Classical Inference for Gaussian Linear Models
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Gaussian linear model

» Data (z,Y;), i=1,---,n, dim(z) = p.
» Model

Yi=zlB+e, €~ NO,0°).
» Parameters: 3 € RP, 02 > 0.

> Inference needed on p=a’ 3

v

Useful model for many types of analyses.

Matrix-vector notation

» Response vector, design matrix and error vector

Y1 ZIT €1

Y; z] €
y=|"|, z=[2|, =]

Yn z,T €n

> Model: Y =2Z3+¢, e ~ Ny(0, 0'2/,,).

Example 1
» Food expenditures Y7, , Y.
» “Population” average  and variability o2

1D

Model Y; ~ N(u, 02), BER, 62> 0.

This is a Gaussian linear model with p=1, zz=1and g =p

v

v

Example 2
> Body weight gains of ny rats on high protein: Hy,--- , Hpn,
> Same for ny rats on low protein: Ly, -, Lp,.
> Model

> H; " N, 02), Lj " Nz, 02), Hy's and Lj's independent
> 1,2 €R, 02 >0

v

Gaussian linear model with p=2, n=n; +m, (= (51)
2

Example 3

> n subjects, males and females
» randomly assigned to treatment (drug) or control (placebo)

> Y; = improvement in condition (sleep hours) of subject i

)
N




Example 3 as Gaussian linear model

» Use model Y; = 28 + ¢;, e; ~ N(0,5?),

> where p =4 and z; = (zj1, Zj2, i3, Zia)' With

zjiy = I(i-th subject is F and gets T)
zip = I(i-th subject is F and gets C)
zi3 = I(i-th subject is M and gets T)
zjs = I(i-th subject is M and gets C)

> Let ngr be the number of subjects who are F and get T.
Similarly define ngc, nyr and nyc.

Example 3 design matrix

1 000
Net
1 00
0100
Nec
0100
Z= 0 10
Nyt
0010
0001
: Muc
0001

Example 3 treatment effects

> Treatment effect for females: ng = f1 — B2
» Treatment effect for males: ny = 33 — B
> Treatment effect difference: n =ng —npy = P1— B2 — B3+ Pa

Example 4

> n subjects

v

Randomly assigned to treatment or control

v

Y; = improvement in condition for subject /

v

Likely to depend on subject’s age

Example 4 and Gaussian linear model

» treat; = 1 for treatment and 0 for control
» Model:

Y: = b1 + [ treat; + (3 age; + [4 treat; x age; + ¢;,

€ ™~ N0, 52)

> ie, p=4, z; = (1,treat;, age;, treat; x age;)

Example 4 and quantities of interest

1. Expected improvement at age 30, receiving treatment:
a=(1,1,30,30)7

2. Treatment effect at age 30, i.e., expected additional
improvement due to treatment at age 30

a=1(0,1,0,30)"
3. Difference in treatment effects between age 20 and 30

a=(0,0,0,—10)7




ML theory: the likelihood function

» Model: Y ~ N,(Z3,52I)
> Observe Y =y with y = (y1,---,yn) .
> Log-likelihood:

» =28y -2pB)

5 n
2,(B,0°) = const — 5 log o 22
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MLE

» First order conditions:

0 ZT(y - Zp)
0= %zy(ﬁ, 0?) = —
_9 oy _.n =28y~ Zp)
0= 8026}/(570 )= 202 + 20%
> Bue = (Z272)1zTy = Bis
> 52, = (y_ZﬁLS):(y_ZéLS)_
» Notation: sﬁ‘z = Wz% ie., 62 = ";nps)%‘z.

13/22

Least squares interpretation

» For any 8
(y=28)"(y - 28)
=ly-2z8)?

=|ly — ZBsIP + 1ZBis — ZBIP +2(y — ZBis) " (Zfis — ZB)
= ||y - ZBLSH2 + ”ZBLS - ZfB”z +0

> BLS is the least-squares estimate of 3
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Profile log-likelihood of 3

» For any 83, £,(53,0?) is maximized in o2 at

(y-28)"(y-28)
(n— P)5§|z +(8—Bs)"(Z7Z)(B - Bs)

n

3%(p) =

» So the profile log-likelihood in (3 is

6(8) = £,(8,6%(8)) = const — Z log6%(8) - 5
= const — = log <1+ (B~ 5is) (27 2)(5 — fis)
? (n=p)sj,

ML intervals for n = a’ 8

» Additional calculations show the profile log-likelihood in 7 is

* n L (n— 3//§Ls)2
14 = t— | 1
v(1n) = cons 5 Og{ + (n— p)S§|z X aT(Z72) 1a

» So ML intervals for 7 are of the form

Sy|z

NGS

where n, = 1/{a”(Z7Z)1a}, with thresholds ¢, > 0

A
a' BisFcn
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ML confidence interval for = a’ 8

v

Let Fi denote the CDF of t(k) distribution
Notation: zx(a) = F;l(l —a/2)
100(1 — a)% ML confidence interval for n = a’ 3 is

v

v

Sy|z
/a

» Due to the following fundamental theorem

aTBLS + anp(a)
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A fundamental result

Theorem. Let Y ~ Nn(ZB,0%1). Define H= Z(Z'Z)"1Z' and
e=Y —ZBis=(ln—H)Y. Then
1. Bus ~ Np(B,02(Z'Z)71).
2. &~ Ny(0,0%(I, — H))
3. BLS and € are independent.
4

1o

. LEe~x*(n—p).
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Coverage calculation

v

v

v

v

Notation: Cc(y) = aTBALS F c\s;,‘%

Y((B,0%), Cc) = Ppyip,02(a’ B € C(Y))

aTBLS - aTB
= P 2| ¢ —F<c
[Y18,02] < Sy\z/ /n,

= P[y‘ﬁ’az](—c S T S C)

By theorem T ~ t(n — p) when Y ~ N,(Z3,5°l,)
And so v((8,02), Cc) = 2Fn_p(c) — 1

For ¢ = z,_p() this number equals 1 — «
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ML testing

v

Ho : a” B = 1o where 79 is a fixed number.

ML test dc(y): reject Ho if no & Cc(y)

Null set: ©g = {(8,02) : a7 B =19} — note this is a set, not a
single point.

Size of §¢c is 1 —y(Cc) = 2(1 — Fa—p(c)). [Prove in HW]

> In particular 4, (a) has size a.

v

v

v
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One sided hypothesis

v

v

v

v

\4

Ho : a™ B < ng where 1q is a fixed number

ML test dc(y): reject Hp if (—oo,mo] N Ce(y) =0

Same as rejecting Ho when 19 < a” Bis — CSy|z/\/Na

Size of §¢c is 1 — Fr—p(c)

0z, ,(a) has size a2

Can do the same for the other one-sided case: Hp: a’ 8 > ;.
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Example: Chick Weight

v

50 chicks assigned to one of 4 protein diets

v

One body weight measurement from each chick between 1
and 21 days after birth

Data on (log) body weight, diet and time of measurement
Model

\{

v

weight = 51 + B2Diety + B3Diets + BaDiets + S5 Time + €
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