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Consider data X modeled as X ∼ f(x|θ), θ ∈ Θ. Suppose we want to predict
an unobserved quantity X∗, which depends on the same parameter θ, based on an
observation X = x.

Example (Hurricane counts). Based on count data X = (X1, · · · , Xn) from n con-
secutive years, we might be interested in forecasting the number of TCs Xn+1 in the

coming year. Here X∗ = Xn+1 and a reasonable model is X1, · · · , Xn
IID∼ Poi(µ),

X∗ = Xn+1 ∼ Poi(µ) and X and X∗ are independent, where µ ∈ (0,∞) is an unknown
model parameter.

Example (Hurricant counts (contd.)). In the same setting, we might be interested in
whether the next year’s count exceeds a certain cut-off mark, say 15. In this case the
variable of interest is the binary variable X∗, with X∗ = 1 when Xn+1 > 15 and X∗ = 0
when Xn+1 ≤ 15, where Xn+1 is the count for the coming year. Borrowing from the

description of X and Xn+1 above, we can describe X and X∗ as: X1, · · · , Xn
IID∼ Poi(µ),

X∗ ∼ Ber(p(µ)) where p(µ) =
∑

k>15 e
−µµk/k!, and X and X∗ are independent.

Example (Food expenditure). Suppose we collect data from n Duke undergraduates
on their (average) weekly expenditure on food X1, · · · , Xn. We might be interested
in predicting X∗ = Xn+1, the (average) amount a (hypothetical) future student is

likely to pay on food per week. We can model X1, · · · , Xn, Xn+1
IID∼ N(µ, σ2), with

(µ, σ2) ∈ (−∞,∞)× (0,∞) as unknown model parameters.

Example (Food expenditure (contd.)). We might also be interested in predicting the
difference X∗ = Xn+1 − Xn+2 in expenditures for two (hypothetical) future students.

If we model X1, · · · , Xn, Xn+1, Xn+2
IID∼ N(µ, σ2), then we have the following model on

X and X∗: X1, · · · , Xn ∼ N(µ, σ2), X∗ ∼ N(0, 2σ2), X and X∗ independent.

Example (Highway accident). Data collected in 1973 from n = 39 sections of large
highways in Minnesota. Measurements include accident rates (Ratei) (in million vehicle-
miles) and road characteristics zi comprising of (an intercept plus) average daily traf-
fic count (ADTi, in thousands), truck volume as percentage of total volume (Trksi),
number of access points per mile (Acpti) and speed limit (Slimi, in mph). We may be
interested in predicting accident rate Y ∗ at a different section of a given road character-
istic z∗. A reasonable model is: Yi = zTi β+ϵi, Y

∗ = z∗Tβ+ϵ∗, ϵ1, · · · , ϵn, ϵ∗
IID∼ N(0, σ2).

From the above examples it is clear that we are discussing prediction of a variable X∗,
given observation on data X in the following context: X ∼ f(x|θ), X∗ ∼ f ∗(x∗|θ),
θ ∈ Θ∗, for some collections of pdfs/pmfs f(x|θ) and f ∗(x∗|θ) indexed by a common
parameter θ ∈ Θ. Also note that in all of the above examples the model parameters
are not real, physical quantities that we could measure if we had more resources (unlike
the opinion poll example where the parameter is the actual proportion of supporters,
a measurable quantity). For such examples, prediction might be a more useful data
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analysis task than inference on the model parameters. This will be highlighted for
the linear Gaussian model. Below we discussion classical and Bayesian approaches to
prediction.

Bayesian approach

Prediction under a Bayesian formulation is conceptually very straightforward. Suppose
we have X ∼ f(x|θ), X∗ ∼ f ∗(x∗|θ), X and X∗ independent, and θ ∈ Θ is assigned a
prior π(θ). Once we observe X = x, the other variables X∗ and θ are jointly described
by the conditional pdf

h∗(x∗, θ|x) = f(x∗|θ)π(θ|x), x∗ ∈ S∗, θ ∈ Θ.

