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Bayes testing

The basic goal of testing is to provide a summary of evidence toward/against a hy-
pothesis of the kind H0 : θ ∈ Θ0, for some scientifically important subset Θ0 of the
parameter space Θ.

For a data model X ∼ f(x | θ), θ ∈ Θ, a Bayesian would start by specifying a prior
pdf π(θ) for θ. The prior then combines with the data X = x to produce a posterior
pdf π(θ | x) for θ. At this stage, we can simply summarize the evidence toward H0 by

P (H0|x) = Pr(θ ∈ Θ0 | X = x) =

∫
Θ0

π(θ | x)dθ

and the evidence against H0 is simply 1− P (H0|x).
This probability represents our updated belief about the statement H0. If a “re-

ject/accept H0” type decision is indeed warranted, then we could do it by subjecting
Pr(θ ∈ Θ0 | X = x) to a cut-off of our choice. That is, we reject H0 if

Pr(θ ∈ Θ0 | X = x) < k

for some (positive) cut-off k. How do we choose this cut-off?

Loss function

To guide the choice of a cut-off, we need to carefully think about the consequences of
our decisions. We now have to pretend that θ is going to be observed (in future) and
our decision is going to be checked against the observed value. If the decision matches
the observed value, we incur no penalty, otherwise we are penalized a positive amount.
Let d0 denote “we decide θ ∈ Θ0” and d1 denote “we decide θ ̸∈ Θ0”. Then we incur a
penalty if we go for d0 and the observed θ turns out to be in Θ \Θ0, or if we go for d1
and θ turns out to be in Θ0. These two penalties can potentially differ in the amount
we lose. This is expressed in the following loss table:

θ ∈ Θ0 θ ∈ Θ \Θ0

d0 0 w0

d1 w1 0

If we denote by loss(d, θ) the loss incurred when we go for a decision d ∈ {d0, d1} and
the parameter value is later observed to be θ, then

loss(d0, θ) = 0, θ ∈ Θ0, loss(d0, θ) = w0, θ ∈ Θ \Θ0,
loss(d1, θ) = w1, θ ∈ Θ0, loss(d1, θ) = 0, θ ∈ Θ \Θ0.
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Therefore the posterior expected loss of a decision d

r(d) = E[loss(d, θ)|X = x] =

∫
loss(d, θ)π(θ | x)dθ

can be simplified to

r(d0) = w0

∫
Θ\Θ0

π(θ | x)dθ = w0 Pr(θ ∈ Θ \Θ0 | X = x)

r(d1) = w1

∫
Θ0

π(θ | x)dθ = w1 Pr(θ ∈ Θ0 | X = x).

If we go for the decision that minimizes our posterior expected loss, then we are
committed to reject H0 if (and only if)

r(d1) < r(d0) ⇐⇒ Pr(θ ∈ Θ0 | X = x)

Pr(θ ∈ Θ \Θ0 | X = x)
<

w0

w1

⇐⇒ Pr(θ ∈ Θ0 | X = x) <
w0

w0 + w1

the last equivalence follows from the fact that Pr(θ ∈ Θ\Θ0 | X = x) = 1−Pr(θ ∈ Θ0 |
X = x). Tying back to the preceding section, we see that the cut-off k = w0/(w0+w1)
is determined by the relative gravity of the two possible mistakes we can make.

Notice that the above approach starkly differs from the “controlling errors” foun-
dation of the classical testing procedures. In the Bayesian setting, once the post-data
belief about θ is expressed by the posterior π(θ | x), the actual decisions are entirely
based on expected costs associated with the two decisions where expectations are eval-
uated via π(θ | x). Unlike the classical setting, there is no frequentist guarantee that’s
sought here.

Issues with testing point nulls

Consider the statistical analysis done by Laplace on female birthrate. He had modeled
X =number of female births among n births as X ∼ Bin(n, p) with p ∼ Unif(0, 1) =
Be(1, 1). The observed data were n = 493472 and X = 241945 which lead to the
posterior pdf Be(249146, 251528). For testing H0 : p ≥ 0.5 against H1 : p < 0.5
Laplace would report Pr(p ≥ 0.5) = 10−42.

