ML Sampling Theory for non-Gaussian models:
Asymptotic Approximation
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Frequentist guarantees for non-Gaussian model

v

X ~ f(x]0), 0 € ©

» ML intervals:
Be(x) = {0 € © : £,(0) > £, (Buc(x)) — 2/2}
» ML test for Hy : 6 € ©g

8c(x) +— reject Ho if BN ©g =10

\{

How to calculate Py g)(6 € Bc(X))?
> How to calculate Ppxjg(©0 N Bc(X) = 0)?

Case by case

1. f(x]#) a pmf on a finite set S and © too is a finite set.
» Calculate by complete enumeration
> See HW 2
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2. X1, , Xn ~ Unif(0,0), 0 € (0,00)
» Fairly elegant general calculations
» Can express (0, A) in closed form
» HW 2

3. Xy, -, X ™ Poi(p), 1> 0
» An exact calculation

> And a very accurate approximation (for large n)
» Will do this now...
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ML sampling theory for Poisson model

> Xi,eo, Xy ™ Poi(y).
fme(x) =%, Ik = n/x.

» ML interval Bc(x) = X F c\/X/n and

Prx(g (1 € Be(X))
- c? c |/ c?
_P[X“]<X€#+217:F\/E M+M)

by a simple rearrangement (followed by a square completion)
But when X; = Poi(u), T =327, X; = nX ~ Poi(np).
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Exact coverage of B,

po| | (s Bisa) | (i Bros) | v(p; Bass)
10 | 0.906 0.926 0.970

1] 250874 0.948 0.977
100 | 0.900 0.945 0.988
10 [0.904 0.949 0.987

5 | 25 | 0.901 0.949 0.988
100 | 0.901 0.948 0.990
10 [ 0.894 0.946 0.989

10 | 25 | 0.901 0.948 0.990
100 | 0.900 0.949 0.990

Approximation

» With a standard rearrangement

Pix (1 €Bc(X))

X —p
= Pixj | —¢ < —= <c
[X/]< \/ﬁ >

» For “large n": T = \)/_(;77" PR N(0,1)

(Normal approx to Poisson + something more)
> So Px|u(1 € Be(X)) = 2d(c) — 1.




Exact coverage of B, vs. approximation Asymptotic calculations: Basics

M n | y(p,Biea) | v(u; Bios) | (i, Bass) > For the Poisson example, a precise statement is:
10 [ 0.906 0.9 | 0.926 0.95 | 0.970 0.99
1|25 0874 090948 0.95|0.977 0.99 nILm Pixju (1 € Be(X))

100 | 0.900 0.9 | 0.945 0.95 | 0.988 0.99
10 | 0.904 009 |0.949 0.95|0.987 0.99
5125 (0901 090949 0095 0.988 0.99
100 | 0.901 0.9 | 0.948 0.95| 0.990 0.99
10 | 0.894 0.9 | 0.946 0.95| 0.989 0.99

= nll—>ngo P[X\,u](fc S T S C) = 2¢(C) —1

> Here nis implicit in both X = (Xq,---,X,) and T which is
derived from X.

10| 25 1 0.901 090948 095 0.990 0.99 > For the second equality to hold for every ¢ > 0, it is necessary
100 | 0.900 0.9 | 0.949 0.95| 0.990 0.99 and sufficient that T % N(0,1).
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Recall convergence in law Recall Central Limit Theorem
> Ti, To,--- an infinite sequence of random variables in RY > Suppose Xi, Xp,--- are IID with some pdf/pmf f(x)
» f a pdf on R > Assume p = EX; and ¥ = VarX; are finite
> T, is said to converge in law to f if for every interval A € R? > Then T, = /n(X — ) A Ng(0,%)

> Also write T, ~ ANg(0,X), or, X ~ ANg(p, 1X).
iim P(T, € A) = / F(z)dz
n—o0 A

> General notation: write T, ~ ANg(un, Xp) if
and we write T, f.

-1 d
» If Z ~ f then we also write T, 4z By (To = pn) = Na(0, la)
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So for large n we can approximate P(T, € A) by P(Z € A). where ¥, = B,BT
e

Asymptotic normality of MLE Continuous mapping theorem

v

Model Xi, -, X, ~o g(xi|0),0 € ©, g is regular
MLE éMLE(X), curvature /.
Fix 0 € ©. If X; ™ g(xj|0) then If T, % Z and g(t) is a continuous function then g(T,) A g(2)
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Bue(X) ~ ANg(8, I 1)

» A very useful result!




