
The Likelihood Principle

Surya Tokdar

. . . . . .
. . . . . .

The Likelihood Principle

! The Likelihood principle (LP) asserts that for inference on an
unknown quantity θ, all of the evidence from any observation
X = x∗ with distribution X ∼ p(x |θ) lies in the likelihood
function

Lx∗(θ) ∝ p(x∗|θ), θ ∈ Θ.
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Understanding LP

! The interpretation of LP hinges on the rather subtle point of
allowing any observable X to draw conclusions about θ.

! If there were two ways to gather information about θ, either
with X ∼ p(x |θ) or with Y ∼ p̃(y |θ), and it happened that
for the observations X = x∗ and Y = y∗ we had

Lx∗(θ) = const.× L̃y∗(θ), ∀θ ∈ Θ

then our conclusions about θ should not depend on which
observable we used.
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An example

! Two researchers, Jerzy and Egon, each wants to determine
whether more than half the students in a university support a
recent government bill.

! Let θ ∈ (0, 1) be the proportion of students who support the
bill.

! Jerzy decides to survey 18 students on this issue and finds 12
supporters.

! Egon decides to survey until he sees 12 supporters, and ends
up surveying a total of 18 students.

! Jerzy’s observable is an X ∼ Bin(18, θ) and he observed
X = 12.

! Egon’s observable is an Y ∼ NBin(12, θ), he observed
Y = 18.
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An example (contd.)

! Jerzy’s likelihood function is:

L12(θ) =

(
18

12

)
× θ12(1− θ)6

! Egon’s likelihood function is:

L̃18(θ) =

(
17

11

)
× θ12(1− θ)6

! So we indeed have L12(θ) = const× L̃18(θ), ∀θ.
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An example (contd.)

! Both the binomial and the negative binomial family are MLR,
respectively, in X and Y .

! So for testing H0 : θ ≤ 0.5 against H1 : θ > 0.5 Jerzy’s UMP
test would reject if X > c for some c . He’d report a p-value
P[θ=0.5](X > 12) = 0.048.

! Egon’s UMP tests are given by reject if Y < c . So his
reported p-value if P[θ=0.5](Y < 18) = 0.071.
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An example (contd.)

! LP is violated here is due to the fact that p-value is the
probability under H0 of observing evidence against H0 that is
more extreme than the one in the recorded data.

! Such calculations clearly care about other possible data than
what has been currently observed.

! This is common to all classical methods and it is well
documented the concern about data that have not been
observed can lead to absurd inference based on data that has
indeed been observed!
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Example 2

! Suppose X1 and X2 are independent with
P(Xj = θ ± 1) = 1/2 for some unknown θ ∈ R.

! The smallest 75% confidence interval for θ is

C (X1,X2) =

{
the point X1+X2

2 if X1 (= X2

the point X1 − 1 if X1 (= X2
,

so, Pθ(θ ∈ C (X1,X2)) = 0.75 for all θ.
! But once we observe X1 and X2, it is silly to report a 75%

confidence. Instead we should report a confidence of
1. 100% if X1 (= X2.
2. ≈50% if X1 = X2.

! The problem here lies in not conditioning the inference on the
observed data – again a violation of LP.
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Example 3 (Cox paradox)

! A laboratory has two instruments for performing the same
task, one has accuracy ±0.01 while the other has accuracy
±0.05.

! What accuracy should a scientist who gets to use whichever
instrument is available (w.p. 1/2)? The one that she used or
the average accuracy?
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Birnbaum’s theorem

! Birnbaum (1962) proved that LP is equivalent to the following
two principles
(CP) Conditionality principle. Suppose there are two experiments E1

and E2 where the only unknown is the parameter θ, common
to the two problems. Consider the mixed experiment E∗ in
which we select i = 1 or i = 2 with equal probabilities, then
perform experiment Ei ; then the resulting evidence about θ is
that from experiment Ei , and we can ignore the existence of
the other (unperformed) experiment.

(SP) Sufficiency principle. Consider an experiment E and a
sufficient statistic T . Then if T (x1) = T (x2), the evidence
about θ from observing x1 is the same as the evidence about θ
from observing x2.

! Birnbaum showed LP ⇐⇒ CP + SP.
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Birnbaum’s formalization

! By an experiment E we’d mean a triplet (X ,Θ, fθ) of an
outcome space X , parameter space Θ and a sampling model
given by pdfs/pmfs fθ(x), x ∈ X , θ ∈ Θ.

! We use the notation evd(x ,E ) to denote evidence for θ from
an observation x in experiment E .

! In CP with two basic experiments E1 = (X1,Θ, f 1θ ) and
E2 = (X2,Θ, f 2θ ), the mixed experiment E ∗ = (X ∗,Θ, f ∗θ ) is
given by:

X ∗ = {1, 2}× (X1 ∪ X2)

f ∗θ ((i , x)) =
1

2
f iθ (x)
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Birnbaum’s formalization (contd)

! Then CP is equivalent to : evd((i , x),E ∗) = evd(x ,Ei ).

