Building Classical Procedures

Surya Tokdar

Heuristics for parametric models

- ▶ We have learned that for a given statistical model, one can build a statistical procedure by using heuristics and then turn it into a rigorous classical procedure by calibrating its frequentist properties.
- ▶ The ML is one such heuristic (which is pity!).
- ▶ Will see two other heuristics
 - 1. minimum contrast, and
 - 2. estimating equations

commonly used in semi-parametric models.

1/16

Models to consider

- ▶ Consider $X_1, \dots, X_n \stackrel{\text{IID}}{\sim} g(x_i | \theta), \theta \in \Theta$
- ▶ Θ is possibly infinite dimensional
- ▶ Restrict interest to a finite dimensional quantity $\eta = h(\theta)$
- ▶ Example: $Y_i = Z_i^T \beta + \sigma \epsilon_i$
 - $\begin{array}{l} \bullet \ \ \epsilon_i \stackrel{\text{IID}}{\sim} f, \ f \in \{ \text{all densities with mean 0 and var 1} \} \\ \bullet \ \ \theta = (\beta, \sigma, f) \end{array}$

 - ▶ Interested only in $\eta = A^T \beta$

Basic goal

- ▶ Find an "estimator" $\hat{\eta} = \hat{\eta}(x_1, \dots, x_n)$ of η and
- lacktriangle a "standard error estimate" $\hat{se} = \hat{se}(x_1, \cdots, x_n)$ such that
- ▶ If $X_i \stackrel{\text{IID}}{\sim} g(x_i|\theta_0)$ and $\eta_0 = h(\theta_0)$ then
 - $\hat{\eta} \stackrel{p}{\to} \eta_0$ i.e., $\hat{\eta}$ is consistent
- ▶ $100(1-\alpha)\%$ confidence intervals for $\eta = \hat{\eta} \mp z(\alpha)\hat{se}$
- ▶ Size- α test for $H_0: \eta = \eta_0$ rejects $H_0: \frac{|\hat{\eta} \eta_0|}{\hat{\varsigma}_{\theta}} > z(\alpha)$.

3 / 16

Minimum contrast estimators

- ▶ Let $\rho(X_i, \eta)$ measure "discrepancy" between η and X_i
- ▶ Average discrepancy when $X_i \stackrel{\text{IID}}{\sim} g(x_i | \theta_0)$:

$$D(\theta_0, \eta) = \mathbb{E}_{[X_1|\theta_0]} \rho(X_1, \eta),$$

- ▶ Suppose $D(\theta_0, \eta)$ is uniquely minimized at $\eta = \eta_0 = h(\theta_0)$
- ▶ Define $D_X(\eta) = \frac{1}{n} \sum_{i=1}^n \rho(X_i, \eta)$ and $\hat{\eta} = \arg \min_{\eta} D_X(\eta)$.
- ▶ By LLN, if $X_i \stackrel{\text{IID}}{\sim} g(x_i | \theta_0)$ then $D_X(\eta) \stackrel{p}{\rightarrow} D(\theta_0, \eta)$.
- ▶ Hope: minimizer $\hat{\eta}$ of $D_X(\eta) \approx$ minimizer η_0 of $D(\theta_0, \eta)$

Asymptotic normality

- Assume $X_i \stackrel{\text{IID}}{\sim} g(x_i | \theta_0 \text{ and } \eta_0 = h(\theta_0)$
- Under regularity conditions on ρ and g,

$$\sqrt{n}(\hat{\eta} - \eta_0) \stackrel{d}{\rightarrow} N(0, \Sigma(\theta_0))$$

- ▶ $A(\theta)$ is matrix with elements $\int \frac{\partial}{\partial \theta_i} \rho(x_1, \theta) \frac{\partial}{\partial \theta_j} \rho(x_1, \theta) g(x_i | \theta) dx_i$
- ▶ $B(\theta)$ is matrix with elements $\int \frac{\partial^2}{\partial \theta : \partial \theta_i} \rho(x_i, \theta) g(x_i | \theta) dx_i$

4/16

2/16

5/16

Example: Least squares, linear and non-linear

- ▶ Data $X_i = (Z_i, Y_i)$, $i = 1, \dots, n$ modeled as
 - $Y_i = m(Z_i, \beta) + \sigma \epsilon_i,$

 - $(Z_i, \epsilon_i) \stackrel{\text{IID}}{\sim} g(z_i, \epsilon_i).$ $\theta = (\beta, \epsilon, g), \text{ care about } \beta$
 - g any pdf such that $(Z,\epsilon)\sim g\implies \mathbb{E}[\epsilon|Z]=0$, $\mathbb{V}\mathrm{ar}[\epsilon|Z]=1$
 - ▶ m is a known function, potentially non-linear
 - ▶ Identifiable: $m(z, \beta_1) = m(z, \beta_2) \ \forall z \iff \beta_1 = \beta_2$
- Discrepancy measure:

 - ▶ $\rho(X_1, \beta) = (Y_1 m(Z_1, \beta))^2$ ▶ $D(\theta_0, \beta) = \sigma^2 + \mathbb{E}\{h(Z_1, \beta_0) h(Z_1, \beta)\}^2$
 - uniquely minimized at $\beta = \beta_0$.

