

## MLE and curvature

From glm() function in R

$$\hat{\beta}_{\mathsf{MLE}} = \begin{pmatrix} -3.170\\ 0.079\\ 1.064\\ -0.003 \end{pmatrix}$$

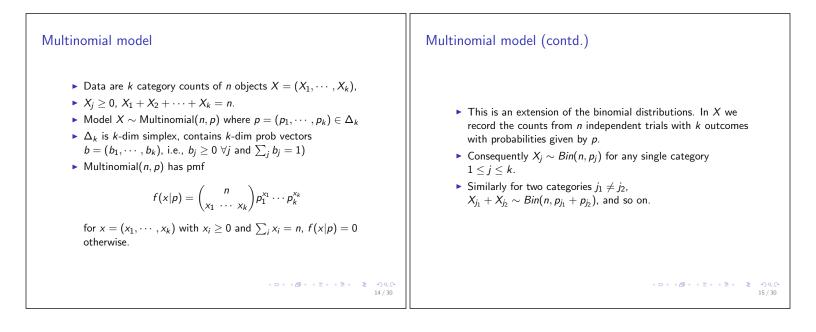
$$I_X^{-1} = \begin{pmatrix} 0.065 & -0.003 & -0.065 & 0.003 \\ -0.003 & 0.001 & 0.003 & -0.001 \\ -0.065 & 0.003 & 0.192 & -0.011 \\ 0.003 & -0.001 & -0.011 & 0.005 \end{pmatrix}$$

- How would you test the null hypothesis that for a black mother, probability of low birthweight depends on the number of cigarettes? For a non-black mother?
- How would you test that this dependence is different for black and non-black mothers?

### Categorical data & Multinomial models

- Data: Counts of categories formed by one or more attributes
- Tables could be one-way, two-way, etc., depending on how many attributes are used to decide categories.

| 0.003                                           |        |        | Eye color |    |       |           |           |  |
|-------------------------------------------------|--------|--------|-----------|----|-------|-----------|-----------|--|
| -0.001                                          |        |        | Blue      | •  | Brown | Black     | Total     |  |
| $\begin{pmatrix} -0.011 \\ 0.005 \end{pmatrix}$ | <br>or | Blonde | 20        | 15 | 18    | 14        | 67        |  |
| 0.000 /                                         | color  | Red    | 11        | 4  | 24    | 2         | 41        |  |
| at for a black                                  | Hair   | Brown  | 9         | 11 | 36    | 18        | 74        |  |
| ends on the number                              | Ξ      | Black  | 8         | 17 | 20    | 4         | 49        |  |
|                                                 |        | Total  | 48        | 47 | 98    | 38        | 231       |  |
| is different for black                          |        |        |           |    |       |           |           |  |
|                                                 |        |        |           |    |       |           |           |  |
| 나 《御》《言》《言》 홈 옛역<br>12/30                       |        |        |           |    |       | < = > < č | 9 → < ≅ → |  |



Multinomial model (contd.)MLE• For two-way tables, with  $k_1$  rows and  $k_2$  columns, we can<br/>write X and p either as  $k_1k_2$ -dim vectors, or more commonly<br/>as  $k_1 \times k_2$  matrices.• To obtain a<br/>maximize t<br/>Lagrange c<br/> $\sum_{j=1}^{k} p_j =$ <br/> $\tilde{\ell}_x(x_j)$ • Even when they're written as matrices, we'll write<br/>X ~ Multinomial(n, p) to mean that the multinomial<br/>distribution is placed on the vector forms of X and p.• The solution• For multi-way table we'll use arrays of appropriate dimensions<br/>to represent X and p.• The solution

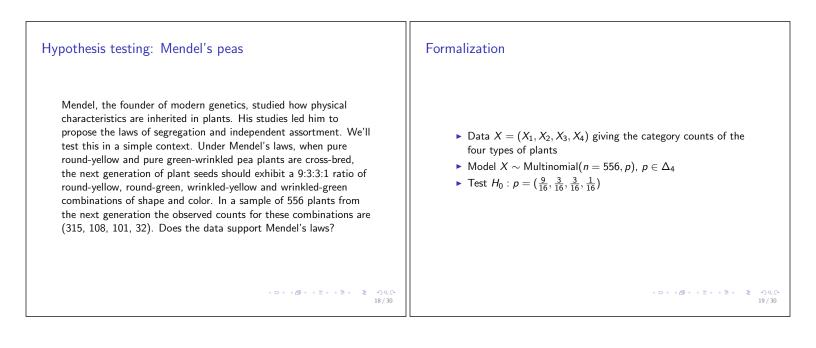
► To obtain the MLE of p based on data X = x, we can maximize the log-likelihood function in p with an additional Lagrange component to account for the constraint ∑<sub>i=1</sub><sup>k</sup> p<sub>i</sub> = 1:

