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Effect of a categorical factor

! Recall chick weight data

weighti = β1 + β2Diet2 + β3Diet3 + β4Diet4 + β5Timei + εi

! Want to test Diet has no effect

! H0 : β2 = β3 = β4 = 0.
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Another look

! In a different parametrization:

weighti = β1Diet1+β2Diet2+β3Diet3+β4Diet4+β5Timei+εi

! The same hypothesis is now represented by

H0 : β1 = β2 = β3 = β4
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Multiple linear combinations

! These hypotheses relate to an important general class

H0 : a
T
1 β = 0 & aT2 β = 0 & · · · & aTr β = 0

! Or equivalently
H0 : A

Tβ = 0

where A is the p × r matrix with columns a1, · · · , ar .
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ML calculations

! Let η = ATβ. Then the profile log-likelihood in η is

$∗y (η) = const− n
2 log

[
1 + (η−AT β̂LS)T {AT (ZTZ)−1A}−1(η−AT β̂LS)

(n−p)s2y|z

]

! With MLE η̂MLE(y) = AT β̂LS. Call this η̂LS.
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ML tests

! ML test rejects H0 : η = 0 if

$y (0) < $y (A
T β̂LS)− c2/2

! Or equivalently, if

F (y) =
η̂TLS{AT (ZTZ )−1A}−1η̂LS

r × s2y |z
> cn

with cn = n−p
r (ec

2/n − 1)
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Distribution theory

! If (β,σ2) is such that ATβ = 0 then

1. η̂LS = AT β̂LS ∼ Nr (0,σ2AT (ZTZ )−1A)

2. So η̂TLS{AT (ZTZ )−1Z}−1η̂LS/σ2 ∼ χ2(r)

3. (n − p)s2y |z/σ
2 ∼ χ2(n − p)

4. These two quantities are independent

! So, F (Y ) ∼ F (r , n − p): the F distribution with df r , n − p.
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Size calculation

! Call δc(y) the ML test that rejects H0 when F (y) > c .

! So power of δc equals 1− Fr ,n−p(c) over Θ0

! And so size of δc is 1− Fr ,n−p(c).

! A size α test is found by taking c = F−1
r ,n−p(1− α).
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The case of r = 1

! When r = 1, we can replace A = a, a p-dim vector

! F (y) = (aT β̂LS)2

s2y|z/na

! F (1, n − p) = t(n − p)2, i.e., T ∼ t(n − p) means
F = T 2 ∼ F (1, n − p).

! So the size-α F -test for H0 : η = 0 is same as

reject H0 when 0 $∈ aT β̂LS ∓ zn−p(α)sy |z/
√
na,

exactly as before.
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Fixed level testing and P-value

! The works of R Fisher, J Neyman and E Pearson put classical
hypothesis testing on a solid platform which led to the
eventual acceptance and popularity of this quantitative
technique in all scientific studies

! However Fisher and Neyman-Pearson differed in how to
administer this
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N-P’s fixed level testing recipe

1. Choose a small positive fraction α, called level of significance,
usually, 1%, 5% or 10%

2. Pick a test of size α with good power outside the null set (ML
tests are great candidates for this, more on this later)

3. Reject or accept H0 based on the outcome of this test

4. If rejected (or accepted) report H0 rejected (accepted) at α
level of significance
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Fisher’s critique

! Food data: Yi
IID∼ N(µ,σ2), test H0 : µ = 175, level = 5%

! 95% ML conf interval ȳ ∓ zn−1(.05)sy/
√
n

! Observed: ȳ = 143.64, sy = 41.44, n = 22

! z21(.05) = 2.08

! Interval = [125.26, 162.02]: Reject H0 at 5% level

! If instead: ȳ = 156.54 then interval = [138.16, 174.92]

! Same report reject H0 at level 5%

11 / 17



. . . . . .

No report of strength of evidence

! For either data we report the same

! But in the second we came close to taking the other decision

! Fail to convey strength of evidence against H0
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Fisher’s recommendation: p-value

! Report the smallest α such that a size α (ML) test rejects H0

! Call this number p-value

! The smaller the p-value the more evidence there is against H0
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Understanding p-value

Imagine an infinite number of testers, each using a different size α
(ML) test. Together, they cover the whole range α ∈ (0, 1). The
testers with smaller α are more conservative about H0, they need
to see more evidence against H0 to reject it. Next you show your
recorded data to all testers and each take a decision to
reject/accept H0. The most liberal testers, those with α very close
to 1, would be quick to report “reject H0” while the most
conservative ones will stick to “accept H0. In between, there’s a
point of switch, a value α0(x) so that all testers with α ≥ α0(x)
have rejected H0 and all testers with α < α0(x) have failed to
reject H0. This switch point is the p-value. The smaller the switch
point, the more compelling the evidence against H0 has been
(converting more conservatives).
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Operational details

! ML tests reject H0 : ATβ = 0 if

F (y) =
η̂TLS{AT (ZTZ )−1A}−1η̂LS

r × s2y |z
> c

with size 1− Fr ,n−p(c)

! Calculate test statistic value f = F (y)

! p-value = 1− Fr ,n−p(f ) = P(F (Y ) > f ).
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The r = 1 case: two-sided

! ML test reject H0 : aTβ = η0 if

T (y) =
aT β̂LS − η0
sy/

√
n

< −c or T (y) > c

with size 2(1− Fn−1(c)).

! Calculate t = T (y)

! p-value = 2(1− Fn−1(|t|)) = P(|T (Y )| > |t|).
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The r = 1 case: one-sided

! ML test reject H0 : aTβ ≤ η0 if

T (y) > c

with size 1− Fn−1(c).

! Calculate t = T (y)

! If t ≤ 0 then p-value is undefined (or you can take it to be 1)

! If t > 0 p-value = 1− Fn−1(t) = P(T (Y ) > t).

! H0 : aTβ ≥ η0 will be a mirror image of this

17 / 17


