STA 215: STATISTICAL INFERENCE HW 2 Due Wed Feb 15 2012

1. For the Gaussian linear model $Y \sim N_n(Z\beta, \sigma^2 I_n), \beta \in \mathbb{R}^p, \sigma^2 > 0$, with log-likeliihood function

$$\ell_y(\beta, \sigma^2) = \operatorname{const} - \frac{n}{2}\log\sigma^2 - \frac{(y - Z\beta)^T(y - Z\beta)}{2\sigma^2}$$

we calculated the log-profile-likelihood in β to be

$$\ell_y^{\dagger}(\beta) = \text{const} - \frac{n}{2} \log \left\{ 1 + \frac{(\beta - \hat{\beta}_{\text{LS}})^T (Z^T Z) (\beta - \hat{\beta}_{\text{LS}})}{(n - p) s_{y|z}^2} \right\}$$

and said "some additional calculations" show that the log-profile likelihood in $\eta = A^T \beta$ equals

$$\ell_y^*(\eta) = \text{const} - \frac{n}{2} \log \left\{ 1 + \frac{(\eta - \hat{\eta}_{\text{LS}})^T \{A^T (Z^T Z)^{-1} A\}^{-1} (\eta - \hat{\eta}_{\text{LS}})}{(n - p) s_{y|z}^2} \right\},\$$

where $\hat{\eta}_{\text{LS}} = A^T \hat{\beta}_{\text{LS}}$. This homework problem is about the additional calculations needed to establish the last expression.

(a) Consider the function

$$g(\beta) = -(\beta - \hat{\beta}_{\rm LS})^T (Z^T Z)(\beta - \hat{\beta}_{\rm LS})$$

over $\beta \in \mathbb{R}^p$ and define a new function $h(\eta) = \max_{\beta:A^T\beta = \eta} g(\beta)$ over $\eta \in \mathbb{R}^r$. Show that

$$h(\eta) = -(\eta - \hat{\eta}_{\rm LS})^T \{ A^T (Z^T Z)^{-1} A \}^{-1} (\eta - \hat{\eta}_{\rm LS}).$$

[Hint: Fix an $\eta \in \mathbb{R}^r$. To find $h(\eta)$ we need to maximize $g(\beta)$ subject to the constraint $A^T\beta - \eta = 0$. So set up the Lagrange function $\tilde{g}(\beta, \lambda) = g(\beta) + \lambda^T (A^T\beta - \eta)$ in $\beta \in \mathbb{R}^p, \lambda \in \mathbb{R}^r$. Find $\hat{\beta}$ and $\hat{\lambda}$ that solve the system:

$$0 = \frac{\partial}{\partial\beta}\tilde{g}(\beta,\lambda) = \frac{\partial}{\partial\beta}g(\beta) + \lambda A = -2(Z^T Z)(\beta - \hat{\beta}_{\rm LS}) + A\lambda$$
$$0 = \frac{\partial}{\partial\lambda}\tilde{g}(\beta,\lambda) = A^T\beta - \eta$$

and evaluate $h(\eta) = g(\hat{\beta})$. To solve the system, note that the second equation merely imposes $A^T \beta = \eta$. Now premultiply both sides of the first equation by $A^T (Z^T Z)^{-1}$ to find the solution $\hat{\lambda}$. Substitute the expression of $\hat{\lambda}$ in the first equation and then solve in β .]

(b) Now suppose for some monotonically increasing function f(x) on $x \ge 0$ we have

$$\ell^{\dagger}(\beta) = -f((\beta - \hat{\beta}_{\rm LS})^T (Z^T Z)(\beta - \hat{\beta}_{\rm LS})).$$

Show that $\ell^*(\eta) = \max_{\beta:A^T\beta = \eta} \ell^{\dagger}(\beta)$ equals

$$\ell^*(\eta) = -f\left((\eta - \hat{\eta}_{\rm LS})^T \{A^T (Z^T Z)^{-1} A\} (\eta - \hat{\eta}_{\rm LS})\right).$$

- 2. For Gaussian linear model $Y \sim N_n(Z\beta, \sigma^2 I_n)$, $(\beta, \sigma^2) \in \mathbb{R}^p \times (0, \infty)$, consider testing H_0 : $a^T\beta \leq \eta_0$ for a given number η_0 and a given non-zero vector $a \in \mathbb{R}^p$. Any ML test can be characterized as "reject H_0 if $\eta_0 \leq a^T \hat{\beta}_{\text{LS}} - cs_{y|z}/\sqrt{n_a}$ " for some fixed cutoff c > 0. Show that such an ML test has size exactly equal to $1 - \Phi_{n-p}(c)$ where Φ_{n-p} is the CDF of t(n-p).
- 3. In an experiment, $n_1 = 12$ infant rats were assigned to a high protein diet while $n_2 = 7$ rats were assigned to a regular diet. For each rat, body weight gain between 28th and 84th days after birth were recorded. Let U_1, \dots, U_{n_1} denote these measurements for the high protein group and V_1, \dots, V_{n_2} denote the same for the regular diet group. Consider the model $U_i \stackrel{\text{IID}}{\sim} N(\mu_1, \sigma^2), V_j \stackrel{\text{IID}}{\sim} N(\mu_2, \sigma^2), U_i$'s, V_j 's are independent, with model parameters $\mu_1, \mu_2 \in (-\infty, \infty)$ and $\sigma^2 > 0$.
 - (a) Recall that Gaussian linear model representation of this data: $Y \sim N_n(Z\beta, \sigma^2 I_n), n = n_1 + n_2, p = 2, \beta = (\mu_1, \mu_2)^T$.

$$Y = \begin{pmatrix} U_1 \\ \vdots \\ U_{n_1} \\ V_1 \\ \vdots \\ V_{n_2} \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} \uparrow n_2$$

For an observation U = u, V = v, give neat expressions for $Z^T Z$, $\hat{\beta}_{LS}$ and $s_{y|z}^2$ in terms of $n_1, n_2, \bar{u}, \bar{v}, s_u^2$ and s_v^2 (the sample sizes, means and variances of the two groups).

