Classical Inference for Gaussian Linear Models

Surya Tokdar

←□ → ←□ → ← = → ← = → へ ○

Gaussian linear model

- ▶ Data (z_i, Y_i) , $i = 1, \dots, n$, $\dim(z_i) = p$.

$$Y_i = z_i^T \beta + \epsilon_i, \ \epsilon_i \stackrel{\text{IID}}{\sim} N(0, \sigma^2).$$

- ▶ Parameters: $\beta \in \mathbb{R}^p$, $\sigma^2 > 0$.
- ▶ Inference needed on $\eta = a^T \beta$
- Useful model for many types of analyses.

Matrix-vector notation

▶ Response vector, design matrix and error vector

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \quad Z = \begin{pmatrix} z_1^T \\ z_2^T \\ \vdots \\ z_n^T \end{pmatrix}, \quad \epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

▶ Model: $Y = Z\beta + \epsilon$, $\epsilon \sim N_n(0, \sigma^2 I_n)$.

Example 1

- ▶ Food expenditures Y_1, \dots, Y_n .
- "Population" average μ and variability σ^2
- ▶ Model $Y_i \stackrel{\text{IID}}{\sim} N(\mu, \sigma^2)$, $\beta \in \mathbb{R}$, $\sigma^2 > 0$.
- ▶ This is a Gaussian linear model with p = 1, $z_i = 1$ and $\beta = \mu$

Example 2

- ▶ Body weight gains of n_1 rats on high protein: H_1, \dots, H_{n_1}
- ▶ Same for n_2 rats on low protein: L_1, \dots, L_{n_2} .
- - ▶ $H_i \stackrel{\text{IID}}{\sim} N(\mu_1, \sigma^2)$, $L_j \stackrel{\text{IID}}{\sim} N(\mu_2, \sigma^2)$, H_i 's and L_j 's independent ▶ $\mu_1, \mu_2 \in \mathbb{R}$, $\sigma^2 > 0$
- ► Gaussian linear model with p=2, $n=n_1+n_2$, $\beta=\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$

$$Y = \begin{pmatrix} H_1 \\ \vdots \\ H_{n_1} \\ L_1 \\ \vdots \\ L_{n_2} \end{pmatrix} \quad Z = \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ \hline 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} \downarrow n_2$$

Example 3

- n subjects, males and females
- randomly assigned to treatment (drug) or control (placebo)
- $Y_i = \text{improvement in condition (sleep hours) of subject } i$

Example 3 as Gaussian linear model

- Use model $Y_i = z_i'\beta + \epsilon_i$, $\epsilon_i \stackrel{\text{IID}}{\sim} N(0, \sigma^2)$,
- where p = 4 and $z_i = (z_{i1}, z_{i2}, z_{i3}, z_{i4})'$ with

 $z_{i1} = I(i\text{-th subject is F and gets T})$

 $z_{i2} = I(i\text{-th subject is F and gets C})$ $z_{i3} = I(i\text{-th subject is M and gets T})$

 $z_{i4} = I(i\text{-th subject is M and gets C})$

▶ Let n_{FT} be the number of subjects who are F and get T. Similarly define n_{FC} , n_{MT} and n_{MC} .

Example 3 design matrix

$$Z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 0 & \ddots \\ \hline 0 & 1 & 0 & 0 & \ddots \\ \hline 0 & 1 & 0 & 0 & \ddots \\ \hline 0 & 0 & 1 & 0 & \ddots \\ \hline 0 & 0 & 1 & 0 & \ddots \\ \hline 0 & 0 & 0 & 1 & \ddots \\ \hline \vdots & \vdots & \vdots & \vdots & \ddots \\ \hline 0 & 0 & 0 & 1 & \ddots \\ \hline 0 & 0 & 0 & 1 & \ddots \\ \hline 0 & 0 & 0 & 1 & \ddots \\ \hline \end{pmatrix} \begin{array}{c} n_{\text{FC}} \\ n_{\text{MT}} \\ \hline \end{array}$$

Example 3 treatment effects

- ▶ Treatment effect for females: $\eta_F = \beta_1 \beta_2$
- ▶ Treatment effect for males: $\eta_M = \beta_3 \beta_4$
- ▶ Treatment effect difference: $\eta = \eta_F \eta_M = \beta_1 \beta_2 \beta_3 + \beta_4$

Example 4

- n subjects
- ▶ Randomly assigned to treatment or control
- $Y_i = \text{improvement in condition for subject } i$
- Likely to depend on subject's age

