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ML test in a slightly different form

! Model X ∼ f (x |θ), θ ∈ Θ. Hypothesist H0 : θ ∈ Θ0

! Good set: Bc(x) = {θ : "x(θ) ≥ maxθ∈Θ "x(θ)− c2

2 }
! ML test = reject H0 if Bc(x) ∩Θ0 = ∅
! Same as: reject H0 if

max
θ∈Θ

"x(θ)− max
θ∈Θ0

"x(θ) ≥ c2/2

! Or equivalently: reject H0 if

Λ(x) =
maxθ∈Θ Lx(θ)

maxθ∈Θ0 Lx(θ)
≥ k
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Size calculation

! Need to calculate maxθ∈Θ0 P[X |θ](Λ(X ) > k)

! Will work for models of the form: Xi
IID∼ g(xi |θ), θ ∈ Θ

! And hypothesis: H0 : AT θ = a0 for a given p × r matrix A
and given scalar a0 (typically a0 = 0)

! Under regularity conditions: 2 logΛ(X )
d→ χ2(r) when

Xi
IID∼ g(xi |θ0) with θ0 ∈ Θ0.

! Follows from asymptotic normality of θ̂MLE(X )
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Asymptotic normality of MLE

Theorem. Assume the following (Cramér) conditions

1. θ )→ ∂
∂θ log g(x |θ) is twice continuously differentiable.

2. θ )→ g(·|θ) is identifiable.
3. ‖ ∂3

∂θ3 log g(xi |θ)‖ < h(x), ∀θ ∈ nbhd(θ0), E[X |θ0]h(X1) < ∞
4. θ̂MLE(x) is the unique solution of "̇x(θ) = 0 for every x .

If Xi
IID∼ g(xi |θ0) then

√
n(θ̂MLE − θ0)

d→ N
(
0, {I F1 (θ0)}−1

)

where I F1 (θ) = −E[Xi |θ]
∂2

∂θ2 log g(X1|θ) = Fisher information at θ.
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A sketch of a proof

! First order Taylor approximation:

0 =
1√
n
"̇X (θ̂MLE) ≈

1√
n
"̇X (θ0) +

√
n
"̈X (θ0)T

n
(θ̂MLE − θ0)

! Write Ti =
∂
∂θ log g(Xi |θ).

! ETi = 0, VarTi = I F1 (θ0)

! 1√
n
"̇X (θ0) =

√
n(T̄ − 0)

d→ N(0, I F1 (θ0)) [by CLT]

! Write Wi = − ∂2

∂θ2 log g(Xi |θ) at θ = θ0
! EWi = I F1 (θ0)

! !̈X (θ0)
n = W̄

p→ I F1 (θ0)

! Rest is Slutksy’s theorem
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Three large n approximations to Λ(x)

! Assume θ0 ∈ Θ0, i.e., AT θ0 = a0
! Notation: θ̂H0 = argmaxθ∈Θ0

"x(θ) (must have AT θ̂H0 = a0)

! Quadratic, Wald, Rao approximations

2 logΛ(X ) ≈






F (X ) = (AT θ̂MLE − a0)T{AT I−1
x A}−1(AT θ̂MLE − a0)

W (X ) = n(AT θ̂MLE − a0)T{AT I F1 (θ̂MLE)
−1A}−1(AT θ̂MLE − a0)

S(X ) = 1
n "̇X (θ̂H0)

T{I F1 (θ̂H0)}−1"̇X (θ̂H0)

! 2 logΛ(X )− F (X )
p→ 0, etc.

! Each of 2 logΛ(X ),F (X ),W (X ), S(X )
d→ χ2(r)
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Sketches of proof if you cared - part I

! 2 logΛ(X ) ≈ F (X ) follows from
! Quadratic approximation:

"x(θ) ≈ "x(θ̂MLE)− 1
2 (θ − θ̂MLE)T IX (θ − θ̂MLE)

! and the corresponding profile log-likelihood of η = AT θ:

"∗x (η) ≈ "x(θ̂MLE)− 1
2 (η − AT θ̂MLE)T{AT I−1

X A}−1(η − AT θ̂MLE)

! and by noting Λ(x) = "∗x (a
T θ̂H0)− "∗x (a

T θ̂MLE)

! 2 logΛ(X ) ≈ W (X ) follows similarly, use IX ≈ nI F1 (θ̂MLE).
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Sketches of proof if you cared - part II