Example: Least squares, linear and non-linear (contd)

- Minimum contrast estimator $\hat{\beta}$
 - ▶ minimizes $\sum_{i=1}^{n} [Y_i h(Z_i, \beta)]^2$, ▶ i.e., it is the least squares estimator

 - ▶ found by quasi-Newton optimization [e.g., optim(), nlm()]

$$\dot{m}(z_1,\beta) = \frac{\partial}{\partial \beta} m(z_1,\beta)$$

lacktriangle Consistent estimator of $\Sigma(\theta_0)$ is $s_{\scriptscriptstyle Y|Z}^2(\tilde{Z}^T\tilde{Z})^{-1}$ where

$$s_{y|z}^2 = \frac{1}{n-p} \sum_{i=1}^n (y_i - m(z_i, \hat{\beta}))^2$$

$$\tilde{Z} = \begin{pmatrix} \dot{m}(z_1, \hat{\beta})^T \\ \vdots \\ \dot{m}(z_n, \hat{\beta})^T \end{pmatrix}$$

6/16

7/16

Quantile regression

- ▶ Data $X_i = (Z_i, Y_i), i = 1, \dots, n$
- ▶ To model: τ -th conditional quantile of Y_i given Z_i is $Z_i^T \beta$
 - $Y_i = Z_i^T \beta + \epsilon_i$

 - i.e., $P(Y_i \leq z_i^T \beta | Z_i = z_i) = \tau$ for all z_i .
- Discrepancy measure:
 - $\rho(X_i, \theta) = (Y_i Z_i^T \beta) \{ \tau I(Y_i Z_i^T \beta \le 0) \}$
 - $D_X(\theta_0, \beta)$ uniquely minimized at β_0
 - \triangleright $\hat{\beta}$ found by linear programming
- ▶ Not easy to estimate

MLE as minimum contrast estimator

- Discrepancy measure:
 - $\rho(x_1,\theta) = -\log g(x_1|\theta)$
 - negative of log-likelihood for single obs
- ▶ Assume $g(x|\theta_1) = g(x|\theta_2) \ \forall x \iff \theta_1 = \theta_2$.
- $D(\theta_0, \theta) = -\int g(x_1|\theta_0) \log g(x_1|\theta) dx_1$
- ▶ Uniquely minimized at $\theta = \theta_0$.
- ▶ The minimum contrast estimator is precisely $\hat{\theta}_{\text{MLE}}(X)$
- $\Sigma(\theta) = \{ nI_1^F(\theta) \}^{-1}.$

9/16

Digression on Kullback-Leibler divergence

For any two densities f(x), g(x) the Kullback-Leibler (KL) divergence of g from f is defined as

$$K(f,g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$

- ▶ $K(f,g) \ge 0$ and equals zero if and only if f = g
- A fundamental concept of "distance" between pdfs
- ▶ For $X_i \stackrel{\text{IID}}{\sim} f(x)$, "likelihood ratio" $\sum_{i=1}^n \log \frac{f(x_i)}{g(x_i)} \approx nK(f,g)$
- ▶ $D(\theta_0, \theta) = K(g(\cdot|\theta_0), g(\cdot|\theta)) + \text{const}$

First order condition

- ▶ Suppose for every x_1 , $\theta \mapsto \rho(x_1, \eta)$ is differentiable in η .
- ▶ Then η_0 can be expected to uniquely solve $\frac{\partial}{\partial n}D(\theta_0,\eta)=0$.
- ▶ Similarly we can expect $\hat{\eta}$ to solve $\frac{\partial}{\partial n}D_X(\eta) = 0$.
- This suggests another way of constructing estimates known as estimating equations estimate.

