
STA 215: Statistical Inference
HW 2 Due Wed Feb 15 2012

1. For the Gaussian linear model Y ∼ Nn(Zβ, σ2In), β ∈ Rp, σ2 > 0, with log-likeliihood
function

ℓy(β, σ
2) = const− n

2
log σ2 − (y − Zβ)T (y − Zβ)

2σ2

we calculated the log-profile-likelihood in β to be

ℓ†y(β) = const− n

2
log

{
1 +

(β − β̂LS)
T (ZTZ)(β − β̂LS)

(n− p)s2y|z

}

and said “some additional calculations” show that the log-profile likelihood in η = ATβ equals

ℓ∗y(η) = const− n

2
log

{
1 +

(η − η̂LS)
T {AT (ZTZ)−1A}−1(η − η̂LS)

(n− p)s2y|z

}
,

where η̂LS = AT β̂LS. This homework problem is about the additional calculations needed to
establish the last expression.

(a) Consider the function

g(β) = −(β − β̂LS)
T (ZTZ)(β − β̂LS)

over β ∈ Rp and define a new function h(η) = maxβ:AT β=η g(β) over η ∈ Rr. Show that

h(η) = −(η − η̂LS)
T {AT (ZTZ)−1A}−1(η − η̂LS).

[Hint: Fix an η ∈ Rr. To find h(η) we need to maximize g(β) subject to the constraint
ATβ − η = 0. So set up the Lagrange function g̃(β, λ) = g(β) + λT (ATβ − η) in
β ∈ Rp, λ ∈ Rr. Find β̂ and λ̂ that solve the system:

0 =
∂

∂β
g̃(β, λ) =

∂

∂β
g(β) + λA = −2(ZTZ)(β − β̂LS) +Aλ

0 =
∂

∂λ
g̃(β, λ) = ATβ − η

and evaluate h(η) = g(β̂). To solve the system, note that the second equation merely
imposes ATβ = η. Now premultiply both sides of the first equation by AT (ZTZ)−1 to
find the solution λ̂. Substitute the expression of λ̂ in the first equation and then solve
in β.]

(b) Now suppose for some monotonically increasing function f(x) on x ≥ 0 we have

ℓ†(β) = −f((β − β̂LS)
T (ZTZ)(β − β̂LS)).

Show that ℓ∗(η) = maxβ:AT β=η ℓ
†(β) equals

ℓ∗(η) = −f
(
(η − η̂LS)

T {AT (ZTZ)−1A}(η − η̂LS)
)
.
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2. For Gaussian linear model Y ∼ Nn(Zβ, σ2In), (β, σ
2) ∈ Rp × (0,∞), consider testing H0 :

aTβ ≤ η0 for a given number η0 and a given non-zero vector a ∈ Rp. Any ML test can be
characterized as “reject H0 if η0 ≤ aT β̂LS− csy|z/

√
na” for some fixed cutoff c > 0. Show that

such an ML test has size exactly equal to 1− Φn−p(c) where Φn−p is the CDF of t(n− p).

3. In an experiment, n1 = 12 infant rats were assigned to a high protein diet while n2 = 7
rats were assigned to a regular diet. For each rat, body weight gain between 28th and 84th
days after birth were recorded. Let U1, · · · , Un1 denote these measurements for the high
protein group and V1, · · · , Vn2 denote the same for the regular diet group. Consider the

model Ui
IID∼ N(µ1, σ

2), Vj
IID∼ N(µ2, σ

2), Ui’s, Vj ’s are independent, with model parameters
µ1, µ2 ∈ (−∞,∞) and σ2 > 0.

(a) Recall that Gaussian linear model representation of this data: Y ∼ Nn(Zβ, σ2In), n =
n1 + n2, p = 2, β = (µ1, µ2)

T .

Y =



U1
...

Un1

V1
...

Vn2


, Z =



1 0
...

...
1 0

0 1
...

...
0 1


?

6

?

6

n1

n2

For an observation U = u, V = v, give neat expressions for ZTZ, β̂LS and s2y|z in terms

of n1, n2, ū, v̄, s
2
u and s2v (the sample sizes, means and variances of the two groups).