! 2 logΛ(X ) ≈ S(X ) follows because
! 0 = "̇x(θ̂MLE) ≈ "̇x(θ̂H0) + "̈x(θ̂H0)

T (θ̂MLE − θ̂H0)

! "̈x(θ̂H0) ≈ nI F1 (θ̂H0)

! And so θ̂MLE − θ̂H0 ≈ I F1 (θ̂H0)
−1"̇x(θ̂H0)

! Plug this into the original quadratic approximation and use
IX ≈ nI F1 (θ0) ≈ nI F1 (θ̂H0) because θ̂MLE ≈ θ0
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Sketches of proof if you cared - part III

! It is easiest to prove W (X )
d→ χ2(r)

! By asymptotic normality of MLE and Slutsky’s theorem

W (X )
d→ ZT{AT I F1 (θ0)

−1A}−1Z

where Z ∼ Nr (0, {AT I F1 (θ0)−1A})
! But Z ∼ Nr (0,Σ) means ZTΣ−1Z ∼ χ2(r).
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Back to size calculation

! Recall: Each of 2 logΛ(X ),F (X ),W (X ), S(X )
d→ χ2(r)

! So each of the following test procedures has size α
! ML/LRT: Reject H0 if 2 logΛ(x) > qχ2(1− α, r)
! Quadratic: Reject H0 if F (x) > qχ2(1− α, r)
! Wald: Reject H0 if W (x) > qχ2(1− α, r)
! Rao: Reject H0 if S(x) > qχ2(1− α, r)

! Here qχ2(u, r) = F−1
χ2 (u, r) where Fχ2(x , r) = CDF of χ2(r)

! Also, one can calculate p-values as 1− Fχ2(2 logΛ(x), r) etc.
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Which one to use?

! Depends on which is easier to compute
! To get W (x) you don’t need θ̂H0 , only need θ̂MLE.
! To get S(x) you only need θ̂H0 , don’t need θ̂MLE.

! In many cases F (X ) = W (X ) because IX = nI F1 (θ̂MLE)

! This happens in most generalized linear models:

Yi
IND∼ g(yi |β, zi ) = h(zi , yi )e

ξ(β)yi zTi β−A(β,zi )

and Wald’s tests are popular choices

! Multinomial model of category counts, S(X ) = Pearson’s-χ2
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Example: low birthweight

! Natality data n = 500 records on US births in June 1997.

! Yi = 1 if i-th birth record has birthweight < 2500g, Yi = 0
otherwise.

! zi = (Cigarettesi ,Blacki ) records daily number of cigarettes
and the race of the mother.

! Model

log
P(Yi = 1)

1− P(Yi = 1)
= β1 + β2Cigarettesi

+ β3Blacki + β4Cigarettesi × Blacki .

! Can compute β̂MLE and IX (numerically).
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MLE and curvature

! From glm() function in R

β̂MLE =





−3.170
0.079
1.064
−0.003





I−1
X =





0.065 −0.003 −0.065 0.003
−0.003 0.001 0.003 −0.001
−0.065 0.003 0.192 −0.011
0.003 −0.001 −0.011 0.005





! How would you test the null hypothesis that for a black
mother, probability of low birthweight depends on the number
of cigarettes? For a non-black mother?

! How would you test that this dependence is different for black
and non-black mothers?
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Categorical data & Multinomial models

! Data: Counts of categories formed by one or more attributes

! Tables could be one-way, two-way, etc., depending on how
many attributes are used to decide categories.

Eye color
Blue Green Brown Black Total

H
ai
r
co
lo
r Blonde 20 15 18 14 67

Red 11 4 24 2 41
Brown 9 11 36 18 74
Black 8 17 20 4 49
Total 48 47 98 38 231
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Multinomial model

! Data are k category counts of n objects X = (X1, · · · ,Xk),

! Xj ≥ 0, X1 + X2 + · · ·+ Xk = n.

! Model X ∼ Multinomial(n, p) where p = (p1, · · · , pk) ∈ ∆k

! ∆k is k-dim simplex, contains k-dim prob vectors
b = (b1, · · · , bk), i.e., bj ≥ 0 ∀j and

∑
j bj = 1)

! Multinomial(n, p) has pmf

f (x |p) =
(

n

x1 · · · xk

)
px11 · · · pxkk

for x = (x1, · · · , xk) with xi ≥ 0 and
∑

i xi = n, f (x |p) = 0
otherwise.
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Multinomial model (contd.)