10 / 16

8/16

11 / 16

Estimating equations

- ▶ $\eta \mapsto \psi(X_1, \eta)$: a \mathbb{R}^p valued "score" function
- ▶ When $X_i \stackrel{\text{IID}}{\sim} g(x_i | \theta_0)$, with $\eta_0 = h(\theta_0)$
 - lacksquare average score $V(heta_0,\eta)=\mathbb{E}_{[X_1| heta_0]}\psi(X_1,\eta)$
 - has unique soln at $\eta = \eta_0$.
- $V_X(\eta) = \frac{1}{n} \sum_{i=1}^n \psi(X_i, \eta) \stackrel{p}{\to} V(\theta_0, \eta)$
- $\hat{\eta}$ solves $V_X(\eta) = 0$
- ▶ Under regularity conditions $\sqrt{n}(\hat{\eta} \eta) \stackrel{d}{\rightarrow} N(0, \Sigma(\theta_0))$
 - $\Sigma(\theta) = \{B(\theta)\}^{-1} A(\theta) \{B(\theta)^T\}^{-1}$ $\lambda(\theta) = \mathbb{E}_{[X_1|\theta]} \psi(X_1, \theta) \psi(X_1, \theta)^T$ $\lambda(\theta) = \mathbb{E}_{[X_1|\theta]} \frac{\psi(X_1, \theta)}{\partial \theta} \psi(X_1, \theta)$

Method of moments

- $X_1, \cdots, X_n \stackrel{\text{IID}}{\sim} g(x_i|\theta),$
- X_i 's are univariate, θ is a p-vector.
- Let $\mu_j(\theta) = \mathbb{E}_{[X_1|\theta]}X_1^j$, $j = 1, \dots, p$.
- ▶ Suppose $\theta \mapsto (\mu_1(\theta), \mu_2(\theta), \cdots, \mu_d(\theta))$ is one-to-one.
- ▶ Then one can estimate θ by solving the equations:

$$\mu_j(\theta) = \frac{1}{n} \sum_{i=1}^n X_i^j, \quad j = 1, 2, \dots, d$$

- ▶ This $\hat{\theta}$ is called the method of moments (MoM) estimator
- \triangleright $\Sigma(\theta)$ may be difficult to estimate

13 / 16

Approximating standard error by bootstrapping

- $\triangleright X_i \stackrel{\text{IID}}{\sim} g(x_i|\theta), \ \eta = h(\theta)$
- ▶ Have estimator $\hat{\eta}$ such that $\sqrt{n}(\hat{\eta} \eta_0) \stackrel{d}{\rightarrow} N(0, se(\eta_0))$ whenever $X_i \stackrel{\text{IID}}{\sim} g(x_i|\theta_0)$ with $\eta_0 = g(\theta_0)$.
- ▶ Finding a consistent estimator \hat{se} of $se(\eta)$ might be difficult
- ▶ Bootstrapping provides an answer by resampling from the observed data x_1, \dots, x_n .

Method and justification

- ▶ Randomly sample x_1^*, \dots, x_n^* from x_1, \dots, x_n with
- Use your estimating procedure on x_1^*, \dots, x_n^* to get $\hat{\eta}^*$
- lacktriangle Repeat a B (large number) many times and record $\hat{\eta}_1^*,\cdots,\hat{\eta}_B^*$
- ▶ Use $\hat{se} = \frac{1}{B-1} \sum_{i=1}^{B} (\hat{\eta}_i^* \bar{\eta}^*)^2$ where $\bar{\eta}^* = \frac{1}{B} \sum_{i=1}^{B} \hat{\eta}_i^*$.
- ▶ Under fairly mild conditions $\hat{se} \stackrel{p}{\rightarrow} se(\eta_0)$ whenever $X_i \stackrel{\text{IID}}{\sim} g(x_i|\theta_0)$ with $\eta_0 = h(\theta_0)$.

14 / 16

12 / 16

15 / 16

Second order correction

- Even when an \hat{se} can be found directly with $\hat{se} \stackrel{p}{\rightarrow} se(\eta_0)$, bootstrap may be used to better approximate the distribution of $T = \frac{\hat{\eta} - \eta_0}{\hat{se}/\sqrt{n}}$ than the asymptotic limit
- ▶ This is due to a certain cancellation of second order terms in theoretical calculations of the approximation
- ▶ We now obtain $T^* = \frac{\hat{\eta}^* \hat{\eta}}{\hat{s}e^* / \sqrt{n}}$ from our bootstrap sample
- ▶ Repeat this B many times and record T_1^*, \dots, T_B^*
- An approximately size- α test rejects $H_0: \eta = \eta_0$ if $|T|>z_{1-lpha,|T^*|}^*$: the (1-lpha)-th quantile of $|T_1^*|,\cdots,|T_B^*|$.