
Classical Statistics: Frequentist Guarantees

Surya Tokdar

. . . . . .
. . . . . .

Example: ML interval for average food expenditure

! Data X1, · · · ,Xn: weekly food expenditure

! Model: Xi
IID∼ N(µ,σ2), σ = 30, µ ∈ (−∞,∞).

! Observed: n = 22, x̄ = 143.64

! ML interval Bc(x) = x̄ ∓ cσ/
√
n = 143.64∓ c × 6.4.

! How to choose c? How to interpret this choice?
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The classical view

! A data analysis is the application of an algorithm to data.

! For any choice of c , the ML interval Bc(x) is an algorithm
that takes x = (x1, · · · , xn) as an input and produces
x̄ ∓ c × σ/

√
n as an output.

! The Classical Mantra: Evaluate how the algorithm performs in
a controlled experiment.
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Coverage and confidence

! Consider a statistical model X ∼ f (x |θ), θ ∈ Θ

! Suppose A(x) is a “set procedure”: for each x ∈ S , we get in
A(x) a subset of Θ

! Coverage of A at θ:

γ(θ,A) = P[X |θ](θ ∈ A(X ))

! Confidence coefficient of A

γ(A) = inf
θ∈Θ

γ(θ,A)
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Expected behavior

! A controlled experiment:
1. pick a θ ∈ Θ, i.e., pick a f (x |θ) from your model
2. generate hypothetical data x (h) from this f (x |θ)
3. check if θ ∈ A(x (h)), record “yes”/“no”
4. repeat steps 2-3 a very large number of times

! Fraction of times you get “yes” is approximately γ(θ,A).

! The confidence coefficient γ(A) gives a minimum performance
guarantee for A with respect to the chosen model
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Normal model

! Xi
IID∼ N(µ,σ2), σ fixed, Bc(x) = x̄ ∓ c σ√

n
for µ.

! For any µ,

γ(µ,Bc) = P[X |µ]

(
X̄ − c

σ√
n
≤ µ ≤ X̄ + c

σ√
n

)

= P[X |µ]

(
−c ≤ X̄ − µ

σ/
√
n
≤ c

)

= 2Φ(c)− 1

! So γ(Bc) = infµ∈(−∞,∞){2Φ(c)− 1} = 2Φ(c)− 1

! With c = 1.96, γ(B1.96) = 0.95.
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Food expenditure

! For observed data, B1.96 = [131.10, 156.18].

! Will report

A 95% (ML) confidence interval for µ is [131.10,
156.18].

! Recall, µ is a physical quantity – we could calculate it if we
had recorded the expenditure of each and every student

! What does the statement (in blue) say about µ?
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What it does NOT say

! It does NOT say that given what we have observed, there is
95% probability that µ is between 131.10 and 156.18.

! Once the data is observed, there is nothing random left in the
statement µ ∈ B1.96(x).

! The probability of 95% is a pre-observation statement about
the chances of the “random” interval B1.96(X ) capturing the
fixed constant µ.
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Interpretation I

! Imagine sending many surveyors to one school

! Each surveyor records data from a randomly drawn sample of
n students, independently of each other

! Each constructs an interval for µ by applying B1.96 to her
observed data

! About 95% of them will report an interval that captures the
true value of µ for this school
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Interpretation II

! Imagine sending one surveyor each to a large number of US
universities

! For each school, we get an interval B1.96(x) for the µ of that
school, based on data x from n of its students

! In about 95% of the schools, our interval will capture the true
µ value
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Interpretation III

! Imagine a statistician who reports B1.96(x) as an interval for µ

every time he models data as Xi
IID∼ N(µ,σ2).

! He would have it right in about 95% of times in his career
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Is this satisfactory from ML perspective

! Not quite.

! ML tries to split parameter space into “well supported” and
“ill supported” sets

! The guarantee about Bc(x) does not offer any quantification
of how well supported Bc(x) is in any particular instance
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Testing as a procedure

! Goal to judge support toward H0 : θ ∈ Θ0, a subset of Θ

! ML testing: no support for the hypothesis if Bc(x) ∩Θ0 = ∅
! Test procedure δ(x): input x to output reject H0/accept H0)

! ML test

δc(x) =






reject H0 if Bc(x) ∩Θ0 = ∅

accept H0 if Bc(x) ∩Θ0 += ∅
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Errors

! Two kinds of error
Truth

θ ∈ Θ0 θ +∈ Θ0

δ(x) = reject H0 Type I error –
δ(x) = accept H0 – Type II error

! Primary concern is Type I error
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Power function and size

! Power function at a θ:

β(θ, δ) = P[X |θ](δ(X ) = reject H0)

! Size
α(δ) = sup

θ∈Θ0

β(θ, δ)

! Size is maximum type I error probability
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Two sided ML test

! H0 : θ = θ0, i.e., Θ0 = {θ0} for a specific value θ0 of interest

! ML test δc(x) rejects H0 iff θ0 += Bc(x).

α(δc) = P[X |θ0](θ0 += Bc(X )) = 1− γ(θ0,Bc)

! For normal model, α(δc) = 1− {2Φ(c)− 1} = 2{1− Φ(c)}
! For example, α(δ1.96) = 0.05.

! Guarantees that type I error probability is only 5%.
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Food expenditure

! H0 : µ = 7× 25 = 175

! δ1.96 rejects this H0 because Bc = [131.10, 156.18]

! Report: “hypothesis rejects at 5% level of significance”

! Again, does NOT mean chance of µ = 175 is 5% or less given
observed data
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Fisher’s interpretation

! Either µ is not 175, or something very rare has happened

! Here very rare means something that happens with 1/20
probability

! A correct statement – but no quantification of the “either” or
the “or”.
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