(b) Use the Gaussian linear model theory to derive a neat expression for a 100(1−α)% ML
confidence interval for η = µ1 − µ2. [Show work]

(c) Calculate the (ML) p-value for testing H0 : µ1 = µ2 with the following data:

Diet Weight gain (grams)

High 134 146 104 119 124 161 107 83 113 129 97 123
Low 70 118 101 85 107 132 94

(d) For the same data calculate the (ML) p-value for testing H0 : µ1 ≤ µ2. [Notice the
choice of the inequality. The “status quo” is that the high protein diet is no better than
the regular diet in terms of facilitating weight gain.]

4. Annual TC counts X1, · · · , Xn from n consecutive years are modeled as Xt
IND∼ Poi(µt),

µt = αβt−1, t = 1, · · · , n with model parameters α ∈ (0,∞) and β ∈ (0,∞). We are
interested in β which captures whether the annuals counts are trending upward (β > 1),
downward (β < 1) or staying flat (β = 1).

(a) In HW 1 we derived the profile log-likelihood of β to be

ℓ∗x(β) = const + (u2 − u1) log β − u1 logA(β)

where u1 =
∑n

t=1 xt, u2 =
∑n

t=1 txt and A(β) = (βn − 1)/(β − 1) for β ̸= 1 and
A(β) = n for β = 1. For n = 100, u1 = 932 and u2 = 51884, this function is maximized
at β̂ = 1.006264 with ℓ̈∗x(β̂) = −752132.7 [I did this on R by using optimize() and
hessian()]. Calculate an approximate 95% ML confidence interval for β.
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(b) Calculate the (approximate ML) p-value for testing H0 : β = 1. Do the same for testing
H0 : β ≤ 1. [Again, notice the inequality, “status quo” is no increase in TC activity]

(c) The original log-likelihood function in both parameters is given by

ℓx(α, β) = const− αA(β) + u1 logα+ (u2 − u1) log(β).

This function is maximized at (α̂, β̂) = (6.738017, 1.006264) with

ℓ̈x(α̂, β̂) =

(
−20.52824 −7518.775

−7518.77491 −3508375.969

)
.

Repeat the two (approximate ML) p-value calculations based on this information and
compare your answers with those in part (c).

5. A machine goes through 4 hazard levels θ, coded 0 through 3 (from low hazard to high hazard)
with use over time. The hazard level can be measured by frequency of hazardous incidents
X, again coded 0 through 3 (low frequency to high frequency). Suppose X is modeled with
pmfs f(x|θ), θ ∈ Θ = {0, 1, 2, 3} as given by the rows of the following table.

θ f(0|θ) f(1|θ) f(2|θ) f(3|θ)
0 4

10
3
10

2
10

1
10

1 0 3
6

2
6

1
6

2 0 0 2
3

1
3

3 0 0 0 1

(a) For the ML interval A1/2(x) = {θ ∈ Θ : Lx(θ) ≥ 1
2Lx(θ̂MLE(x))}, calculate the coverage

γ(θ,A1/2) at each θ ∈ {0, 1, 2, 3}
(b) What is the confidence coefficient of A1/2?

6. Smile durations (in seconds) X1, · · · , Xn of an eight week old baby are modeled as Xi
IID∼

Unif(0, θ), θ ∈ (0,∞).

(a) For any arbitrary k ∈ [0, 1], express the confidence coefficient of the ML set Ak = {θ :
Lx(θ) ≥ k × Lx(θ̂MLE(x))} as a simple function of k.

(b) Calculate the 95% ML confidence interval for θ when observed data are x =(10.4, 19.6,
12.8, 14.8, 1.3, 0.7, 5.8, 6.9, 8.9, 9.4).

(c) For the same data, find α ∈ (0, 1) such that the 100(1−α)% ML confidence interval for
θ has θ = 30 on its boundary.

(d) For the same data, does the α from (c) give the (ML) p-value for testing H0 : θ = 30?
If you answer “yes” explain why this is so. If you answer “no” give the correct p-value.
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