2}{2}} \, dx
\]

\[
= e^{t^2/2}
\]

Sketch of Proof

Central Limit Theorem
Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables each having mean μ and variance σ^2. Then the distribution of

\[
\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}}
\]

tends to the unit normal as $n \to \infty$.

That is, for $-\infty < a < \infty$,

\[
P\left(\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}} \leq a\right) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} \, dx = \Phi(a) \quad \text{as} \quad n \to \infty
\]

Proposition
Let X_1, X_2, \ldots be a sequence of independent and identically distributed random variables and $S_n = X_1 + \cdots + X_n$. The distribution of S_n is given by the distribution function f_{S_n} which has a moment generating function M_{S_n} with $n \geq 1$.

Let Z being a random variable with distribution function f_Z and moment generating function M_Z.

If $M_{S_n}(t) \to M_Z(t)$ for all t, then $f_{S_n}(t) \to f_Z(t)$ for all t at which $f_Z(t)$ is continuous.

We can prove the CLT by letting $Z \sim \mathcal{N}(0, 1)$, $M_Z(t) = e^{t^2/2}$ and then showing for any S_n that $M_{S_n/\sqrt{n}} \to e^{t^2/2}$ as $n \to \infty$.
Some simplifying assumptions and notation:

- \(E(X_i) = 0 \)
- \(\text{Var}(X_i) = 1 \)
- \(M_{X_i}(t) \) exists and is finite
- \(L(t) = \log M(t) \)
- L'Hospital's Rule:

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}
\]

The moment generating function of \(X_i/\sqrt{n} \) is given by

\[
M_{X_i/\sqrt{n}}(t) = E \left[\exp \left(\frac{tX_i}{\sqrt{n}} \right) \right] = M_{X_i} \left(\frac{t}{\sqrt{n}} \right)
\]

and this the moment generating function of \(S_n/\sqrt{n} = \sum_i 1^n X_i/\sqrt{n} \) is given by

\[
M_{S_n/\sqrt{n}}(t) = \left[M_{X_i} \left(\frac{t}{\sqrt{n}} \right) \right]^n
\]

Therefore in order to show \(M_{S_n/\sqrt{n}} \to M_Z(t) \) we need to show

\[
\left[M_{X_i} \left(\frac{t}{\sqrt{n}} \right) \right]^n \to e^{t^2/2}
\]

\[
\lim_{n \to \infty} \frac{L(t/\sqrt{n})}{n} = \lim_{n \to \infty} \frac{L'(t/\sqrt{n}) - \frac{1}{2} n^{-3/2}}{n^{-2}} \quad \quad \quad \text{by L'Hospital's rule}
\]

\[
= \lim_{n \to \infty} \frac{L'(t/\sqrt{n})}{2n^{-1/2}}
\]

\[
= \lim_{n \to \infty} \frac{L''(t/\sqrt{n}) t(1/2) n^{-3/2}}{n^{-3/2}} \quad \text{by L'Hospital's rule}
\]

\[
= \lim_{n \to \infty} L''(t/\sqrt{n}) \frac{t^2}{2}
\]

\[
= \frac{t^2}{2}
\]
Proof of the CLT, Final Comments

The preceding proof assumes that $E(X_i) = 0$ and $\text{Var}(X_i) = 1$.

We can generalize this result to any collection of random variables Y_i by considering the standardized form $Y_i^* = (Y_i - \mu)/\sigma$:

$$\frac{Y_1 + \cdots + Y_n - n\mu}{\sigma\sqrt{n}} = \left(\frac{Y_1 - \mu}{\sigma} + \cdots + \frac{Y_n - \mu}{\sigma} \right) / \sqrt{n} = \left(Y_1^* + \cdots + Y_n^* \right) / \sqrt{n}$$

$E(Y_i^*) = 0$
$\text{Var}(Y_i^*) = 1$

Cumulative Distribution Function

We have already seen a variety of problems where we find $P(X \leq x)$ or $P(X > x)$ etc. The former is given a special name - the cumulative distribution function.