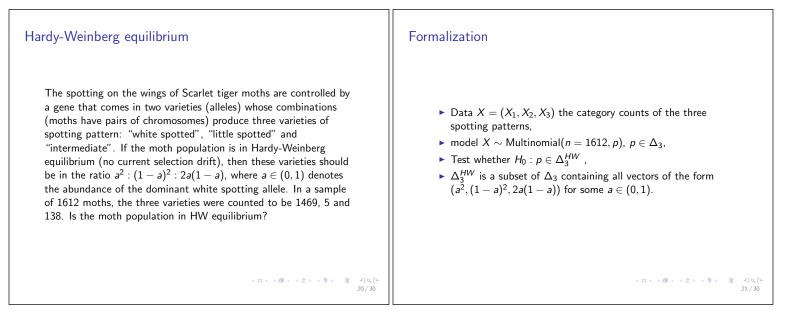
$$ilde{\ell}_x(\pmb{p},\lambda) = ext{const} + \sum_{j=1}^k x_j \log p_j + \lambda (\sum_{j=1}^k p_j - 1)$$

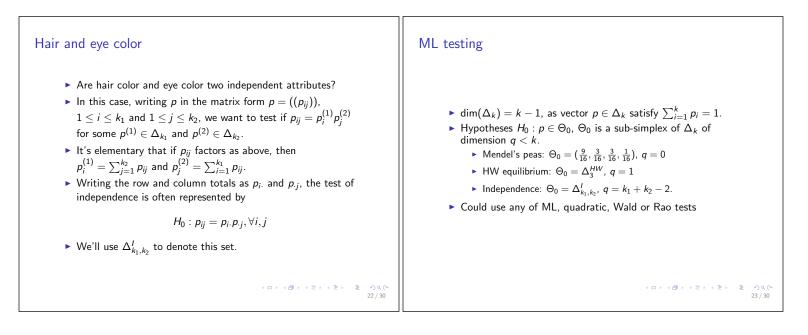
▶ The solution in *p* equals:

$$\hat{p}_{\text{MLE}} = \left(\frac{x_1}{n}, \cdots, \frac{x_k}{n}\right)$$

<ロ><一>、<一)>、<一)>、< き>、< き>、< き>、< き、< き、 16/30







## Pearson's $\chi^2$ tests

Rao's test statistics boils down to a very convenient form:

$$S(X) = \sum_{j=1}^{k} \frac{(X_j - n\hat{p}_{H_0,j})^2}{n\hat{p}_{H_0,j}}$$
$$= \sum \frac{(Observed - Expected)^2}{Expected}$$

- For categorical data, this was earlier discovered by Pearson who also ascertained its approximate  $\chi^2$  distribution.
- Because this is Rao statistic, we have  $S(X) \xrightarrow{d} \chi^2(k-1-q)$

# 



For testing H<sub>0</sub>: p = p<sub>0</sub> against p ≠ p<sub>0</sub>, where p<sub>0</sub> = (p<sub>0,1</sub>, · · · , p<sub>0,k</sub>) ∈ Δ<sub>k</sub> is a fixed probability vector of interest (as in Mendel's peas example), then

$$S(X) = \sum_{j=1}^{k} \frac{(X_j - np_{0,j})^2}{np_{0,j}}$$

which is asymptotically  $\chi^2(k-1-0) = \chi^2(k-1)$ .

• Size- $\alpha$  Pearson's test rejects  $H_0$  if  $S(X) > q_{\chi^2}(1-\alpha, k-1)$ .

<□><舂><≧><≧><≧>< 25/30

Example 2: parametric form Example 2: parametric form (contd.) • Once we have  $\hat{\eta}_{\text{MLE}}$ , we can construct ► HW test:  $\hat{p}_{\mathcal{H}_0} = (\hat{\eta}_{\scriptscriptstyle\mathsf{MLE}}^2, \hat{\eta}_{\scriptscriptstyle\mathsf{MLE}}(1-\hat{\eta}_{\scriptscriptstyle\mathsf{MLE}}), \hat{\eta}_{\scriptscriptstyle\mathsf{MLE}}(1-\hat{\eta}_{\scriptscriptstyle\mathsf{MLE}}), (1-\hat{\eta}_{\scriptscriptstyle\mathsf{MLE}})^2) \text{ and }$ evaluate S(X).  $H_0: p_0 = (\eta^2, \eta(1-\eta), \eta(1-\eta), (1-\eta)^2), \text{ for some } 0 < \eta < 1$ • Because  $\Theta_0$  has dimension q = 1 (only a single number  $\eta$ needs to be known), the asymptotic distribution of S(X) is ▶ To compute  $\hat{p}_{H_0}$  it is equivalent to write the likelihood  $\chi^2(k-2).$ function in  $\eta$  and maximize: The same calculations carry through for a more general  $L_X(\eta) = \text{const.} \times \{\eta^2\}^{x_1} \{\eta(1-\eta)\}^{x_2} \{\eta(1-\eta)\}^{x_3} \{(1-\eta)^2\}^{x_4}$ parametric form:  $= \text{const.} imes \eta^{2x_1 + x_2 + x_3} (1 - \eta)^{x_2 + x_3 + 2x_4}$  $H_0: p = (g_1(\eta), \cdots, g_k(\eta))$ and so  $\hat{\eta}_{\text{MLE}} = \frac{2x_1 + x_2 + x_3}{2n}$ . where  $\eta \in \mathcal{E}$  is *q*-dim vector and  $g_1(\eta), \cdots, g_k(\eta)$  are functions such that for every  $\eta \in \mathcal{E}$ ,  $(g_1(\eta), \cdots, g_k(\eta)) \in \Delta_k$ . < </li>
 < </li>