! This is an extension of the binomial distributions. In X we
record the counts from n independent trials with k outcomes
with probabilities given by p.

! Consequently Xj ∼ Bin(n, pj) for any single category
1 ≤ j ≤ k .

! Similarly for two categories j1 0= j2,
Xj1 + Xj2 ∼ Bin(n, pj1 + pj2), and so on.
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Multinomial model (contd.)

! For two-way tables, with k1 rows and k2 columns, we can
write X and p either as k1k2-dim vectors, or more commonly
as k1 × k2 matrices.

! Even when they’re written as matrices, we’ll write
X ∼ Multinomial(n, p) to mean that the multinomial
distribution is placed on the vector forms of X and p.

! For multi-way table we’ll use arrays of appropriate dimensions
to represent X and p.
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MLE

! To obtain the MLE of p based on data X = x , we can
maximize the log-likelihood function in p with an additional
Lagrange component to account for the constraint∑k

j=1 pj = 1:

"̃x(p,λ) = const +
k∑

j=1

xj log pj + λ(
k∑

j=1

pj − 1)

! The solution in p equals:

p̂MLE =

(
x1
n
, · · · , xk

n

)
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Hypothesis testing: Mendel’s peas

Mendel, the founder of modern genetics, studied how physical
characteristics are inherited in plants. His studies led him to
propose the laws of segregation and independent assortment. We’ll
test this in a simple context. Under Mendel’s laws, when pure
round-yellow and pure green-wrinkled pea plants are cross-bred,
the next generation of plant seeds should exhibit a 9:3:3:1 ratio of
round-yellow, round-green, wrinkled-yellow and wrinkled-green
combinations of shape and color. In a sample of 556 plants from
the next generation the observed counts for these combinations are
(315, 108, 101, 32). Does the data support Mendel’s laws?

18 / 30
. . . . . .

Formalization

! Data X = (X1,X2,X3,X4) giving the category counts of the
four types of plants

! Model X ∼ Multinomial(n = 556, p), p ∈ ∆4

! Test H0 : p = ( 9
16 ,

3
16 ,

3
16 ,

1
16)
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Hardy-Weinberg equilibrium

The spotting on the wings of Scarlet tiger moths are controlled by
a gene that comes in two varieties (alleles) whose combinations
(moths have pairs of chromosomes) produce three varieties of
spotting pattern: “white spotted”, “little spotted” and
“intermediate”. If the moth population is in Hardy-Weinberg
equilibrium (no current selection drift), then these varieties should
be in the ratio a2 : (1− a)2 : 2a(1− a), where a ∈ (0, 1) denotes
the abundance of the dominant white spotting allele. In a sample
of 1612 moths, the three varieties were counted to be 1469, 5 and
138. Is the moth population in HW equilibrium?
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Formalization

! Data X = (X1,X2,X3) the category counts of the three
spotting patterns,

! model X ∼ Multinomial(n = 1612, p), p ∈ ∆3,

! Test whether H0 : p ∈ ∆HW
3 ,

! ∆HW
3 is a subset of ∆3 containing all vectors of the form

(a2, (1− a)2, 2a(1− a)) for some a ∈ (0, 1).
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Hair and eye color

! Are hair color and eye color two independent attributes?

! In this case, writing p in the matrix form p = ((pij)),

1 ≤ i ≤ k1 and 1 ≤ j ≤ k2, we want to test if pij = p(1)i p(2)j

for some p(1) ∈ ∆k1 and p(2) ∈ ∆k2 .

! It’s elementary that if pij factors as above, then

p(1)i =
∑k2

j=1 pij and p(2)j =
∑k1

i=1 pij .

! Writing the row and column totals as pi · and p·j , the test of
independence is often represented by

H0 : pij = pi ·p·j , ∀i , j

! We’ll use ∆I
k1,k2

to denote this set.
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ML testing

! dim(∆k) = k − 1, as vector p ∈ ∆k satisfy
∑k

i=1 pi = 1.
! Hypotheses H0 : p ∈ Θ0, Θ0 is a sub-simplex of ∆k of

dimension q < k .
! Mendel’s peas: Θ0 = ( 9

16 ,
3
16 ,

3
16 ,

1
16 ), q = 0

! HW equilibrium: Θ0 = ∆HW
3 , q = 1

! Independence: Θ0 = ∆I
k1,k2

, q = k1 + k2 − 2.

