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Physicist’s data

! Theory precisely predicts the outcome of an experiment.

! If observed data doesn’t match prediction, theory is falsified.
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Statistician’s data

! Only an imprecise description of outcome/measurements.
! This could be due to

! An imprecise theory
! Noise introduced during data collection
! Both.

! A statistician’s data is an uncertain quantity X .
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You need Probability to do Statistics

! Any uncertain quantity X can be best described by
1. A set of values S the quantity may assume,
2. A pdf/pmf f (x) over S indicating relative plausibilities of

elements of S .

! Relative plausibility: f (x1)/f (x2) = 2 means x1 is 2-times as
plausible as x2.
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A word of caution

! A probabilist will call X a random variable.

! In statistics, we hesitate to use this label to data we are going
to observe. To us X is just a quantity whose value is unknown
to us.

! There are non-random quantities that we might be uncertain
about.

! However, the calculus of probability remains the same no
matter which label you use.

! Read Chapter 1.1 of Principles of Uncertainty by J B Kadane.
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Statistical models

! If data can be described by a single pmf/pdf then there is no
need of statistical analysis – because there is no need to
observe any data!

! Statistics is needed when a multitude of competing theories
lead to a multitude of pmfs/pdfs.

! When all these pmfs/pdfs are collected together, we have a
statistical model for our analysis.
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Notations

! If θ denotes the quantity by which the constituent pmfs/pdfs
of the model differ from each other, then we can write each
pmf/pdf as f (x |θ).

! The quantity θ is the parameter of this model.

! The set Θ of all possible values of θ is called the parameter
space of the model.
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Example: Opinion poll

! A researcher wants to know what percentage of students in a
certain university are in favor of a recent government policy.

! For a large university, soliciting every student’s opinion is
impossible. The researcher may want to draw a random list of
n = 500 students and quiz them on their opinion regarding
the policy. A random list gives the best chance of guarding
against systematic biases in obtaining a representative sample
of students.

! The data here is the number X of students in the sample who
are in favor.
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A model for opinion poll data

! If the researcher thinks that a fraction p of the students,
among a total of N university students are in favor of the
policy, then X can be described by the hyper-geometric pmf
f (x |p) given by

f (x |p) =
(m
x

)(N−m
n−x

)
(N
n

) I (x ∈ {max(0, n+m−N), · · · ,min(n,m)})

where m = Np = total number of students who are in favor.

! p encodes the researcher’s theory about the popularity of this
policy in this college.

! If she considers all possibilities p ∈ { 0
N ,

1
N , · · · ,

N
N }, her

statistical model for X is {HGeo(n,N,Np) : p ∈ { 0
N , · · · ,

N
N }}.

8 / 20
. . . . . .

Another model for opinion poll data

! When N is very large compared to n, we can also represent X
by the binomial pmf

f (x |p) =
(
n

x

)
px(1− p)n−x I (x ∈ {0, 1, · · · , n})

! Now the researcher’s model is {Bin(n, p) : p ∈ [0, 1]}.
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Hypergeometric vs. binomial pmfs

! N = 10000, n = 500,

! Three possible values of p ∈ {1
4 ,

1
2 ,

3
4}.
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Example: Annual TC count trend

! A climate researcher wants to study whether hurricane activity
is intensifying with time.

! One measure are the yearly counts of tropical cyclones (TC)
in the north Atlantic basin, for the past n = 160 years (NOAA
maintains data from 1851).

! The data is X = (X1, · · · ,Xn), with Xt giving the annual TC
count in year t.
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A model for TC counts

! First focus on describing any one Xt .

! Since Xt is a count, we can describe it by a Poisson pmf:

ft(xt) =
e−µtµxt

t

xt !
I (xt ∈ {0, 1, ...})

where µt represents the expected count for year t.

! To describe X = (X1, · · · ,Xn), treat Xt ’s as independent:

f (x |µ1, · · · , µn) = f1(x1|µ1)× · · ·× fn(xn|µn)

gives the joint pmf of X at x = (x1, · · · , xn).
! A model for X is {f (x |µ1, · · · , µn) : 0 < µ1, · · · , µn < ∞}.
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A useful model for TC counts

! The above model includes many pmfs that do not embed the
researcher’s question in any meaningful way.

! We must restrict to pmfs f (x |µ1, · · · , µn) for which the
evolution of µt over time t represents a theory about the
trend.

! One possible restriction is to include f (x |µ1, · · · , µn) with

log µt = α+ β(t − 1), t = 1, · · · , n

for some α and β.
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Connection to trend theories

! So our model is {f (x |α,β) : −∞ < α,β < ∞} where

f (x |α,β) = f1(x1|eα)× f2(x2|eα+β)× · · ·× fn(xn|eα+β(n−1))}

! This model embeds the researcher’s theories about trend in
the following way:

! β > 0 ⇐⇒ TC counts have an upward trend. Larger β
indicating faster growth.

! β ≤ 0 indicates no trend or downward trend.
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f (x |α = 2, β = 0.005): Upward trend

ye
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TC count
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f
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f (x |α = 2.5, β = 0): No trend

ye
ar

TC count

pm
f
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f (x |α = 3, β = −0.005): Downward trend

ye
ar

TC count

pm
f
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Imprecise trend theories

! Unlike the opinion poll example, the TC count theories are
less precise.

! One could use many other distributions, instead of a Poisson
pmf, to describe each Xt .

! The evolution of µt over time t could also be described in
many different ways.

! One might need to expand the model or compare it against
other possible models to account for this imprecision in the
theoretical formulation.
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Protein diet and bodyweight gain in infants

! To determine whether high protein diets offer higher gains in
body weight in infant mammals, data were collected on 19
female rats, n = 12 of which were given a certain high protein
diet, while the other m = 7 received a regular diet.

! For each rat, weight gain between 28th and 84th days after
birth were recorded.

! Data consists of measurements X1, · · · ,Xn from the
high-protein group and Y1, · · · ,Ym from the low-protein
group.
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A common model for biological/medical measurements

! A very standard way of describing such data is:
! Xi

IID∼ N(µ1,σ2), Yj
IID∼ N(µ2,σ2),

! Xi ’s and Yj ’s are independent.

! This is a shorthand for saying that the joint pdf of
(X1, · · · ,Xn,Y1, · · · ,Ym) is given by the function

f (x1, · · · , xn, y1, · · · , ym|µ1, µ2,σ)

=
n∏

i=1

g(xi |µ1,σ)×
m∏

j=1

g(yj |µ2,σ)

where g(z |µ,σ) = 1√
2πσ2

exp(− (z−µ)2

2σ2 ) is the N(µ,σ2) pdf.

! Model = {f (x , y |µ1, µ2,σ) : −∞ < µ1, µ2 < ∞,σ > 0}.
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