Building Classical Procedures

Surya Tokdar

Heuristics for parametric models

» We have learned that for a given statistical model, one can
build a statistical procedure by using heuristics and then turn
it into a rigorous classical procedure by calibrating its
frequentist properties.

» The ML is one such heuristic (which is pity!).

> Will see two other heuristics

1. minimum contrast, and
2. estimating equations

commonly used in semi-parametric models.

Models to consider
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Consider Xq,---, X, ~ g(xj|0), 0 € ©

© is possibly infinite dimensional

v
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> Restrict interest to a finite dimensional quantity n = h()
Example: Y; = Z;7 8 + o¢;

6 F, fe {all densities with mean 0 and var 1}

> 0=(8,0,f)
> Interested only in p = AT
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Basic goal

> Find an “estimator” #j = fj(x1,- - ,X,) of  and

> a “standard error estimate” se = se(xq,- -, Xxp) such that

If X; ~ g(xi|fo) and 1o = h(fp) then

» /51 ie., ) is consistent

> /(A — 10) % N0, 5(10))

» se B se(o)
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100(1 — «)% confidence intervals for n = i} F z(«)

e
> Size-« test for Hy : 1 = ng rejects Hp if @ > z(a).

Minimum contrast estimators
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Let p(Xi,n) measure “discrepancy” between 1 and X;

» Average discrepancy when X; ~ g(x;|6):

D(60,m) = Epx,j000(X1, ),
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Suppose D(fo,n) is uniquely minimized at = 19 = h(6p)
Define Dx (1) = £ 37 p(X;,n) and 7 = arg min,, Dx(n).
By LLN, if X; % g(xj|fo) then Dx(n) 2 D(6o,7).

» Hope: minimizer /) of Dx(n) & minimizer 19 of D(6o,n)
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Asymptotic normality

> Assume X; /o g(xi|00 and no = h(bo)

> Under regularity conditions on p and g,

Vi~ 10) % MO, % ()
where
» £(0) = {B(O)} A){B(O))
> A(f) is matrix with elements | %p(xl,0)%p(x1,9)g(x;|€)dx,-
> B(0) is matrix with elements [ #;ejp(x,-,@)g(x,-W)dx,-




Example: Least squares, linear and non-linear

» Data X; =(Z,Y;), i=1,---,n modeled as

Yi = m(Z;, B) + oe;,

> (Ziei) ™ glzi€r).

> 0= (B¢ g), care about 3

> g any pdf such that (Z,¢) ~ g = E[e|Z] =0, Var[e|Z] =1
>

>

v

m is a known function, potentially non-linear
Identifiable: m(z,51) = m(z,82) Vz <= p1 =02
» Discrepancy measure:
> p(X1,8) = (Y1 — m(Zy, B))?
> D00, B) = o® + E{h(Z, Bo) — h(Z1, B)}?

> uniquely minimized at 8 = (.

Example: Least squares, linear and non-linear (contd)

» Minimum contrast estimator B
> minimizes 37, [Y; — h(Z;, B)]?,
> i.e., it is the least squares estimator
» found by quasi-Newton optimization [e.g., optim(), nlm()]

> 3(0) = 02 [Epxy o) {m(Zl,ﬂ)m(Zl,B)T}rl
> (21, 8) = g5m(z1, )
> Consistent estimator of X(fo) is s,