One can argue that what Laplace really wanted to study was whether H0 : p = 0.5
against H1 : p ̸= 0.5. This presents a unique challenge. Because p is modeled with a
pdf over [0, 1], the posterior is also a pdf over [0, 1] and hence Pr(p = 0.5 | X = x) =
Pr(p = 0.5) = 0. Note that this “zero” does not reflect that the posterior concentrates
away from p = 0.5. It is simply an artifact of our prior on p which treats p as a
continuous random variable, and so the probability of any single value is simply zero.
There are a couple of different ways to go about this.
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Bayesian tail area probability

The goal of testing a point nullH0 : θ = θ0 can be interpreted as judging the plausibility
of a special value θ0 (i.e., for female birth rate p = 0.5 is special because it captures
equal odds). This can be effectively done by communicating how central θ0 is to the
posterior pdf π(θ | x).

We could look at all 100(1−α)%, equal-tail, posterior credible intervals for θ [given
by the α/2 and (1−α/2)th posterior quantiles of θ] and check what is the largest value
of α for which this includes θ0. This limiting α value is simply

2×min(Pr(θ > θ0 | X = x), P (θ < θ0 | X = x)).

If this summary is close to zero, it reflects that θ0 is far out in the tails of the π(θ | x)
pdf. I refer to the above number a “Bayesian tail area probability” that quantifies
evidence in support of H0 [with obvious analogy to p-values for classical testing.]

Ignorance range

Some statisticians contest the basic premise of a point null, arguing that it gives an
extreme abstraction of a range of interesting values. That is, with H0 : θ = θ0 we
perhaps want to capture H0 : |θ− θ0| < d for some small positive number d. Thus one
could instead report P (|θ − θ0| < d | X = x) for all (interesting) d > 0. The best way
to report this would be to make a plot P (|θ − θ0| < d | X = x) as a function of d > 0.

Formal testing

There is in fact one other way to approach the point null testing problem. It requires
using a prior distribution that recognizes that θ0 is a special value and assigns it a
positive probability. For female birthrate, this can be achieved if we describe p as
follows:

Pr(p = 0.5) = p0, p | [p ̸= 0.5] ∼ π1(p).

The above indeed defines a random variable p which takes values in [0, 1], but it is
described by a “mixture” of a point mass at 0.5 and a pdf over [0, 1].

In fact one can write the prior “pdf” of p as:

π(p) = p0δ0.5(p) + (1− p0)π1(p)

where δa(x) denotes the Kronecker Delta function (δa(x) = 1 if x = a, and is zero
otherwise). This leads to the following calculation of posterior “pdf”

π(p|x) = const× px(1− p)n−x × π1(p)

= p0(x)δ0.5(p) + (1− p0(x))π1(p|x)

where π1(p|x) = const× px(1− p)n−x × π1(p) and

p0(x) =
1

1 + 1−p0
p0

∫ 1
0 px(1−p)n−xπ1(p)dp

(0.5)n

.
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Notice that Pr(p = 0.5|X = x) is precisely p0(x). And therefore we could report p0(x)
as a summary of evidence in support of H0, as it precisely gives P (H0|x).

However, such a formal framework for hypothesis testing is not universally accepted.
A major concern being the use of a drastically different prior on θ than what one would
have used if only a credible interval was to be reported. The difference in the choice of
prior can have a pronounced effect on the posterior inference. The difference is often
stark when apparently “low-information” priors are used for both cases. See the next
example [known as Lindley’s paradox].

Example. Imagine a city where 49,581 boys and 48,870 girls have been born over a
certain period of time. The number of female births X is modeled with X ∼ Bin(n, p),
with n = 98451 and p ∈ [0, 1]. For the non-informative choice π(p) = Unif(0, 1) we
get P (p ≥ 0.5|X = 49581, n = 98451) = 0.012, and so a Bayesian tail area probability
is 2 × 0.012 = 0.024, indicating moderately strong evidence against H0. For a “low-
information” point-null prior with p0 = 0.5 and π1(p) = Unif(0, 1), we get p0(x) = 0.95,
indicating rather strong evidence toward H0.

