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Uses of frequentist calculations
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So far we have seen the use of frequentist calculations to
provide guarantees for statistical procedures.
There are at least two other major uses of these calculations
Design of study:

» Determine how data is to be collected

» To extract “maximum information” within cost restrictions
Comparison of procedures:

» Compare two or more procedures with same guarantees

» Which makes maximum use of available information?

The two issues are somewhat overlapping

Sample size determination

» To estimate the prevalence of child malnutrition in a country

Margin of error consideration

» Quantity of interest: p =proportion of malnourished children > Model X ~ Bin(n, p), p € (0,1)
under age 10 > Want a 95% confidence interval for p with 5% margin of error
> Survey n children under 10 years, data X = number of > Means interval half-width is no larger than .05
malnourished > Use smallest n to meet margin of error
» What n to use? [Surveying is expensive]
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Margin of error calculation Power consideration
> 100(1 — @)% ML interval pue F z() M
> Half width z(a)/Pued=Puie) < m i > Z(e)Puc(l—pue) g \S/\‘;pplzsi W:”t to test Ho - ‘; <025 09503
» Can calculate the bound if a preliminary estimate of p is > Would be happy to accept Ho even if p € (0.25,0.33)
available > But care about the difference between p < 0.25 and p > 0.33
» Otherwise, use the fact Pue(1 — Puie) can be at most 1/4 (for > Size-ov test rejects Hy if Pue > 0.25 + z(2a) M
Puie = 1/2), giving the worst case bound: » Use minimum n so that power at any p > 0.33 is at least b

n> z(a)?/(4m?)

> Need at least n = 385 for a 95% interval with 5% margin

(say 80%)




Power calculation

» Fix p* > 0.33

» Power at p* equals

) Buc(1— B
Pixipe] (,;MLE > 0.25 + z(2a),/ ”MLE(H”MLE)>

= Pixipry (T > 8(5) + 2(20))

where
> T = Pwe—p" ~ AN(0,1)
R \/bMLE(lfﬁMLE)/*ﬁ N
> 5(P*) _ 0.25—p ~ \/E 0.25—p

Ve (1-p%)
> So power at p* is approximately 1 — ®(§(p*) + z(2a))

- VmLe(L—pmLE)/ v

From power to sample size

» Minimum power is at p* = 0.33 (among all p* > 0.33) with
o(p*) = —0.17\/n
> Need 1 — ®(—0.17/n + z(2a)) > b which happens when

]

> For a size-5% test to have at least 80% power at all p > 0.33
we need at least n = 214.
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For linear models Wald’s two-stage procedure
» Do a pilot with sample size ng
> Similar calculations can be done for linear models: > Estimate M by M,, = nio Sr,ZzT
= ZT e . A A
Yi=2Z B +oe, e~ f(0,1) » Estimate 02 by s2 = nol_p S (Yi = ZT By )? where B, is
» Interval and tests for n = a’ 3 are constructed based on the LS estimate based on the pilot
A ThHh .
1 =a’ fis with property » Calculate required sample size n (to meet a margin m need
R o Tas-1 > z(e)2a” M—1a
V(i =) ~ AN(0,0%{a” M~*a}) nz )
» Get another n — ny many observations
_ T N
where M = E[Z1Z)'] > Interval or test based on \/n() — 1) ~ AN(0,s2 a” M, *a)
> Need a preliminary estimate of o and M » Some concerns about whether full sample can be used in the
asymptotic variance (read Woodroofe!)
'http://www.stat.1lsa.umich.edu/~michaelw/PPRS/1986aam.pdf
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Optimal designs for linear models

» Consider data (z,Y;), i =1,---,n, where n has been
determined based on cost considerations, and we want to pick
zy,+++ ,2z, from a candidate set Z so that our intervals are
shortest or tests have maximum power

» Because fis ~ AN(8,02(Z7Z)1), need (ZT7Z)1 small

» But (Z7Z)"!is a matrix — need a scalar summary

» Many criteria:

> A-optimality: minimize trace of (Z7Z)™?
> D-optimality: minimize det{(Z7Z)"'}
» Useful when Z is a discrete set or a bounded set

» Related subject: optimal factorial designs

Comparing procedures

» Between two intervals with same confidence coefficient, we
prefer the one with shorter width (need smaller sample size to
meet a margin)

» Between two tests of the same size, prefer the one with more
power at a detectable distance

» Two considerations:

1. Optimality (within a regular model, i.e., Gaussian linear model)
2. Robustness (within a model that encompasses many regular
models, i.e., linear models with possibly non-Gaussian errors)

» ML procedures are often optimal but not robust




Most powerful tests
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X ~ f(x]0), 0 € ©

» Want to test Hy : 0 € ©g

A level-a test § is most powerful at a 61 € © \ Oy if there is
no level- test &' with 3(61,8") > B(61,9).

> A test § is said to be the uniformly most powerful level-a test
if 0 is a most powerful level-a test at every 0; € © \ ©q.

v

The Neyman-Pearson lemma

» Consider © = {6p, 61} and we want to test Hp : 6 = g

» The Neyman-Pearson lemma says that the most power level o
test is given by

~

x(01)
Lx(6o)

Reject Hp if A(X) =

where k is such that
> P[X|90](/\(X) > k) < agp but
> Pix(oo) (A(X) > k') > ap for all k" < k.
> i.e., k is the smallest threshold satisfying the size condition

UMP test for simple Hy

> Let © be a general set. Want to test Hp : 6 = 0

> Suppose there exists a statistic T(x) such that for any 61 # 6o
and any constant k > 0 there exists a constant ¢ > 0 so that

Lx(61)
Lx(6o)

(i.e., for any data x the event on the left happens if and only
if that on the right also happens)

>k < T(X)>c

» Note that ¢ may depend on both k and 6.