Example 4 and Gaussian linear model

- ▶ treat_i = 1 for treatment and 0 for control
- Model:

$$Y_i = \beta_1 + \beta_2 \operatorname{treat}_i + \beta_3 \operatorname{age}_i + \beta_4 \operatorname{treat}_i \times \operatorname{age}_i + \epsilon_i$$

$$\epsilon_i \stackrel{\text{IID}}{\sim} N(0, \sigma^2)$$

▶ i.e., p = 4, $z_i = (1, \text{treat}_i, \text{age}_i, \text{treat}_i \times \text{age}_i)$

Example 4 and quantities of interest

1. Expected improvement at age 30, receiving treatment:

$$a = (1, 1, 30, 30)^T$$

2. Treatment effect at age 30, i.e., expected additional improvement due to treatment at age 30

$$a = (0, 1, 0, 30)^T$$

3. Difference in treatment effects between age 20 and 30

$$a = (0, 0, 0, -10)^T$$

ML theory: the likelihood function

- ▶ Model: $Y \sim N_n(Z\beta, \sigma^2 I)$
- Observe Y = y with $y = (y_1, \dots, y_n)^T$.
- ► Log-likelihood:

$$\ell_y(\beta, \sigma^2) = \text{const} - \frac{n}{2} \log \sigma^2 - \frac{(y - Z\beta)^T (y - Z\beta)}{2\sigma^2}$$

MLE

First order conditions:

$$0 = \frac{\partial}{\partial \beta} \ell_y(\beta, \sigma^2) = \frac{Z^T(y - Z\beta)}{\sigma^2}$$
$$0 = \frac{\partial}{\partial \sigma^2} \ell_y(\beta, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{(y - Z\beta)^T(y - Z\beta)}{2\sigma^4}$$

- $\hat{\beta}_{\text{MLE}} = (Z^T Z)^{-1} Z^T y =: \hat{\beta}_{\text{LS}}$ $\hat{\sigma}_{\text{MLE}}^2 = \frac{(y Z \hat{\beta}_{\text{LS}})^T (y Z \hat{\beta}_{\text{LS}})}{n}.$
- $\qquad \qquad \textbf{Notation:} \ \ s_{y|z}^2 = \frac{(y Z\hat{\beta}_{\text{LS}})^T(y Z\hat{\beta}_{\text{LS}})}{n p}, \ \text{i.e.,} \ \hat{\sigma}_{\text{MLE}}^2 = \frac{n p}{n} s_{y|z}^2.$

Least squares interpretation

▶ For any β

$$(y-Z\beta)^{T}(y-Z\beta)$$
= $||y-Z\beta||^{2}$
= $||y-Z\hat{\beta}_{LS}||^{2} + ||Z\hat{\beta}_{LS}-Z\beta||^{2} + 2(y-Z\hat{\beta}_{LS})^{T}(Z\hat{\beta}_{LS}-Z\beta)$
= $||y-Z\hat{\beta}_{LS}||^{2} + ||Z\hat{\beta}_{LS}-Z\beta||^{2} + 0$

lacktriangle \hat{eta}_{LS} is the least-squares estimate of eta

Profile log-likelihood of β

▶ For any β , $\ell_v(\beta, \sigma^2)$ is maximized in σ^2 at

$$\hat{\sigma}^{2}(\beta) = \frac{(y - Z\beta)^{T}(y - Z\beta)}{n}$$
$$= \frac{(n - p)s_{y|z}^{2} + (\beta - \hat{\beta}_{LS})^{T}(Z^{T}Z)(\beta - \hat{\beta}_{LS})}{n}$$

lacksquare So the profile log-likelihood in eta is

$$\begin{split} \ell_y^*(\beta) &= \ell_y(\beta, \hat{\sigma}^2(\beta)) = \operatorname{const} - \frac{n}{2} \log \hat{\sigma}^2(\beta) - \frac{n}{2} \\ &= \operatorname{const} - \frac{n}{2} \log \left\{ 1 + \frac{(\beta - \hat{\beta}_{\mathrm{LS}})^T (Z^T Z) (\beta - \hat{\beta}_{\mathrm{LS}})}{(n - p) s_{y|z}^2} \right\} \end{split}$$