This holds because

h∗(x∗, θ|x) = const× f(x|θ)f ∗(x∗|θ)π(θ)
= const× {f(x|θ)π(θ)} × f ∗(x∗|θ)
= const× {const× π(θ|x)} × f ∗(x∗|θ)
= const× f ∗(x∗|θ)π(θ|x).

The last constant term must be 1, because both h∗(x∗, θ|x) and f ∗(x∗|θ)π(θ|x) are pdfs
in (x∗, θ).

The conditional pdf f ∗(x∗|x) is now obtained by integrating out θ from h∗(x∗, θ|x),
i..e,

f ∗(x∗|x) =
∫
Θ

f ∗(x∗|θ)π(θ|x)dθ.

Intuitively, the predictive distribution f ∗(x∗|x) stands for the following. If we knew
θ, we would use f ∗(x∗|θ) to describe X∗. But we do not know θ and our understand-
ing of it is represented by the posterior pdf π(θ|x) given X = x. So we must com-
bine our representation of X∗ given θ with our representation of θ to get f ∗(x∗|x) =∫
Θ
f ∗(x∗|θ)π(θ|x)dθ.

Posterior predictive distribution of future observation for conjugate models

Consider dataX and future observationX∗ modeled asX ∼ Bin(n, p),X∗ ∼ Bin(m, p),
X and X∗ are independent, p ∈ [0, 1] assigned a Be(a, b) prior pdf. Then,

f ∗(x∗|x) =
∫ 1

0

(
m

x∗

)
px

∗
(1− p)m−x∗

π(p|x)dp, x∗ ∈ {0, 1, · · · ,m}.
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But π(p|x) = Be(a′ = a+ x, b′ = b+ n− x) and so, for any x∗ ∈ {0, · · · ,m},

f ∗(x∗|x) =
∫ 1

0

(
m

x∗

)
px

∗
(1− p)m−x∗ pa

′−1(1− p)b
′−1

B(a′, b′)
dp

=

(
m

x∗

)
1

B(a′, b′)

∫ 1

0

pa
′+x∗−1(1− p)b

′+m−x∗−1dp

=

(
m

x∗

)
B(a′ + x∗, b′ +m− x∗)

B(a′, b′)
.

Here we could evaluate the integral
∫
Θ
f ∗(x∗|θ)π(θ|x)dθ because it boils down to eval-

uating the normalizing constant of a function that is a constant multiple of a beta
density. Similar calculations will be possible for any conjugate model (try the Poisson
model).

Special calculations for Gaussian linear models

The same applies to a conjugate Gaussian linear model:

Yi = zTi β + ϵi, i = 1, · · · , n
Y ∗ = z∗Tβ + ϵ∗

ϵ1, · · · , ϵn, ϵ∗
IID∼ N(0, σ2)

π(β, σ2) = Npχ
−1(m0, K0, r0, s

2
0)

Or, π(β, σ2) = const/σ2

and we can carry out the integration
∫
f ∗(y∗|β, σ2)π(β, σ2|y) analytically. Note that

for either choice of the prior, π(β, σ2) = Npχ
−2(mn, Kn, rn, s

2
n), with formulas for mn,

Kn, rn and s2n depending on the particular choice.
To see what this predictive distribution looks like, we need to basic results in

probability:

Result 1. If W ∼ N(a, b2) and U |(W = w) ∼ N(w, c2) then U ∼ N(a, b2 + c2).

Proof. Clearly U = W + Z where Z ∼ N(0, c2) and is independent of W . But two
independent normals add to a normal with means and variances added, therefore U =
W + Z ∼ N(a+ 0, b2 + c2) = N(a, b2 + c2).
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Result 2. If (W,V ) ∼ Npχ
−2(m,K, r, s2) and U |(W = w, V = v) ∼ N(aTw, v) then

T = U−m

s
√

1+aTK−1a
∼ t(r).