Coverage probabilities of ML intervals
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Suppose Bue(X) ~ AN4(6, Ih
» Take n = a’@: a continuous function of 6

Recall B¢(x) = aTéMLE(X) + C\/m so
'D[X\é)](n S BC(X)) = P[X‘g](*C <T< C)

v

aT Owie(X)—aTo

waTI;la

> By cont. map thm., T ~ AN;(0,1) and so

where T =

P[X‘g](—C S T S C) = 2¢(C) — 1.

When is MLE asymptotically normal?
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Not for every model. Not for X; ~> Unif{0,6). (HW 2)

> You need some regularity of the pdfs collected under the
model

» To begin with, they need to be positive on the same set and

need to be differentiable in the parameter

v

Usually holds for exponential family models

Exponential family result

v

Model: X; ™ g(xi|0) = h(x;)eSD TC)-BO) g c @ c RY

» Assumptions

1. © is an open set

2. £(0) is one-to-one, two times differentiable with continuous
derivatives

3. There is no vector b such that b7 T(X;) is a constant number
for any X; ~ g(x;|0)

Then, Buie(X) ~ ANg(9, Ix') whenever X; % g(x;|6).
Will see a proof in a special case but first two very useful
probability results
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Slutsky's theorem

> Recall convergence in probability: Y, Ly if for every € > 0,
P(|Yn—=Y]| >€)—0.

» Suppose T, 4 7 e R9 and suppose B,, n=1,2 --- are
g X d random matrices such that B, 2 B a fixed matrix.
Then B,T, % BZ.

A use of Slutsky's theorem

» Normal approximation to Poisson: if X, -+ , X, " Poi( 1)
then

» By WLLN X & 4
» Slutksy's theorem: T, = Y£Z, = Xy 9 N(0,1).

The Delta theorem

Theorem. Suppose /n( Ty — 1) 5 Ng(0,X). If g(t) : RY — RY
has a continuous first derivative g(t) (a d x q matrix) then

Vi(g(Ta) — g(1) % Ng(0. £(1) & ().

Proof. Mean value theorem = g(T,) = g(u) +&(Sn) " (Tn — 1)
for some S,, between T, and p. Rearranging,

Vn(g(Ta) — g(1)) = Vg (Sa) " (To — 1)

Because /n(T, — u) A N4(0,1) implies T, 2 11 (why?), we have
Sp % 4. By continuity of g, (Sa) & &(1). The rest follows from
Slutsky's theorem.




A special case: Canonical exponential family

> Model: Xp,--, Xn ™ h(X,.)efTT(x;)fA(é)

» Parameter space
& ={c:Al) =log [ h(x;)et TtV dx; < oo}
» Assumptions:

1. & is open
2. a’ T(X;) is not a constant for any a

Some properties
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Call T; = T(X))

Epx,j Ti = A(€), Varpg Ti = A(E)

Assumption 2 implies Alis positive definite, so A(£) is strictly
convex over £.

This means A(€) is one-to-one and has an inverse g(t) with a
continuous derivative

MLE

» Log-likelihood function

£,(€) = const + €7 Z T(xi) — nA(§)
i=1
= const + nfT?(X) —nA(¢)
with T(x) =157, T(x),

> So MLE solves A(éuie(x)) = T(x), i.e., Eme(x) = g(T(x))

> Also, Ix = nA(é\MLE(X))'

Asymptotic normality

v
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Fix a 0 and suppose X; % h(x;)e€’ TCa)—AE)

By CLT v/a(T(X) — A(€)) 4 Na(0. A())

Hence, by the Delta theorem

VlGae(X) =€) % No(0, Te = £(A(€)TA()&(A(S)))

But, because g(t) is the inverse of A(£) we must have
g(t) = {Ae(e)}

and so ¥ = {A(€)} L.

Therefore, v/n(&ue(X) — &) ~ ANy (0, {A(€)} 1)

The final piece

» The last result implies &uc(X) 3 €,
So Ix/n = A(we(X)) B A(€) because A is continuous

» Therefore,

\4

Vn(&ue(X) — €) ~ ANg(0, nlt)

by Slutksy's theorem
» Rearrange to get éMLE(X) ~ ANy(¢, l;l)




