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From model to inference

! So a statistical analysis begins by setting up a model
{f (x |θ) : θ ∈ Θ} for data X .

! Next we observe our actual data X = x .

! The pdfs/pmfs included in our model represent theories, the
observations x is evidence.

! The goal of inference is to compare between these theories in
light of the recorded evidence.
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Example: Opinion poll

! n: # sampled = 500

! X : # in favor

! Model: X ∼ Bin(n, p),
p ∈ [0, 1].

! Obs: X = 200.
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The likelihood function

! Clearly observed data will better match the prediction of some
theories than others.

! In other words, some theories will better predict the particular
observation than other theories.

! Better prediction means assigning a higher probability to
observing X = x

! So we can assign scores to theories by this function of θ:

Lx(θ) = f (x |θ), θ ∈ Θ

! This is called the likelihood score/function.
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Some words on the likelihood function

! Lx(θ) is a function of θ ∈ Θ.
! it depends on the observed data x ,
! but for any single data analysis x is a fixed quantity.

! Lx (θ1)
Lx (θ2)

= 2 implies the observed data is two times more likely
to appear under theory θ1 than under theory θ2.

! For all technical purposes, one can work with Lx(θ) in the
log-scale. That is, define the log-likelihood function

"x(θ) = log Lx(θ) = log f (x |θ), θ ∈ Θ.

! Log-scale comparisons are done by "x(θ1)− "x(θ2).
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Opinion poll likelihood

! Model X ∼ Bin(n, p), p ∈ [0, 1]. So

Lx(p) =

(
n

x

)
px(1− p)n−x , p ∈ [0, 1]

and the log-likelihood function is

"x(p) = log

(
n

x

)
+ x log p + (n − x) log(1− p), p ∈ [0, 1]

! The first term on the r.h.s. does not involve p. So we write

"x(p) = const + x log p + (n − x) log(1− p), p ∈ [0, 1]

and don’t care about the exact value of “const”.

! Indeed, “const” disappears in differences "x(p1)− "x(p2).
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Graphs of likelihood and log-liklihood
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Learning from the likelihood function

! Two goals
1. To report a subset of attractive theories.
2. To test a scientific hypothesis θ ∈ Θ0, a subset of Θ.

! These may not be the only/most important goals
! But capture the essence of “inference”
! We’ll get into other goals later

! Two aproaches to use Lx(θ) or "x(θ) to come up with and
interpret such a subset
1. The maximum likelihood (ML) approach
2. The Bayesian approach
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The ML approach

! Use Lx(θ) to split the parameter space into two subsets
1. subset of “well supported” θ with high Lx(θ)
2. subset of “not-so-well-supported” θ with low Lx(θ).

! Can effect such a split by
1. fixing a k ∈ [0, 1]
2. setting the first set as

Ak(x) =

{
θ ∈ Θ : Lx(θ) ≥ k max

θ̃∈Θ
Lx(θ̃)

}
.

! Report support toward θ ∈ Θ0 if Θ0 ∩ Ak &= ∅.
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Graphical representation of ML approach
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Choice of the threshold k

! With k = 1 we only report theories with the highest score,
1. i.e., the set of maximum points of Lx(θ).
2. Often there is one single point at which maximum is attained.
3. When this happens, the maximum point is called the

maximum likelihood estimate (MLE) and is denoted θ̂MLE(x).

! With k = 0 we report the whole set Θ – not making any use
of the data.
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Important questions

! How to choose k?

! Should the same k be chosen for all types of models?

! In the opinion poll example, should we use the same k when
n = 50 as we do for n = 500?

! All these would boil down to:
How to interpret the choice of k in a quantitative
manner and how to communicate it to a reader?

! We will find an answer through the paradigm of classical
statistics.
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Back to Opinion poll

! Data X = number of students (out of n) in favor of a policy.

! Statistical model: {Bin(n, p) : p ∈ [0, 1]}.
! 3 cases: n = 25,X = 10; n = 100,X = 40; n = 500,X = 200
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! Same p̂MLE(x) = x/n = 0.4, different Ak(x) with k = 0.15.
! [0.23, 0.59]; [0.31, 0.49]; [0.36, 0.44].
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More in favor than not?

! Any support toward θ ≥ 0.5?

! A0.15(x) ∩ [0.5, 1] &= ∅ only for (n = 25,X = 15).
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The Bayesian approach

! Convert Lx(θ) into a plausibility score on Θ.
! Uncertainty about any unknown quantity can be summarized

by a pdf/pmf.
! The parameter θ is one such quantity.