» The UMP level-« test rejects Hp if T(X) > c(a) where c(a)
is such that Pix|g,(T(X) > c(a)) = a.

> Why??

UMP test for one-sided hypotheses

> X ~ f(x]0), 6 € ©, 0 is scalar. Test Hp : 0 < 6p.
> Suppose {f(x|0) : 0 € ©} is a monotone likelihood ratio
(MLR) family in a statistic T(x), i.e.,

f(x]01)
f(x162)

for every 01 < 65, is increasing in T(x)

» The UMP level-v test rejects Hp if T(X) > c(a) where c(a)
satisfies Pyx|g,)(T(X) > ¢(@)) = a.

UMP unbiased

» Not too many families are MLR in any statistic
» Consequently, not too many UMP tests are known
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A slightly less demanding criterion is to be UMP among all
tests that are unbiased, i.e., whose power function at any
0 & ©g is at least as much as the size «

> In most examples, ML tests are UMP among this class of tests

Optimal estimation: UMVUE

> In general, tests and intervals are based on estimators
» How do we compare estimators?

v

An old favorite of classical statisticians’ is the uniformly
minimum variance unbiased estimator (UMVUE).
An estimator T(x) of n = h(6) is said to be UMVUE if

1. T(x) is unbiased, i.e., Exjg T(X) = h(6) V0 and

2. for any unbiased T(X), Varixjg T(X) < Varixg T(X), vo

\{




Rao-Blackwell inequality

> Let T(x) be unbiased for n = h(6)

> Suppose S(x) is a sufficient statistic

» The conditional distribution of X given S(X) remains the
same for every 6 (a consequence of sufficiency)

> Define T*(x) as E{T(X)|S(X) = S(x)} [conditional
expectation taken under any 0, they all give the same]

» Then,

1. T*(x) is unbiased and
2. Var[x‘gl T*(X) < Var[x‘g] T(X), Yo

Information inequality

» There is a limit on how small the variance of an unbiased
estimator can be

» A famous result, independently due to Cramér, Rao and
Frechét, states the following

» Theorem (Information inequality). If T(x) is unbiased for
n = h(0) then

Varixg T(X) > h(0) T [1F(0)] " h(0)

where 1F(0) = —Elx‘gl% log f(X10)
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Information inequality, exponential family & UMVUE

v

£(x]0) = h(x)e? T)I=A®): a canonical exponential family
» Equivalent parametrization in terms of

n=A(0) = Ex9 T(X)

\{

T(x) is unbiased for 7 (by definition), Varjxje T(X) = A(6)
Also, IF(8) = A(6), so information bound = A(6)
So T(X) is UMVUE? for 7

v
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2Does not guarantee Avie(x) = A~}(T(x)) is UMVUE or even unbiased for
0; a proof that such properties are not too exciting!

Asymptotic relative efficiency

> Xi,--, Xn ™ g(xi|0), interested in i = h(6)

> Most statistical procedures are built upon estimators #j of 5
that are not unbiased but satisfy /n(#i — ) % N(0, se?(0)).

» Such estimators are (at least) asymptotically unbiased

sef(0)

sef (9)

the estimator 7, with respect to #j;.

» The ratio

is the asymptotic relative efficiency (ARE) of

» Efficient estimators give shorter intervals, more powerful tests

Efficiency of MLE

> Usually V/(fiue — 1) % N(O, h(6) TIE (6) 2 h(6)).
» That is, asymptotically, MLE is unbiased and meets the
information bound (note, 1¥(6) = nif ()

» So information inequality suggests that 7y e should have
smaller variance than any other estimate that is
asymptotically normal with mean 7.

> A precise statement is given below.

Efficiency of MLE (contd)

» If § is a minimum contrast estimate of 6 then 7j = h(0)
satisfies \/n(ij — 1) > N(0, $2()) with

$e?(0) = u(0) T I (9) " u(9)

» That is, the MLE is efficient among all minimum contrast
estimators that are asymptotically normal.




Robust procedures

» For non-parametric models, optimal procedures are difficult to
find

» A non-parametric model contains many regular parametric
sub-models, their corresponding ML procedures are optimal
within that sub-model

» However, it might be possible to find a procedure that
remains competitive across all sub-models

> Such procedures are called robust (there are other definitions
of robustness, but the essence is this)

» Two examples

Median is more robust than mean

Xi=pn+e, 6 f € Feym, pb € (—00,00)

Fsym contains all pdfs that are symmetric around 0

Two estimators of u: X and X4

ARE 0f Xpeq W.r.t X is 4f5(0)02, where 02 = [ x2f(x)dx
Consider f = (1 — €)N(0, 02) + eN(0, ka?)

ARE = 64% for ¢ = 0 (best case for mean, being the MLE for
that sub-model)

For ¢ > 0, ARE — o0 as k — oo

Regression counterpart: least-squares vs median (quantile)
regression

Wilcoxon's rank-sum test vs t-test

1o

> Xi~g(x), ;™ g(x —8), g arbitrary

» Totest Hp: 0 =0

» Let J1 be size-«v t-test, d» be size-aw W's test

» Fixed desired power 3 > «

» Pitman efficiency: Consider a sequence (6x)x>1 — 0. Let ng 1
and ny > be sample sizes needed by §; and d, to have power 3
at 6. Relative Pitman efficiency of d5 to 61 is limg_ec %

» Limit does not depend on (3

> Relative P efficiency of W's test w.r.t t-test is

1. 0.95 when g is normal (the best case scenario in favor of t-test)
2. Can be arbitrarily large (and approach co) for non-normal
(heavy tailed) g