> 5= 5t il — m(z,5))°
m(z1, B)7

(ZTZ)~ where

z

> 7=

in(zn. D)7
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Quantile regression MLE as minimum contrast estimator
» Data X,‘Z(Z,‘,Y,’), i=1,---,n
» To model: 7-th conditional quantile of Y; given Z; is Z,-T,B » Discrepancy measure:
7T .
P Yi=Zi Bt > p(x1,6) = — log g(xal6)
> Zi ~ g(z), > negative of log-likelihood for single obs
IND -0
> eilz ~ ge(eilz). |- gclelz)de =7 > Assume g(x|01) = g(x|62) Vx < 61 = b,.
> ie, P(Y; <27 B8|Z = z) = for all z.
) > D(00,0) = — [ g(x1|00) log g(x1[0)dx1
> Discrepancy measure: > Uniquely minimized at 6 = 6,
> p(X,.0) = (Vi = ZT B){r — I(Y; = Z] B < 0)} ey e A
» Dx(0o, 3) uniquely minimized at B, > The minimum contrast estimator is precisely Oy.e(X)
> ﬁfound by linear programming > 3(0) = {nl{:(ﬁ)}_l.
> X(0) = 7(1 - 7)[E g.(012)Z:ZT | 'EIZ ZT|[E £.(0|12:) Z,Z]
> Not easy to estimate
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Digression on Kullback-Leibler divergence

> For any two densities f(x), g(x) the Kullback-Leibler (KL)
divergence of g from f is defined as

K(f,g) = / £(x) log %dx

K(f,g) > 0 and equals zero if and only if f = g

v

» A fundamental concept of “distance” between pdfs
For X; = f(x), “likelihood ratio” S7_, log ;((f(’; ~ nK(f, g)
D(6o,0) = K(g(+60),g(-|0)) + const
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First order condition

> Suppose for every x1, 0 — p(x1,n) is differentiable in 7.
> Then 19 can be expected to uniquely solve %D(Go,n) =0.
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Similarly we can expect 7 to solve %Dx(n) =0.

\{

This suggests another way of constructing estimates — known
as estimating equations estimate.
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Estimating equations

v

1 — ¥(X1,n): a RP valued “score” function

When X; * g(x;|00), with 19 = h(6p)
> average score V(o,7) = Ex,16,9(X1,7)
> has unique soln at 7 = .

Vx(n) = 5 7y 9(Xim) B V(6o,1)

7 solves Vix(n) =0

» Under regularity conditions \/n(f — ) LA N(0, X(6o))
> X(0) = {B(0)} A(0){B(6)}

> A(0) = Epx g0 (X1, 0)0(X1,0)7

> B(0) = Eqx, 01 559(X1,0)
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Method of moments

1D

> X17 T 7XI'I ~ g(Xi‘e)'

> X;'s are univariate, 6 is a p-vector.

> Let [Lj(e) = ]E[Xl‘9]X{, j = 1, e p.

> Suppose 0 — (u1(60), 12(0), - - , ua(6)) is one-to-one.
» Then one can estimate 6 by solving the equations:

Iy .
p(O) =3 X j=12.d
i=1

> This f is called the method of moments (MoM) estimator
> ¥ (6) may be difficult to estimate
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Approximating standard error by bootstrapping Method and justification
1D > Randomly sample xi,-- -, x; from xq,-- -, x, with
> Xi~ g(xil0). n = h(6) J replacement
> Have estimatch>Dr 7} such that /n(7) — 10) = N(O, se(no)) > Use your estimating procedure on xi,-- -, x; to get 7)*
whenever X; ~ g(xifo) with no = g(6o)- > Repeat a B (large number) many times and record 73, - , g
» Finding a consistent estimator se of se(n) might be difficult » Use €2 — ﬁ Z?:l(ﬁ? — i7)2 where 7" = % Z;{BZI A
> Bootstrapping provides an answer by resampling from the ) ] o b
observed data x1, - - , ;. > Under fairly mild conditions se = se(no) whenever
X; © g(X,'|90) with o = h(eo)
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Second order correction

» Even when an se can be found directly with se 5 se(ng),
bootstrap may be used to better approximate the distribution

_ fA—mo (PRI
of T = @/ than the asymptotic limit
» This is due to a certain cancellation of second order terms in

theoretical calculations of the approximation

» We now obtain T* = L= from our bootstrap sample

se*//n
X
> Repeat this B many times and record T7,---, T§
> An approximately size-« test rejects Hy : 7 = ng if
IT| >z, Rk the (1 — a)-th quantile of |T|,---,|T|.
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