! Must have a pdf/pmf to describe θ before we observe data
and one to describe it after we make the observation.
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Prior and posterior

! Augment the model with a prior pdf π(θ) on Θ.

! π(θ) is the pre-data/a priori quantification of one’s uncertainty
about θ, with relative plausibility scores given by π(θ1)/π(θ2).

! The post-data/a posteriori relative plausibility scores are

π(θ1|x)
π(θ2|x)

=
π(θ1)

π(θ2)
× Lx(θ1)

Lx(θ2)

and correspond to the posterior pdf

π(θ|x) = Lx(θ)π(θ)∫
Θ Lx(θ′)π(θ′)dθ′

, θ ∈ Θ
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From prior to posterior

! Posterior formula is not ad-hoc: driven by probability theory!

! A model {f (x |θ) : θ ∈ Θ}, coupled with the prior π(θ) gives a
joint quantification of (X , θ) as:

(X | θ) ∼ f (x |θ), θ ∼ π(θ),

i.e., (X , θ) ∼ g(x , θ) = f (x | θ)π(θ)

where g(x , θ) is a pdf over S ×Θ.

! By Bayes theorem, the conditional pdf of θ given X = x is

π(θ|x) = g(x , θ)∫
Θ g(x , θ′)dθ′

=
f (x |θ)π(θ)∫

Θ f (x |θ′)π(θ′)dθ′

which is just as before because Lx(θ) = f (x |θ).
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Reporting a Bayesian analysis

! π(θ|x) captures the entire post-data quantification of the
uncertainty about θ.

! A report is essentially visual/numerical summaries of this pdf.
! A plot of π(θ|x), if available, is most useful!
! Numerical summaries include quantiles, mean, standard

deviation, mode, high density regions, etc.

! 0.025-th & 0.975-th quantiles give a 95% posterior range of θ

! To evaluate evidence toward θ ∈ Θ0, simply calculate

Pr(θ ∈ Θ0|x) =
∫

Θ0

π(θ|x)dθ.
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Back to opinion poll

! For opinion poll example, take π(θ) to be the Unif(0, 1) pdf.
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! 95% posterior range: [0.24, 0.59]; [0.31, 0.50]; [0.36, 0.44].

! Pr(θ ≥ 0.5|x): 0.163, 0.023, 0.00000369.

18 / 23
. . . . . .

A two parameter problem

! Lactic acid concentrations X1, · · · ,Xn measured from cheese
samples

! Model: Xi
IID∼ N(µ,σ2)

! Model parameters µ ∈ (−∞,∞), σ2 > 0.
! Care only about µ

! Get a range for µ.
! Is µ ≤ 1?
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Why “problem”?

! Likelihood function Lx(µ,σ2) compares (µ,σ2) pairs.

! How to do it for µ alone?
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ML approach: Profile likelihood

! ML reports a well supported set Ak of (µ,σ2) values

! Look at all distinct values of µ that appear in Ak (paired with
some σ2). Report this set.

! Same as doing the following
! Define profile likelihood: L∗x (µ) = maxσ2 Lx(µ,σ2).
! Fix threshold k ∈ [0, 1].
! Report A∗

k(x) = {µ : L∗x (µ) ≥ k maxµ′ L∗x (µ
′)}.
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Bayes approach: marginal posterior pdf

! Prior pdf π(µ,σ2) leads to posterior pdf π(µ,σ2|x).
! But this describes a joint distribution of (µ,σ2) given X = x .

! Interested only in µ? Integrate out σ2

π∗(µ|x) =
∫

π(µ,σ2|x)dσ2

and summarize µ based on the marginal pdf π∗(µ|x).
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Integrated likelihood

! The marginal prior pdf is π∗(µ) =
∫
π(µ,σ2)dσ2.

! Conditional prior pdf of σ2 given µ is π̃(σ2|µ) = π(µ,σ2)
π∗(µ) .

! The marginal posterior pdf satisfies

π∗(µ|x) = L̃x(µ)π∗(µ)
∫
L̃x(µ′)π∗(µ′)dµ′

where

L̃x(µ) =

∫
Lx(µ,σ

2)π̃(σ2|µ)dσ2.

! Bayes: consider average support for µ over all σ2.

! ML: consider maximum support for µ at the best σ2.
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