















From prior to posterior

- Posterior formula is not ad-hoc: driven by probability theory!
- A model {f(x|θ) : θ ∈ Θ}, coupled with the prior π(θ) gives a joint quantification of (X, θ) as:

$$(X \mid \theta) \sim f(x \mid \theta), \quad \theta \sim \pi(\theta),$$

i.e., $(X, \theta) \sim g(x, \theta) = f(x \mid \theta)\pi(\theta)$

where $g(x, \theta)$ is a pdf over $S \times \Theta$.

• By Bayes theorem, the conditional pdf of θ given X = x is

$$\pi(\theta|x) = \frac{g(x,\theta)}{\int_{\Theta} g(x,\theta') d\theta'} = \frac{f(x|\theta)\pi(\theta)}{\int_{\Theta} f(x|\theta')\pi(\theta') d\theta'}$$

which is just as before because $L_x(\theta) = f(x|\theta)$.

Reporting a Bayesian analysis

- $\pi(\theta|x)$ captures the entire post-data quantification of the uncertainty about θ .
- A report is essentially visual/numerical summaries of this pdf.
 - A plot of $\pi(\theta|x)$, if available, is most useful!
 - Numerical summaries include quantiles, mean, standard deviation, mode, high density regions, etc.
- \blacktriangleright 0.025-th & 0.975-th quantiles give a 95% posterior range of θ
- To evaluate evidence toward $\theta \in \Theta_0$, simply calculate

$$\mathsf{Pr}(heta\in \Theta_0|x) = \int_{\Theta_0} \pi(heta|x) d heta.$$

・ロト (日)・(目)・(目)・(目)・(目)・(17/23

・ロト ・ 一部 ト ・ 注 ト ・ 注 ・ う へ で
16 / 23