 < </li>

Example 3: Independence  
• Consider testing 
$$H_0 : p_{ij} = p_i \cdot p_j, \forall i, j$$
  
• To get  $\hat{p}_{H_0}$ , we write the likelihood function in terms of  $p_{i \cdot , 1 \leq i \leq k_1}$  and  $p_{\cdot j}, 1 \leq j \leq k_2$ :  
 $L_x(p_1, \dots, p_{k_1}, p_{\cdot 1}, \dots, p_{\cdot k_2}) = \text{const.} \times \prod_{i=1}^{k_1} \prod_{j=1}^{k_2} (p_i \cdot p_j)^{x_{ij}}$   
 $= \text{const.} \times \left\{ \prod_{i=1}^{k_1} p_{i}^{x_{i}} \right\} \left\{ \prod_{j=1}^{k_2} p_{j}^{x_j} \right\}$   
where  $x_{i \cdot} = \sum_{j=1}^{k_2} x_{ij}$  and  $x_{\cdot j} = \sum_{i=1}^{k_1} x_{ij}$  are the margin counts  
of our two-way table.

◆□ → ◆問 → ◆言 → ◆言 → 言 → りへで 28 / 30

. . . .

1.1

#### Example 3: independence (contd.)

▶ Because  $(p_1, \dots, p_{k_1}) \in \Delta_{k_1}$  and  $(p_{\cdot 1}, \dots, p_{\cdot k_2}) \in \Delta_{k_2}$ , the maximizer is given by:

$$\hat{p}_{i.} = \frac{x_{i.}}{n}, \ \hat{p}_{.j} = \frac{x_{.j}}{n}, \ 1 \le i \le k_1, 1 \le j \le k_2$$

• And so  $\hat{p}_{H_0}$  has coordinates:  $\hat{p}_{H_0,ij} = \frac{x_i \cdot x_j}{n^2}$  giving

$$S(X) = \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} \frac{(X_{ij} - \frac{X_i, X_{ij}}{n})^2}{\frac{X_i, X_j}{n}}$$

► Because dim( $\Theta_0$ ) = q = k<sub>1</sub> - 1 + k<sub>2</sub> - 1,  $S(X) \xrightarrow{d} \chi^2(k_1k_2 - 1 - k_1 + 1 - k_2 + 1) = \chi^2((k_1 - 1)(k_2 - 1)).$ 

| Hai                                                                                           | r-ey       | ve color |           |           |           |                  |              |  |  |  |  |
|-----------------------------------------------------------------------------------------------|------------|----------|-----------|-----------|-----------|------------------|--------------|--|--|--|--|
|                                                                                               |            |          | Eye color |           |           |                  |              |  |  |  |  |
|                                                                                               |            |          | Blue      | Green     | Brown     | Black            | Total        |  |  |  |  |
|                                                                                               | r          | Blonde   | 20 (13.9) | 15 (13.6) | 18 (28.4) | 14 (11.0)        | 67           |  |  |  |  |
|                                                                                               | Hair color | Red      | 11(8.5)   | 4 (8.3)   | 24 (17.4) | 2 (6.7)          | 41           |  |  |  |  |
|                                                                                               | air        | Brown    | 9 (15.4)  | 11 (15.1) | 36 (31.4) | 18 (12.2)        | 74           |  |  |  |  |
|                                                                                               | Т          | Black    | 8 (10.2)  | 17 (10.0) | 20 (20.8) | 4 (8.1)          | 49           |  |  |  |  |
|                                                                                               |            | Total    | 48        | 47        | 98        | 38               | 231          |  |  |  |  |
| • $S(x) = 30.9.$<br>• So the p-value is $1 - F_{(4-1)(4-1)}(30.9) = 1 - F_9(30.9) \approx 0.$ |            |          |           |           |           |                  |              |  |  |  |  |
|                                                                                               |            |          |           |           | < □ >     | < 18 > < 분 > < 분 | া ছ<br>30/30 |  |  |  |  |