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When ML fails

! Is LSAT correlated with GPA?

! Data (Xi ,Yi ), i = 1, · · · , n
! Model: (Xi ,Yi )

IID∼ f , f ∈ F2 = {all densities on R2}
! ρ = ρ(f ) = Cor[(X1,Y1)|f ](X1,Y1).

! H0 : ρ = 0.

! f̂MLE does not exist! supf ∈F2
"x ,y (f ) = ∞.
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A quick check

! Obs: (xi , yi ), i = 1, · · · , n,
! Denote zi = (xi , yi )T .

! For every k ≥ 1 define fk = 1
n

∑n
i=1 N2(zi ,

1
k I2)

! For large k , "x ,y (fk) ≈ n log k
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But all is not lost

! Let rx ,y denote the sample correlation coefficient

! If H0 were true, we would expect rx ,y to be close to zero and
if it were untrue, |rx ,y | should be not close to zero

! A test: Reject H0 if |rx ,y | > c with

size = sup
f ∈F2,ρ(f )=0

P[X ,Y |f ](|rX ,Y | > c)

! How to calculate or approximate these probabilities?

! Asymptotic helps
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Fisher’s result

! Let (Xi ,Yi ), i = 1, · · · , n are IID with correlation ρ

! For large n, rX ,Y ∼ AN(ρ, {1−ρ2}2
n )

! A better approximation: tanh−1(rX ,Y ) ∼ AN(tanh−1(ρ), 1
n−3)

[where tanh−1(r) = 1
2 log

1+r
1−r , an increasing function]

! See here for a proof based on the Delta theorem. Try verifying
by simulations!
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Tests and intervals for correlation

! An approximately size-α test rejects H0 : ρ = 0 if

|rx ,y | > z(α)/
√
n

! Also, an approximately size-α test rejects H0 : ρ = ρ0 if

√
n − 3× | tanh−1(rX ,Y )− tanh−1(ρ0)| > z(α)

! A 100(1− α)% confidence interval for tanh−1(ρ) is

tanh−1(rx ,y )∓
z(α)√
n − 3

! What’s an interval for ρ?
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The classical kingdom

! The above example illustrates the reach of classical statistics.

! For a complex model, to test a certain hypothesis H0, we
could use heuristics to come of with a statistic T (x) that is
expected to be large when the hypothesis is false and small
when the hypothesis is true.

! Heuristics turn into a rigorous testing procedure the moment
we are able to calculate its power function, and in particular,
its size.

! These calculations can be challenging, but asymptotic theory
and/or simulation techniques (e.g., the bootstrap) help out.

6 / 11
. . . . . .

Going ahead

! The classical kingdom is really vast as the basic principles are
easy to implement and have been widely implemented in
many different contexts.

! We can’t enumerate all of these, but will see some selected
examples.

! In most of these examples, there would be a “non-parametric”
flavor, i.e., the models we will consider are collections of
pdfs/pmfs that cannot be indexed by a finite dimensional
parameter.
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Least squares in linear models

! Consider data (Yi , zi ), i = 1, · · · , n modeled as

Yi = zTi β + σεi , εi
IID∼ f

with f ∈ F = {all densities on R with mean 0 and var 1}
! Under mild regularity conditions,

! β̂LS ∼ AN(β,σ2(ZTZ )−1), [CLT + Delta + ...]
! s2y |z

p→ σ2

! (but they need not be independent)

! And so the confidence intervals and testing procedures that
we developed for the linear Gaussian model under ML
considerations can be used for this more general model with
same (asymptotic) guarantees.
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Rank-sum test for location shift

! Data: X1, · · · ,Xn,Y1, · · · ,Ym

! Model: Xi
IID∼ f1, Yi

IID∼ f2,
! Xi ’s and Yj ’s independent
! f1, f2 ∈ {all densities on R}
! restrict to: either f1 = f2 or P[(X1,Y1)|f1×f2](X1 < Y1) += 0.5.

! H0 : f1 = f2
! U =

∑n
i=1 rank(xi )

! rank(xi ) gives the rank of xi in the pooled sample
{x1, · · · , xn, y1, · · · , ym} arranged from smallest to largest.

! Under H0, U is expected to be around nm/2.

! Under H0, T = U−nm/2√
nm(n+m+1)

2

∼ AN(0, 1)

! Size-α test: Reject H0 if |T | > z(α).
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Testing complete spatial randomness (CSR)

! Data X1, · · · ,Xn: spatial locations of n events in S ⊂ R2

! Is the pattern
! aggregate (exhibits clustering)?
! regular (grid-like, exhibits repulsion)?
! CSR (placed at random)?

! The K -statistic at distance r

K̂ (r) =
A

n2

∑

i #=j

wij I (‖xi − xj‖ < r)

where A = area(S), wij = 1/area(S ∩ B(xi , r))

! CSR =⇒ K (r) is close to πr2. Take L̂(r) =
√

K̂(r)
π − r
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Size calculation via simulation

! The exact distribution of L̂(r) is difficult to assess (depends
on the shape of S in an intractable way)

! But, can simulate CSR patterns of n points in S

! Gives a simulation approximation to the distribution of L̂(r)

! Get quantiles Lα/2,r and L1−α/2,r by simulation

! Approximately size-α test rejects H0 : CSR at (range r) if
L̂(r) +∈ [Lα/2,r , L1−α/2,r ]

! See here for more details and here for an application to shrub
patterns.
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