Proof. We know rs2/V ∼ χ2(r). Think about the description of (U,W ) given V = v.
This is precisely, U |(W = w) ∼ N(aTw, v) and aTW ∼ N(aTm, vaTK−1a), therefore,
by Result 1, still under the condition V = v, U ∼ N(m, v(1 + aTK−1a)) = N(m, v/ka)
where ka = 1/(1 + aTK−1a). But this description of U given V = v, coupled with the
description rs2/V ∼ χ2(r) means that (U, V ) must have N1χ

−2(m, ka, r, s
2) distribu-

tion. From properties of this distribution T = U−m

s
√

1/ka
∼ t(r).

So, for the conjugate (or reference) Gaussian linear model, under the posterior
predictive distribution,

Y ∗ − z∗Tmn

sn
√

1 + z∗TK−1
n z∗

∼ t(rn).

So, to summarize this posterior-predictive pdf of Y ∗, we could report its q-th posterior
predictive quantile as

z∗Tmn + Φ−1
rn (q)sn

√
1 + z∗TK−1

n z∗,

where Φr denotes the cdf of t(r). In particular, the posterior-predictive median of Y ∗

is z∗Tmn and the 100(1 − α)% central predictive credible interval for Y ∗ is z∗Tmn ∓
zrn(α)sn

√
1 + z∗TK−1

n z∗.

For the reference prior analysis, mn = β̂LS, Kn = ZTZ, rn = n − p and sn = sy|z,
and hence a 100(1− α)% posterior predictive interval for Y ∗ is

z∗T β̂LS ∓ zn−p(α)sy|z

√
1 + z∗T (ZTZ)−1z∗.

Classical approach

The main vehicle of prediction in classical statistics is the so-called plug-in approach.
Suppose we obtain an estimate θ̂(x) of θ from observation X = x (based on ML
or other considerations). Then the predictive description of X∗ given X = x is the
pdf/pmf f̂ ∗(x∗|x) = f ∗(x∗|θ = θ̂(x)). Although this is a reasonable approach, there is
one difficulty. We essentially took the point summary θ̂(x) to capture all uncertainty
about θ. This goes against our intuition of uncertainty associated with statistical
modeling that encouraged us to consider interval summaries over point summaries.

This difficulty can be explored formally as follows. Consider the Gaussian linear
model as above [but without the prior specification on (β, σ2)]. The plug-in predictive
of Y ∗ is N(z∗T β̂LS, s

2
y|z). Based on this pdf, a 100(1− α)% predictive interval for Y ∗ is

z∗T β̂LS ∓ z(α)sy|z.
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But does this interval really guarantee a (1−α) frequentist coverage of Y ∗? The actual
coverage at any (β, σ2) is

P[Y,Y ∗|β,σ2](Y
∗ ∈ z∗T β̂LS ∓ z(α)sy|x) = P[Y,Y ∗|β,σ2]

(
−z(α) ≤ Y ∗ − z∗T β̂LS

sy|x
≤ z(α)

)

= 2Φn−p

(
z(α)√

1 + z∗T (ZTZ)−1z∗

)
− 1

because, Y ∗ − z∗T β̂LS ∼ N(0, σ2{1 + z∗T (ZTZ)−1z∗}) and (n− p)s2y|x/σ
2 ∼ χ2(n − p).

This coverage is strictly smaller than 1− α.
Of course a correct coverage is given by the corrected predictive interval:

z∗T β̂LS ∓ zn−p(α)sy|x

√
1 + z∗T (ZTZ)−1z∗.

However, such fixes are not generally available for non-normal models. Calculating the
coverage can be a challenging task. Even normal approximations to the MLE may not
salvage the situation, because we also need to account for X∗. However, simulations
techniques (as we saw in labs) can be used to approximate coverage probabilities of a
given predictive interval procedure.
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