! Could use any of ML, quadratic, Wald or Rao tests
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Pearson’s χ2 tests

! Rao’s test statistics boils down to a very convenient form:

S(X ) =
k∑

j=1

(Xj − np̂H0,j)
2

np̂H0,j

=
∑ (Observed − Expected)2

Expected

! For categorical data, this was earlier discovered by Pearson
who also ascertained its approximate χ2 distribution.

! Because this is Rao statistic, we have S(X )
d→ χ2(k − 1− q)
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Example 1: point null

! For testing H0 : p = p0 against p 0= p0, where
p0 = (p0,1, · · · , p0,k) ∈ ∆k is a fixed probability vector of
interest (as in Mendel’s peas example), then

S(X ) =
k∑

j=1

(Xj − np0,j)2

np0,j

which is asymptotically χ2(k − 1− 0) = χ2(k − 1).

! Size-α Pearson’s test rejects H0 if S(X ) > qχ2(1− α, k − 1).
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Example 2: parametric form

! HW test:

H0 : p0 = (η2, η(1−η), η(1−η), (1−η)2), for some 0 < η < 1

! To compute p̂H0 it is equivalent to write the likelihood
function in η and maximize:

LX (η) = const.× {η2}x1{η(1− η)}x2{η(1− η)}x3{(1− η)2}x4

= const.× η2x1+x2+x3(1− η)x2+x3+2x4

and so η̂MLE =
2x1+x2+x3

2n .
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Example 2: parametric form (contd.)

! Once we have η̂MLE, we can construct
p̂H0 = (η̂2MLE, η̂MLE(1− η̂MLE), η̂MLE(1− η̂MLE), (1− η̂MLE)2) and
evaluate S(X ).

! Because Θ0 has dimension q = 1 (only a single number η
needs to be known), the asymptotic distribution of S(X ) is
χ2(k − 2).

! The same calculations carry through for a more general
parametric form:

H0 : p = (g1(η), · · · , gk(η))

where η ∈ E is q-dim vector and g1(η), · · · , gk(η) are
functions such that for every η ∈ E , (g1(η), · · · , gk(η)) ∈ ∆k .
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Example 3: independence

! Consider testing H0 : pij = pi ·p·j , ∀i , j
! To get p̂H0 , we write the likelihood function in terms of pi ·,

1 ≤ i ≤ k1 and p·j , 1 ≤ j ≤ k2:

Lx(p1·, · · · , pk1·, p·1, · · · , p·k2) = const.×
k1∏

i=1

k2∏

j=1

(pi ·p·j)
xij

= const.×
{ k1∏

i=1

pxi·i ·

}{ k2∏

j=1

p
x·j
·j

}

where xi · =
∑k2

j=1 xij and x·j =
∑k1

i=1 xij are the margin counts
of our two-way table.
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Example 3: independence (contd.)

! Because (p1·, · · · , pk1·) ∈ ∆k1 and (p·1, · · · , p·k2) ∈ ∆k2 , the
maximizer is given by:

p̂i · =
xi ·
n
, p̂·j =

x·j
n
, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

! And so p̂H0 has coordinates: p̂H0,ij =
xi·x·j
n2 giving

S(X ) =
k1∑

i=1

k2∑

j=1

(Xij −
Xi·X·j

n )2

Xi·X·j
n

! Because dim(Θ0) = q = k1 − 1 + k2 − 1,

S(X )
d→ χ2(k1k2 − 1− k1 + 1− k2 + 1) = χ2((k1 − 1)(k2 − 1)).
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Hair-eye color

Eye color
Blue Green Brown Black Total

H
ai
r
co
lo
r Blonde 20 (13.9) 15 (13.6) 18 (28.4) 14 (11.0) 67

Red 11(8.5) 4 (8.3) 24 (17.4) 2 (6.7) 41
Brown 9 (15.4) 11 (15.1) 36 (31.4) 18 (12.2) 74
Black 8 (10.2) 17 (10.0) 20 (20.8) 4 (8.1) 49
Total 48 47 98 38 231

! S(x) = 30.9.

! So the p-value is 1− F(4−1)(4−1)(30.9) = 1− F9(30.9) ≈ 0.
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