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Uses of frequentist calculations

! So far we have seen the use of frequentist calculations to
provide guarantees for statistical procedures.

! There are at least two other major uses of these calculations
! Design of study:

! Determine how data is to be collected
! To extract “maximum information” within cost restrictions

! Comparison of procedures:
! Compare two or more procedures with same guarantees
! Which makes maximum use of available information?

! The two issues are somewhat overlapping
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Sample size determination

! To estimate the prevalence of child malnutrition in a country

! Quantity of interest: p =proportion of malnourished children
under age 10

! Survey n children under 10 years, data X = number of
malnourished

! What n to use? [Surveying is expensive]
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Margin of error consideration

! Model X ∼ Bin(n, p), p ∈ (0, 1)

! Want a 95% confidence interval for p with 5% margin of error

! Means interval half-width is no larger than .05

! Use smallest n to meet margin of error
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Margin of error calculation

! 100(1− α)% ML interval p̂MLE ∓ z(α)
√

p̂MLE(1−p̂MLE)
n

! Half width z(α)
√

p̂MLE(1−p̂MLE)
n ≤ m if n ≥ z(α)2p̂MLE(1−p̂MLE)

m2

! Can calculate the bound if a preliminary estimate of p is
available

! Otherwise, use the fact p̂MLE(1− p̂MLE) can be at most 1/4 (for
p̂MLE = 1/2), giving the worst case bound:

n ≥ z(α)2/(4m2)

! Need at least n = 385 for a 95% interval with 5% margin
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Power consideration

! Suppose want to test H0 : p < 0.25

! Would be happy to accept H0 even if p ∈ (0.25, 0.33)

! But care about the difference between p < 0.25 and p > 0.33

! Size-α test rejects H0 if p̂MLE > 0.25 + z(2α)
√

p̂MLE(1−p̂MLE)
n

! Use minimum n so that power at any p > 0.33 is at least b
(say 80%)
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Power calculation

! Fix p∗ > 0.33

! Power at p∗ equals

P[X |p∗]

(
p̂MLE > 0.25 + z(2α)

√
p̂MLE(1− p̂MLE)

n

)

= P[X |p∗]

(
T > δ̂(p∗) + z(2α)

)

where
! T = p̂MLE−p∗√

p̂MLE(1−p̂MLE)/
√
n
∼ AN(0, 1)

! δ̂(p∗) = 0.25−p∗√
p̂MLE(1−p̂MLE)/

√
n
≈

√
n 0.25−p∗√

p∗(1−p∗)

! So power at p∗ is approximately 1− Φ(δ̂(p∗) + z(2α))
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From power to sample size

! Minimum power is at p∗ = 0.33 (among all p∗ > 0.33) with
δ̂(p∗) ≈ −0.17

√
n

! Need 1− Φ(−0.17
√
n + z(2α)) ≥ b which happens when

n ≥
{
z(2α)− Φ−1(1− b)

0.17

}2

! For a size-5% test to have at least 80% power at all p > 0.33
we need at least n = 214.
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For linear models

! Similar calculations can be done for linear models:
Yi = ZT

i β + σεi , εi
IID∼ f (0, 1)

! Interval and tests for η = aTβ are constructed based on
η̂ = aT β̂LS with property

√
n(η̂ − η) ∼ AN(0,σ2{aTM−1a})

where M = E[Z1ZT
1 ]

! Need a preliminary estimate of σ and M
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Wald’s two-stage procedure

! Do a pilot with sample size n0
! Estimate M by M̂n0 =

1
n0

∑n0
i=1 ZiZT

i

! Estimate σ2 by s2n0 =
1

n0−p

∑n0
i=1(Yi − ZT

i β̂n0)
2 where β̂n0 is

the LS estimate based on the pilot

! Calculate required sample size n (to meet a margin m need

n ≥ z(α)2aT M̂−1a
m2 )

! Get another n − n0 many observations

! Interval or test based on
√
n(η̂ − η) ∼ AN(0, s2n0a

T M̂−1
n0 a)

! Some concerns about whether full sample can be used in the
asymptotic variance (read Woodroofe1)

1http://www.stat.lsa.umich.edu/~michaelw/PPRS/1986aam.pdf
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Optimal designs for linear models

! Consider data (zi ,Yi ), i = 1, · · · , n, where n has been
determined based on cost considerations, and we want to pick
z1, · · · , zn from a candidate set Z so that our intervals are
shortest or tests have maximum power

