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Normal model with a normal prior

! Model X1, · · · ,Xn
IID∼ N(µ,σ2)

! Parameter µ ∈ (−∞,∞),

! σ2 is fixed.

! Prior π(µ) = N(a0, b20).

! What is π(µ|x)?
! Do algebra on log π(µ|x) = const + log π(µ) + #x(µ).
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What the algebra gives

! log π(µ) = const− (µ−a0)2

2b20

! #x(µ) = const− n(x̄−µ)2

2σ2

! Complete the squares...

log π(µ|x) = const− 1

2

[
µ2

(
1

b20
+

n

σ2

)
− 2µ

(
a0
b20

+
nx̄

σ2

)]

= const− 1

2

(µ− an)2

b2n

with an =
a0/b20+nx̄/σ2

1/b20+n/σ2 =
σ2a0+nb20 x̄
σ2+nb20

, b2n = 1
1/b20+n/σ2 =

σ2b20
σ2+nb20

.

! Hence π(µ|x) = N(an, b2n)
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Example: Food expenditure

! X1, · · · ,Xn: weekly food expenditures of n Duke students

! Xi
IID∼ N(µ,σ2), µ ∈ (−∞,∞), σ = 30.

! π(µ) = N(150, 252).

! Observed data: n = 22, x̄ = 143.64.

! π(µ|x) = N(144.03, 6.192).
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95% range

! That π(µ|x) is recognizable helps produce summaries

## R code: 95% range of normal pdf

> a.n <- 144.03

> b.n <- 6.19

> range.95 <- qnorm(c(.025, .975), a.n, b.n)

> round(range.95, 2)

[1] 131.90 156.16

! So the 95% posterior range for µ is [131.90, 156.16]

! The ML interval B1.96(x) = x̄ ∓ 1.96 σ√
n
= [131.10, 156.18]
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Recognizable posterior pdf

! It’s again a speciality of the normal model + the normal prior
that leads to an expression of the posterior (log) pdf that is
easily recognized as a “common” pdf

! Same holds for other normal models, including the extension
of the above model where σ2 is unknown. We’ll see these in
details later.

! Fortunately, there are a few other (useful, and mostly single
parameter) models where a special choice of the prior pdf
leads to a recognizable posterior pdf.
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Conjugacy

! Consider a model X ∼ f (x |θ), θ ∈ Θ

! A collection F of prior pdfs is conjugate to the model if for
every π(θ) ∈ F used as a prior, the corresponding posterior
π(θ|x) ∈ F

! Most useful when F = {π(θ|a) : a ∈ A} where A is a subset
of an Euclidean space.
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Examples

! Binomial model + beta prior −→ beta posterior

! Poisson model + gamma prior −→ gamma posterior

! Exponential model + gamma prior −→ gamma posterior

! Uniform model + Pareto prior −→ Pareto posterior
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A general result: Exponential family

! Data: X = (X1, · · · ,Xn)

! Model Xi
IID∼ g(xi |θ) = h(xi )eη(θ)

TT (xi )−B(θ), θ ∈ Θ

! dim(η(θ)) = k

! F = {π(θ|a, b) = c(a, b)eη(θ)
T a−bB(θ) : a ∈ Rk , b > 0}

! F is conjugate.
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Approximating posterior pdf

! Many models do not have any suitable conjugate prior family.

! Even if a model did have one, our prior belief may compell us
to use a prior pdf not from this family

! The posterior may no longer be recognizable.
! But we can still summarize it – get range and other

characteristics as well as calculate posterior probability of an
event of interest – through sophisticated approximation
techniques

! Laplace approximation
! Sampling based Monte Carlo (e.g., Markov chain Monte Carlo)
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Laplace Approximation

! Laplace approximation is simply a quadratic approximation to

log π(θ|x) = const + #x(θ) + log π(θ)

near its maximizing point θ̂MAP(x)

! MAP stands for maximum a-posteriori

! With Hx denoting the curvature of log π(θ|x) at the maximum
[i.e., the negative second derivative of log π(θ|x) at θ̂MAP(x)],

log π(θ|x) ≈ const− 1

2
(θ − θ̂MAP(x))

THx(θ − θ̂MAP(x))

is same as log of the N(θ̂MAP(x),H−1
x ) pdf evaluated at θ.

! So π(θ|x) ≈ N(θ̂MAP(x),H−1
x )
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When does the approximation hold?

! Laplace approximation holds for the same models for which
the likelihood function admits a quadratic approximation near
the mle.

! We also need log π(θ) to be two times differentiable in θ and
relatively flat with respect to #x(θ).

! In particular, if Xi
IND∼ h(xi , zi )e

η(θ)TT (xi ,zi )−Bzi (θ) and log π(θ)
is twice differentiable, then the approximation holds for all
large n

! [Need some additional assumptions on η(θ) and h(x , z)]

! For large n, θ̂MAP(x) ≈ θ̂MLE(x) and Hx ≈ Ix .

! Large could be as little as n = 20
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Example: Success rates data

! X1, · · · ,Xn: 1st serve success rates of a player from n matches

! Model: Xi
IID∼ θxθ−1

i , θ ∈ (0,∞).

! Prior: π(θ) = Ga(a0, b0)

! Posterior π(θ|x) = Ga(an, bn),

! an = a0 + n, bn = b0 −
∑n

i=1 log xi .

! θ̂MAP(x) = (an − 1)/bn, Hx = b2n/(an − 1)
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A comparison

! n = 40,
∑n

i=1 log xi = −8.2, a0 = b0 = 1
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Some issues

! Don’t know the quality of approximation if we can’t plot the
exact pdf

! Quality of approximation depends only on observed data, we
have no control over it

! Quadratic approximation may not hold for complicated
hierarchical models (we’ll see some later).

! In modern applications, the preferred mode of approximation
is through sampling techniques (rejection sampling,
importance sampling, Markov chain sampling) and Monte
averaging [more later].
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