- (b) Use the Gaussian linear model theory to derive a neat expression for a $100(1-\alpha)\%$ ML confidence interval for $\eta = \mu_1 \mu_2$. [Show work]
- (c) Calculate the (ML) p-value for testing $H_0: \mu_1 = \mu_2$ with the following data:

	Weight gain (grams)
High	134 146 104 119 124 161 107 83 113 129 97 123
Low	$70\ 118\ 101\ 85\ 107\ 132\ 94$

- (d) For the same data calculate the (ML) p-value for testing $H_0 : \mu_1 \leq \mu_2$. [Notice the choice of the inequality. The "status quo" is that the high protein diet is no better than the regular diet in terms of facilitating weight gain.]
- 4. Annual TC counts X_1, \dots, X_n from *n* consecutive years are modeled as $X_t \stackrel{\text{IND}}{\sim} Poi(\mu_t)$, $\mu_t = \alpha \beta^{t-1}, t = 1, \dots, n$ with model parameters $\alpha \in (0, \infty)$ and $\beta \in (0, \infty)$. We are interested in β which captures whether the annuals counts are trending upward ($\beta > 1$), downward ($\beta < 1$) or staying flat ($\beta = 1$).
 - (a) In HW 1 we derived the profile log-likelihood of β to be

$$\ell_x^*(\beta) = \operatorname{const} + (u_2 - u_1) \log \beta - u_1 \log A(\beta)$$

where $u_1 = \sum_{t=1}^n x_t$, $u_2 = \sum_{t=1}^n tx_t$ and $A(\beta) = (\beta^n - 1)/(\beta - 1)$ for $\beta \neq 1$ and $A(\beta) = n$ for $\beta = 1$. For n = 100, $u_1 = 932$ and $u_2 = 51884$, this function is maximized at $\hat{\beta} = 1.006264$ with $\tilde{\ell}_x^*(\hat{\beta}) = -752132.7$ [I did this on R by using optimize() and hessian()]. Calculate an approximate 95% ML confidence interval for β .

- (b) Calculate the (approximate ML) p-value for testing $H_0: \beta = 1$. Do the same for testing $H_0: \beta \leq 1$. [Again, notice the inequality, "status quo" is no increase in TC activity]
- (c) The original log-likelihood function in both parameters is given by

$$\ell_x(\alpha,\beta) = \operatorname{const} - \alpha A(\beta) + u_1 \log \alpha + (u_2 - u_1) \log(\beta).$$

This function is maximized at $(\hat{\alpha}, \hat{\beta}) = (6.738017, 1.006264)$ with

$$\ddot{\ell}_x(\hat{\alpha},\hat{\beta}) = \begin{pmatrix} -20.52824 & -7518.775\\ -7518.77491 & -3508375.969 \end{pmatrix}$$

Repeat the two (approximate ML) p-value calculations based on this information and compare your answers with those in part (c).

5. A machine goes through 4 hazard levels θ , coded 0 through 3 (from low hazard to high hazard) with use over time. The hazard level can be measured by frequency of hazardous incidents X, again coded 0 through 3 (low frequency to high frequency). Suppose X is modeled with pmfs $f(x|\theta), \theta \in \Theta = \{0, 1, 2, 3\}$ as given by the rows of the following table.

θ	f(0 heta)	$f(1 \theta)$	$f(2 \theta)$	$f(3 \theta)$
0	$\frac{4}{10}$	$\frac{3}{10}$	$\frac{2}{10}$	$\frac{1}{10}$
1	0	$\frac{3}{6}$	$\frac{2}{6}$	$\frac{1}{6}$
2	0	0	$\frac{2}{3}$	$\frac{1}{3}$
3	0	0	0	1

- (a) For the ML interval $A_{1/2}(x) = \{\theta \in \Theta : L_x(\theta) \ge \frac{1}{2}L_x(\hat{\theta}_{\text{MLE}}(x))\}$, calculate the coverage $\gamma(\theta, A_{1/2})$ at each $\theta \in \{0, 1, 2, 3\}$
- (b) What is the confidence coefficient of $A_{1/2}$?
- 6. Smile durations (in seconds) X_1, \dots, X_n of an eight week old baby are modeled as $X_i \stackrel{\text{IID}}{\sim} Unif(0, \theta), \theta \in (0, \infty)$.
 - (a) For any arbitrary $k \in [0, 1]$, express the confidence coefficient of the ML set $A_k = \{\theta : L_x(\theta) \ge k \times L_x(\hat{\theta}_{\text{MLE}}(x))\}$ as a simple function of k.
 - (b) Calculate the 95% ML confidence interval for θ when observed data are x = (10.4, 19.6, 12.8, 14.8, 1.3, 0.7, 5.8, 6.9, 8.9, 9.4).
 - (c) For the same data, find $\alpha \in (0, 1)$ such that the $100(1 \alpha)\%$ ML confidence interval for θ has $\theta = 30$ on its boundary.
 - (d) For the same data, does the α from (c) give the (ML) p-value for testing $H_0: \theta = 30$? If you answer "yes" explain why this is so. If you answer "no" give the correct p-value.