Model comparison and Bayes factor

In the point-null approach, we actually considered two different models:

M0 : X ∼ f(x|θ0)
M1 : X ∼ f(x|θ), θ ∈ π1(θ)

along with prior model probabilities, P (M0) = p0 and P (M1) = 1− p0. The quantity
p0(x) is precisely p0(x) = P (M0|x).

This setting generalizes to a more complex framework with potentially many mod-
els:

M1 : X ∼ f1(x|θ1), θ1 ∼ π1(θ1), θ1 ∈ Θ1

M2 : X ∼ f2(x|θ2), θ2 ∼ π2(θ2), θ2 ∈ Θ2

...

Mk : X ∼ fk(x|θk), θk ∼ πk(θk), θk ∈ Θk

where each model can have its own distinct family of pdfs/pmfs with different parame-
ters living on different spaces. The specification is completed by attaching prior model
probabilities:

P (M1) = p1, · · · , P (Mk) = pk

with pi ≥ 0 and
∑

i pi = 1.
Bayes rule gives that the posterior probability of model Mj is

P (Mj|X = x) = pj(x) =
pi
∫
Θj

fj(x|θj)πj(θj)dθj∑k
i=1 pi

∫
Θi

fi(x|θi)πi(θi)dθi
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and the conditional posterior distribution of θj under model Mj is

πj(θj|x) =
fj(xj|θj)πj(θj)∫

Θj
fj(xj|θj)πj(θj)dθj

.

Bayes factor

The posterior odds of model Mi to model Mj is

pi(x)

pj(x)
=

pi
pj

×
∫
Θi

fi(x|θi)πi(θi)dθi∫
Θj

fj(x|θj)πj(θj)dθj
=

pi
pj

× BFij(x)

where BFij(x), called Bayes factor of Mi to Mj is the ratio of the marginal likelihoods
of the two models. Many people prefer reporting the Bayes factor to the posterior
odds, as the former does not depend on the prior odds. Any reader can multiply the
reported Bayes factor with her prior odds to obtain her odds of posterior probabilities.

Marginal likelihood calculations

If X ∼ f(x|θ), θ ∼ π(θ) is a conjugate model then the marginal likelihood f(x) =∫
Θ
f(x|θ)π(θ)dθ can be calculated in closed form [this is really the normalizing constant

in π(θ|x) = f(x|θ)π(θ)/f(x)]. For example, if X ∼ Bin(n, p) and p ∼ bet(a, b), then

f(x) =

(
n

x

)∫ 1

0

px(1− p)n−xp
x(1− p)n−x

B(a, b)
dp =

(
n

x

)
B(a+ x, b+ n− x)

B(a, b)
.

For a non-conjugate model, calculation of the marginal likelihood is a fairly challenging
task, usually more challenging than sampling θ from the posterior π(θ|x). Common
numerical techniques include quadrature (when dim(θ) is small), or stochastic calcu-
lation based on importance sampling Monte Carlo frequently coupled with sequential
sampling strategies [see Tokdar and Kass (2010).]

Improper prior

In the birthrate example above, with the point-null model, we used a Unif(0, 1) prior
on p given p ̸= 0.5. What happens if we used a uniform prior on log p

1−p
? Recall that

this corresponds to the improper Be(0, 0) prior on p with pdf π1(p) = c/{p(1 − p)},
with c arbitrary. For our data with x = 49581 > 0 and n−x = 48870 > 0 the resulting
posterior is a proper Be(49518, 48870) pdf. But,

p0(x) =
1

1 + c× 2984451 ×B(49581, 48870)

which depends on the choice of c. This is a common problem with using improper
priors for comparing models, though some solutions now exist in the literature (see
Berger and Pericci 1996).
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