! Because β̂LS ∼ AN(β,σ2(ZTZ )−1), need (ZTZ )−1 small

! But (ZTZ )−1 is a matrix – need a scalar summary
! Many criteria:

! A-optimality: minimize trace of (ZTZ )−1

! D-optimality: minimize det{(ZTZ )−1}

! Useful when Z is a discrete set or a bounded set

! Related subject: optimal factorial designs
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Comparing procedures

! Between two intervals with same confidence coefficient, we
prefer the one with shorter width (need smaller sample size to
meet a margin)

! Between two tests of the same size, prefer the one with more
power at a detectable distance

! Two considerations:
1. Optimality (within a regular model, i.e., Gaussian linear model)
2. Robustness (within a model that encompasses many regular

models, i.e., linear models with possibly non-Gaussian errors)

! ML procedures are often optimal but not robust
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Most powerful tests

! X ∼ f (x |θ), θ ∈ Θ

! Want to test H0 : θ ∈ Θ0

! A level-α test δ is most powerful at a θ1 ∈ Θ \Θ0 if there is
no level-α test δ′ with β(θ1, δ′) > β(θ1, δ).

! A test δ is said to be the uniformly most powerful level-α test
if δ is a most powerful level-α test at every θ1 ∈ Θ \Θ0.
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The Neyman-Pearson lemma

! Consider Θ = {θ0, θ1} and we want to test H0 : θ = θ0
! The Neyman-Pearson lemma says that the most power level α

test is given by

Reject H0 if Λ(X ) =
LX (θ1)

LX (θ0)
> k

where k is such that
! P[X |θ0](Λ(X ) > k) ≤ α0 but
! P[X |θ0](Λ(X ) > k ′) > α0 for all k ′ < k .
! i.e., k is the smallest threshold satisfying the size condition
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UMP test for simple H0

! Let Θ be a general set. Want to test H0 : θ = θ0
! Suppose there exists a statistic T (x) such that for any θ1 )= θ0

and any constant k > 0 there exists a constant c > 0 so that

LX (θ1)

LX (θ0)
> k ⇐⇒ T (X ) > c

(i.e., for any data x the event on the left happens if and only
if that on the right also happens)

! Note that c may depend on both k and θ1.

! The UMP level-α test rejects H0 if T (X ) > c(α) where c(α)
is such that P[X |θ0](T (X ) > c(α)) = α.

! Why??
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UMP test for one-sided hypotheses

! X ∼ f (x |θ), θ ∈ Θ, θ is scalar. Test H0 : θ ≤ θ0.

! Suppose {f (x |θ) : θ ∈ Θ} is a monotone likelihood ratio
(MLR) family in a statistic T (x), i.e.,

for every θ1 < θ2,
f (x |θ1)
f (x |θ2)

is increasing in T (x)

! The UMP level-α test rejects H0 if T (X ) > c(α) where c(α)
satisfies P[X |θ0](T (X ) > c(α)) = α.
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UMP unbiased

! Not too many families are MLR in any statistic

! Consequently, not too many UMP tests are known

! A slightly less demanding criterion is to be UMP among all
tests that are unbiased, i.e., whose power function at any
θ )∈ Θ0 is at least as much as the size α

! In most examples, ML tests are UMP among this class of tests
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Optimal estimation: UMVUE

! In general, tests and intervals are based on estimators

! How do we compare estimators?

! An old favorite of classical statisticians’ is the uniformly
minimum variance unbiased estimator (UMVUE).

! An estimator T (x) of η = h(θ) is said to be UMVUE if
1. T (x) is unbiased, i.e., E[X |θ]T (X ) = h(θ) ∀θ and

2. for any unbiased T̃ (X ), Var[X |θ]T (X ) ≤ Var[X |θ]T̃ (X ), ∀θ
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Rao-Blackwell inequality

! Let T (x) be unbiased for η = h(θ)

! Suppose S(x) is a sufficient statistic

! The conditional distribution of X given S(X ) remains the
same for every θ (a consequence of sufficiency)

! Define T ∗(x) as E{T (X )|S(X ) = S(x)} [conditional
expectation taken under any θ, they all give the same]

! Then,
1. T ∗(x) is unbiased and
2. Var[X |θ]T

∗(X ) ≤ Var[X |θ]T (X ), ∀θ
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Information inequality