! Also, SP says that for an experiment E = (X ,Θ, fθ) with a
sufficient statistic T ,

T (x1) = T (x2) =⇒ evd(x1,E ) = evd(x2,E ).

! LP states that for two experiments E1 = (X1,Θ, f 1θ ),
E2 = (X2,Θ, f 2θ ), if x1 ∈ X1 and x2 ∈ X2 satisfy:

f 1θ (x1) = cf 2θ (x2), ∀θ ∈ Θ

for some constant c > 0, then evd(x1,E1) = evd(x2,E2).
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Proof of CP + SP =⇒ LP

! Suppose x1 ∈ X1, x2 ∈ X2 satisfy the LP condition for some
c > 0.

! Define a statistic T : X ∗ → X ∗ as

T ((i , x)) =

{
(1, x1) if i = 2, x = x2
(i , x) otherwise

! Let X ∗ ∼ f ∗θ . We’ll show that the distribution of X ∗ given
T (X ∗) is free of θ. Indeed,
1. if T (X ∗) (= (1, x1) then X ∗ must equal T (X ∗) w.p. 1.
2. if T (X ∗) = (1, x1) then X ∗ is either (1, x1) or (2, x2) with

probabilities proportional to 1
2 f

1
θ (x1) and

1
2 f

2
θ (x2), i.e., with

probabilities c
c+1 and 1

c+1 .

! So T is a sufficient statistic in E ∗.
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Proof of CP + SP =⇒ LP (contd.)

! Therefore, because T ((1, x1)) = T ((2, x2)),

evd(x1,E1) = evd((1, x1),E
∗) [by CP]

= evd((2, x2),E
∗) [by SP]

= evd(x2,E2) [by CP]

as desired!
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Stopping rules

! LP says that additional data which could have been collected,
but have not been, do not impact the inference. This is most
clearly visible and striking for sequential methods.

! Imagine that a client enters your statistical consulting office
reporting that she has taken n = 100 observations from
Xj

IID∼ N(θ, 1), and wants to test H0 : θ = 0 against the
two-sided alternative H1 : θ (= 0 at level α = 0.05.

! The classical procedure gives a p-value of p = 2Φ(−
√
n|x̄n|),

and rejects H0whenever p ≤ α or, equivalently, when√
n|x̄n ≥ qN(1−α/2)

! When you learn that her data show x̄100 = 0.20, the problem
seems easy – evidently the p-value is
p = 2Φ(−2.00) = 0.0455 < α, leading to rejection.
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Stopping rules (contd.)

! But when by chance you ask Why did you take n = 100
observations? and learn that the answer is Because that was
enough to get significance, your answer has to change.

! If her intension was to reject if
√
100|x̄100| ≥ k = 1.96 and

otherwise to take another 100 observations and see if that
leads to significance, i.e., to

√
200|x̄200| ≥ k , then the true

probability of a Type-I error is

p = P(|Z1| > k or |Z1 + Z2| > k
√
2)

or about 0.0768 for k = 1.96, so her test does not have its
nominal size α = 0.05.
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Stopping rules (contd.)

! To achieve this size she would have to reject when either√
100|x̄100| of

√
200|x̄200| exceeds k = 2.12.

! Since hers do not, we now must change our advice and say
she cannot reject H0!

! It is (or should be!) disturbing that the evidential import of
her results should depend on her intentions, and not on the
data and experiment. Even more alarming, most experiments
are begun without a clear picture of when to stop taking data,
so this silly example is in fact the usual situation.
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Formalizing stopping rules

! Consider an infinite sequence of experiments
Em = (Xm,Θ, f mθ ), m = 1, 2, · · · .

! A stopping rule is a sequence of functions

τm : X1 × · · ·× Xm → [0, 1]

with the interpretation that we conduct the experiments
sequentially, gathering data x1 ∈ X1, x2 ∈ X2, · · · and deciding
at every step m whether to stop with probability
τm(x1, · · · , xm) or otherwise to continue to the next step.

! A stopping rule is proper if it stops almost surely.
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The Stopping Rule Principle

! If τ is proper, the the sequential experiments can be put
together to define the stopping-rule experiment

E (τ) = (X (τ),Θ, f (τ)θ ) where

X (τ) = {(m, x1, x2, · · · , xm) : m ∈ N, xi ∈ Xi}

f (τ)θ ((m, x1, · · · , xm)) = τm(x1:m)

{
m−1∏

i=1

(1− τi (x1:i ))

}
m∏

i=1

f iθ (xi )

18 / 19
. . . . . .

SRP (contd.)

! On the other hand, if we had decided beforehand to continue
up to a fixed step m, then the corresponding m-step

experiment is E (m) = (X (m),Θ, f (m)
θ ) where

X (m) = {(x1, x2, · · · , xm) : xi ∈ Xi}

f (m)
θ ((x1, · · · , xm)) =

m∏

i=1

f iθ (xi )

! The SRP states

evd((m, x1, · · · , xm),E (τ)) = evd((x1, · · · , xm),E (m)).

! That is, once you stop at m, you can do inference pretending
that you always wanted to do an m-step experiment.
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