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ML calculations for normal model

! Consider the model X1, · · · ,Xn
IID∼ N(µ,σ2), µ ∈ (−∞,∞)

! σ is fixed, not a parameter

! The log-likelihood function equals

"x(µ) = const− n(x̄ − µ)2

2σ2
, µ ∈ (−∞,∞)

! Because this is a quadratic function in µ, we have

µ̂MLE(x) = x̄

Bc(x)
def
=

{
µ : "x(µ) ≥ "x(µ̂MLE(x))−

c2

2

}

=

(
x̄ − c

σ√
n
, x̄ + c

σ√
n

)

! Note: Bc(x) = Ak(x) with k = e−c2/2.

1 / 15

. . . . . .

Quadratic log-likelihood

! The quadratic form of the log-likelihood is a signature of
normal “location” models

Yi
IND∼ N(βT zi ,σ

2)

with fixed σ

! Even when σ is an unknown parameter, the profile
log-likelihood in β remains quadratic up to a monotone
transform.
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Normal model with unknown variance

! Now consider X1, · · · ,Xn
IID∼ N(µ,σ2)

! Both µ ∈ (−∞,∞) and σ2 > 0 are model parameters

! The profile log-likelihood in µ equals

"∗x(µ) = const− n
2 log{

n−1
n s2x + (x̄ − µ)2}

! Consequently,

µ̂MLE(x) = x̄

Bc(x) = x̄ ∓ cn
sx√
n

where s2x = 1
n−1

∑n
i=1(xi − x̄)2 and cn =

√
(n − 1)(ec2/n − 1)
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Non-normal models: MLE

! Models involving non-normal pdfs or pmfs usually have
log-likelihood function that are fairly more complex

! Binomial model X ∼ Bin(n, p), p ∈ [0, 1]

"x(p) = const + x log p + (n − x) log(1− p)

! But it could still be possible to calculate MLE fairly easily
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Normal equations

! Assume "x(θ) is continuously differentiable and unimodal

! Then θ̂MLE(x) solves (uniquely) the first order condition

"̇x(θ) = 0

where for a
! scalar θ, "̇x(θ) =

∂
∂θ "x(θ)

! vector θ = (θ1, · · · , θd)T , "̇x(θ) = ( ∂
∂θ1

"x(θ), · · · , ∂
∂θd

"x(θ))T .

! For θ with dim(θ) = d , this is really a system of d equations

! Important question: when do these assumptions hold?
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ML intervals

! Even if we can compute the MLE, calculating ML intervals
Bc(x) = {θ : "x(θ) ≥ "x(θ̂MLE(x))− c2/2} can be tricky

! Remarkably, for many useful models, the log-likelihood is
approximately quadratic near the MLE

! So we can get a closed form approximation to Bc(x)

! Important question: When does this happen?
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Many but not all
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When quadratic approximation holds

! If "x(θ) is approximately quadratic around θ̂MLE(x) then we
can use a two-term Taylor approximation:

"x(θ) ≈ "x(θ̂MLE(x))

+ (θ − θ̂MLE(x))
T "̇x(θ̂MLE(x))

+
1

2
(θ − θ̂MLE(x))

T "̈x(θ̂MLE(x))(θ − θ̂MLE(x))

! Note: "̇x(θ̂MLE(x)) = 0 and Ix = −"̈x(θ̂MLE(x)) positive definitie

! So: "x(θ) ≈ "x(θ̂MLE(x))− 1
2(θ − θ̂MLE(x))T Ix(θ − θ̂MLE(x)).

8 / 15
. . . . . .

Approximate ML intervals

! Bc(x) ≈ {θ : (θ − θ̂MLE(x))T Ix(θ − θ̂MLE(x)) ≤ c}
! For scalar θ, Bc(x) ≈ θ̂MLE(x)∓ c/

√
Ix

! For vector θ the above set is an ellipsoid centered at θ̂MLE(x)
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Profile likelihood derivations

! Consider a vector valued θ

! Suppose we are interested in the scalar quantity η = aT θ
where a is a known vector

! The profile log-likelihood in η equals:

"∗x(η) ≈ const− (η − η̂MLE(x))2

a′I−1
x a

where η̂MLE(x) = a′θ̂MLE(x)

! So Bc(x) ≈ η̂MLE(x)∓ c
√

a′I−1
x a
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When do assumptions hold?

! The three assumptions (log-likelihood is unimodal,
continuously differentiable and approximately quadratic near
the maxima) hold for many statistical models and verification
can be done case by case

! A general class of models for which these hold is given by the
exponential families
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Exponential family of pdfs/pmfs

! A family of pdfs (or pmfs) {f (x |θ) : θ ∈ Θ} on S is called an
exponential family if one can write

f (x |θ) = h(x) exp
{
η(θ)TT (x)− B(θ)

}
,

for every θ ∈ Θ, x ∈ S , for some functions h(x),T (x), η(θ)
and B(θ).

! Must have
! B(θ) = log

∫
S h(x)e

η(θ)TT (x)dx
! h(x) > 0 =⇒ f (x |θ) > 0 for all θ,
! h(x) = 0 =⇒ f (x |θ) = 0 for all θ
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From EF pieces to a joint EF

! Suppose X = (X1, · · · ,Xn) and

Xi
IID∼ g(xi |θ) = h(xi )e

η(θ)TT (xi )−B(θ)

! Then the pdfs for X are

f (x |θ) =
{

n∏

i=1

h(xi )

}
eη(θ)

T ∑n
i=1 T (xi )−nB(θ)

= hn(x)e
η(θ)TTn(x)−Bn(θ)
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One more

! Suppose X = (X1, · · · ,Xn) and

Xi
IND∼ g(xi |zi , θ) = h(xi , zi )e

η(θ)TT (xi ,zi )−Bzi (θ)

! Then the pdfs for X are

f (x |θ) =
{

n∏

i=1

h(xi , zi )

}
eη(θ)

T ∑n
i=1 T (xi ,zi )−

∑n
i=1 Bzi (θ)

= hn,z(x)e
η(θ)TTn,z (x)−Bn,z (θ)
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Assumptions hold...

! If {f (x |θ) : θ ∈ Θ} is an exponential family, i.e.,

f (x |θ) = h(x)eη(θ)
TT (x)−B(θ) where η(θ) is a one-to-one

function of θ with a continuous second derivative

! Only a sufficient condition (non-exponential families can
exhibit same behaviors)
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