If X is discrete with probability mass function $f(x)$ then

$$P(X \leq x) = F(x) = \sum_{z=-\infty}^{x} f(z)$$

If X is continuous with probability density function $f(x)$ then

$$P(X \leq x) = F(x) = \int_{-\infty}^{x} f(x) \, dz$$

CDF is defined for all $-\infty < x < \infty$ and follows the following rules:

- $\lim_{x \to -\infty} F(x) = 0$
- $\lim_{x \to \infty} F(x) = 1$
- $x < y \Rightarrow F(x) < F(y)$

Binomial CDF

Let $X \sim \text{Binom}(n, p)$ then

Probability Mass Function

$$P(X = k) = f(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Cumulative Density Function

$$P(X \leq x) = F(x) = \sum_{k=0}^{\lfloor x \rfloor} \binom{n}{k} p^k (1 - p)^{n-k}$$

Uniform CDF

Let $X \sim \text{Unif}(a, b)$ then

Probability Mass Function

$$f(x) = \begin{cases}
\frac{1}{b-a} & \text{for } x \in [a, b] \\
0 & \text{otherwise}
\end{cases}$$

Cumulative Density Function

$$F(x) = \begin{cases}
0 & \text{for } x \leq a \\
\frac{x-a}{b-a} & \text{for } x \in [a, b] \\
1 & \text{for } x \geq b
\end{cases}$$
Normal CDF

Let $X \sim N(\mu, \sigma^2)$ then

Probability Mass Function

$$f(x) = \phi(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Cumulative Density Function

$$F(x) = \Phi(x)$$

Exponential Distribution

In general terms, the Exponential distribution describes the time between events which occur continuously with a given rate λ (the expected number of events in a given unit of time).

Let $X \sim \text{Exp}(\lambda)$, we define one unit of time as $1/\lambda$ which we can sub-divide into n sub-intervals. The probability that an event occurs during a particular sub-interval is approximately λ/n.

The probability that we must wait b or fewer units of time between events is the same as the probability that an event does occur in one of the $b \cdot n^{th}$ sub-intervals. Therefore, if we let $Y \sim \text{Geo}(\lambda/n)$ then

$$P(X \leq b) \approx P(Y \leq nb) = \sum_{k=0}^{bn-1} P(Y = k) = \sum_{k=0}^{bn-1} \left(1 - \frac{\lambda}{n}\right)^k \frac{\lambda}{n}$$

In this case we have the CDF but not the PDF, how do we get the PDF?
Continuous Random Variables

Exponential Distribution, cont.

Let X be a random variable that reflects the time between events which occur continuously with a given rate λ, $X \sim \text{Exp}(\lambda)$

$$f(x|\lambda) = \lambda e^{-\lambda x}$$
$$P(X \leq x) = F(x|\lambda) = 1 - e^{-\lambda x}$$

$$M_X(t) = \left(1 - \frac{t}{\lambda}\right)^{-1}$$

$$E(X) = \lambda^{-1}$$
$$\text{Var}(X) = \lambda^{-2}$$
$$\text{Median}(X) = \frac{\log 2}{\lambda}$$

Exponential Distribution - Memoryless Property

Let $X \sim \text{Exp}(\lambda)$ (assume λ has units of events/min) then if we have waited s minutes without observing an event what is the probability that an event occurs in the next t minutes?

$$P(X > s + t|X > s) = \frac{P(X > s + t, X > s)}{P(X > s)} = \frac{P(X > s + t)}{P(X > s)}$$

$$= \frac{1 - P(X \leq s + t)}{1 - P(X \leq s)} = \frac{1 - F(s + t)}{1 - F(s)}$$

$$= \frac{1 - (1 - e^{-\lambda(s+t)})}{1 - (1 - e^{-\lambda s})} = e^{-\lambda(s+t)} / e^{-\lambda s} = e^{-\lambda t}$$

$$= 1 - (1 - e^{-\lambda t}) = 1 - F(t)$$

$$= P(X > t)$$

Exponential Distribution - Example

Strontium 90 is a radioactive component of fallout from nuclear explosions. The halflife of Strontium 90 is 28 years and the decay of an individual atom can be modeled by an exponential random variable.

(a) What is the decay rate λ?
(b) What is the average lifetime of a Strontium 90?
(c) What is the probability that a Strontium 90 survives at least 50 years?
(d) What is the probability that a Strontium 90 survives at least 75 years given it has survived at least 25 years?