ML intervals for $\eta = a^T \beta$

 \blacktriangleright Additional calculations show the profile log-likelihood in η is

$$\ell_y^*(\eta) = \operatorname{const} - \frac{n}{2} \log \left\{ 1 + \frac{1}{(n-p)s_{y|Z}^2} \times \frac{(\eta - a'\hat{\beta}_{\text{LS}})^2}{a^T(Z^TZ)^{-1}a} \right\}$$

▶ So ML intervals for η are of the form

$$a^T \hat{eta}_{\mathsf{LS}} \mp c_n rac{s_{y|z}}{\sqrt{n_{\mathsf{a}}}}$$

where $n_a = 1/\{a^T(Z^TZ)^{-1}a\}$, with thresholds $c_n > 0$

ML confidence interval for $\eta = a^T \beta$

- ▶ Let F_k denote the CDF of t(k) distribution
- Notation: $z_k(\alpha) = F_k^{-1}(1 \alpha/2)$
- ▶ $100(1-\alpha)\%$ ML confidence interval for $\eta = a^T\beta$ is

$$a^T \hat{\beta}_{LS} \mp z_{n-p}(\alpha) \frac{s_{y|z}}{\sqrt{n_a}}$$

▶ Due to the following fundamental theorem

A fundamental result

Theorem. Let $Y \sim N_n(Z\beta, \sigma^2 I)$. Define $H = Z(Z'Z)^{-1}Z'$ and $\hat{\epsilon} = Y - Z\hat{\beta}_{LS} = (I_n - H)Y$. Then

- 1. $\hat{\beta}_{LS} \sim N_p(\beta, \sigma^2(Z'Z)^{-1}).$
- 2. $\hat{\epsilon} \sim N_n(0, \sigma^2(I_n H))$
- 3. $\hat{\beta}_{LS}$ and $\hat{\epsilon}$ are independent.
- 4. $\frac{1}{\sigma^2}\hat{\epsilon}'\hat{\epsilon} \sim \chi^2(n-p)$.

Coverage calculation

Notation: $C_c(y) = a^T \hat{\beta}_{LS} \mp c \frac{s_{y|z}}{\sqrt{n_a}}$

$$\gamma((\beta, \sigma^2), C_c) = P_{[Y|\beta, \sigma^2]}(a^T \beta \in C_c(Y))$$

$$= P_{[Y|\beta, \sigma^2]} \left(-c \le \frac{a^T \hat{\beta}_{LS} - a^T \beta}{s_{y|z} / \sqrt{n_a}} \le c \right)$$

$$= P_{[Y|\beta, \sigma^2]}(-c \le T \le c)$$

- ▶ By theorem $T \sim t(n-p)$ when $Y \sim N_n(Z\beta, \sigma^2 I_n)$
- And so $\gamma((\beta, \sigma^2), C_c) = 2F_{n-p}(c) 1$
- ▶ For $c = z_{n-p}(\alpha)$ this number equals 1α

ML testing

- $H_0: a^T \beta = \eta_0$ where η_0 is a fixed number.
- ▶ ML test $\delta_c(y)$: reject H_0 if $\eta_0 \notin C_c(y)$
- ▶ Null set: $\Theta_0 = \{(\beta, \sigma^2) : a^T \beta = \eta_0\}$ note this is a set, not a single point.
- ▶ Size of δ_c is $1 \gamma(C_c) = 2(1 F_{n-p}(c))$. [Prove in HW]
- ▶ In particular $\delta_{z_{n-p}(\alpha)}$ has size α .

One sided hypothesis

- ▶ $H_0: a^T \beta \leq \eta_0$ where η_0 is a fixed number
- ▶ ML test $\delta_c(y)$: reject H_0 if $(-\infty, \eta_0] \cap C_c(y) = \emptyset$
- ▶ Same as rejecting H_0 when $\eta_0 < a^T \hat{\beta}_{LS} c s_{y|z} / \sqrt{n_a}$
- Size of δ_c is $1 F_{n-p}(c)$
- $\delta_{z_{n-p}(\alpha)}$ has size $\alpha/2$
- ► Can do the same for the other one-sided case: H_0 : $a^T \beta \ge \eta_0$.

Example: Chick Weight

- ▶ 50 chicks assigned to one of 4 protein diets
- ▶ One body weight measurement from each chick between 1 and 21 days after birth
- ▶ Data on (log) body weight, diet and time of measurement
- Model

 $\mathsf{weight} = \beta_1 + \beta_2 \mathsf{Diet}_2 + \beta_3 \mathsf{Diet}_3 + \beta_4 \mathsf{Diet}_4 + \beta_5 \mathsf{Time} + \epsilon$