! There is a limit on how small the variance of an unbiased
estimator can be

! A famous result, independently due to Cramér, Rao and
Frechét, states the following

! Theorem (Information inequality). If T (x) is unbiased for
η = h(θ) then

Var[X |θ]T (X ) ≥ ḣ(θ)T [I F (θ)]−1ḣ(θ)

where I F (θ) = −E[X |θ]
∂2

∂θ2 log f (X |θ)
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Information inequality, exponential family & UMVUE

! f (x |θ) = h(x)eθ
′T (x)−A(θ): a canonical exponential family

! Equivalent parametrization in terms of

η = Ȧ(θ) = E[X |θ]T (X )

! T (x) is unbiased for η (by definition), Var[X |θ]T (X ) = Ä(θ)

! Also, I F (θ) = Ä(θ), so information bound = Ä(θ)

! So T (X ) is UMVUE2 for η

2Does not guarantee θ̂MLE(x) = Ȧ−1(T (x)) is UMVUE or even unbiased for
θ; a proof that such properties are not too exciting!
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Asymptotic relative efficiency

! X1, · · · ,Xn
IID∼ g(xi |θ), interested in η = h(θ)

! Most statistical procedures are built upon estimators η̂ of η

that are not unbiased but satisfy
√
n(η̂ − η)

d→ N(0, se2(θ)).

! Such estimators are (at least) asymptotically unbiased

! The ratio
se21 (θ)
se21 (θ)

is the asymptotic relative efficiency (ARE) of

the estimator η̂2 with respect to η̂1.

! Efficient estimators give shorter intervals, more powerful tests

21 / 26

Efficiency of MLE

! Usually
√
n(η̂MLE − η)

d→ N(0, ḣ(θ)TI F1 (θ)−1ḣ(θ)).

! That is, asymptotically, MLE is unbiased and meets the
information bound (note, I F (θ) = nI F1 (θ))

! So information inequality suggests that η̂MLE should have
smaller variance than any other estimate that is
asymptotically normal with mean η.

! A precise statement is given below.
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Efficiency of MLE (contd)

! If θ̃ is a minimum contrast estimate of θ then η̃ = h(θ̃)

satisfies
√
n(η̃ − η)

d→ N(0, s̃e2(θ)) with

s̃e2(θ) ≥ µ̇(θ)T I F1 (θ)−1µ̇(θ)

! That is, the MLE is efficient among all minimum contrast
estimators that are asymptotically normal.
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Robust procedures

! For non-parametric models, optimal procedures are difficult to
find

! A non-parametric model contains many regular parametric
sub-models, their corresponding ML procedures are optimal
within that sub-model

! However, it might be possible to find a procedure that
remains competitive across all sub-models

! Such procedures are called robust (there are other definitions
of robustness, but the essence is this)

! Two examples
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Median is more robust than mean

! Xi = µ+ εi , εi
IID∼ f ∈ Fsym, µ ∈ (−∞,∞)

! Fsym contains all pdfs that are symmetric around 0

! Two estimators of µ: x̄ and xmed

! ARE of xmed w.r.t x̄ is 4f0(0)σ2
f , where σ2

f =
∫
x2f (x)dx

! Consider f = (1− ε)N(0,σ2) + εN(0, kσ2)

! ARE = 64% for ε = 0 (best case for mean, being the MLE for
that sub-model)

! For ε > 0, ARE → ∞ as k → ∞
! Regression counterpart: least-squares vs median (quantile)

regression
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Wilcoxon’s rank-sum test vs t-test

! Xi
IID∼ g(x), Yj

IID∼ g(x − θ), g arbitrary

! To test H0 : θ = 0

! Let δ1 be size-α t-test, δ2 be size-α W’s test

! Fixed desired power β > α

! Pitman efficiency: Consider a sequence (θk)k≥1 → 0. Let nk,1
and nk,2 be sample sizes needed by δ1 and δ2 to have power β
at θk . Relative Pitman efficiency of δ2 to δ1 is limk→∞

nk,1
nk,2

! Limit does not depend on β
! Relative P efficiency of W’s test w.r.t t-test is

1. 0.95 when g is normal (the best case scenario in favor of t-test)
2. Can be arbitrarily large (and approach ∞) for non-normal

(heavy tailed) g
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