STA 215: STATISTICAL INFERENCE HW 3 Due Wed Feb 29 2012

1. Consider $k_1 \times k_2$ two-way category counts $X = ((X_{ij}))_{i,j=1}^{k_1,k_2}$, modeled as $X \sim \mathsf{Multinomial}(n,p)$ where $p \in \Delta_{k_1k_2}$. We will write p in a $k_1 \times k_2$ two-way table form: $p = ((p_{ij}))_{i,j=1}^{k_1,k_2}$. For a level- α testing of independence, i.e., $H_0: p_{ij} = p_{i.}p_{.j}, \forall i, j$, where $p_{i.} = p_{i1} + \cdots + p_{ik_2}$ and $p_{.j} = p_{1j} + \cdots + p_{k_1j}$, one rejects H_0 if the corresponding Pearson's chi-square statistic S(x)exceeds the $(1 - \alpha)$ -th quantile of the $\chi^2((k_1 - 1)(k_2 - 1))$ distribution. In truth the size of this test is only approximately α , and the quality of this approximation may be poor when nis not much larger than k_1k_2 . Fisher proposed an alternative way to carry out a level- α test, known as Fisher's exact test of independence which describe below.

Let \mathcal{T}_x contain all $k_1 \times k_2$ category counts \tilde{x} , with total n, such that $\tilde{x}_{i} = x_{i}$ and $\tilde{x}_{j} = x_{j}$ for every i, j, where $x_i = x_{i1} + \cdots + x_{ik_2}$ and $x_{j} = x_{1j} + \cdots + x_{k_1j}$ are the row and column totals of the observed count x, and \tilde{x}_i and \tilde{x}_{j} denote the same for \tilde{x} . The set \mathcal{T}_x has finitely many elements, which we denote by $\tilde{x}^{(1)}, \cdots, \tilde{x}^{(M)}$.

For each $\tilde{x}^{(m)} \in \mathcal{T}_x$, calculate $\tilde{s}^{(m)} = S(\tilde{x}^{(m)})$ and

$$w^{(m)} = \begin{pmatrix} n & \\ \\ \tilde{x}_{11}^{(m)} & \tilde{x}_{12}^{(m)} & \cdots & \tilde{x}_{k_1 k_2}^{(m)} \end{pmatrix},$$

 $m = 1, \dots, M$. Calculate the normalized weights $\tilde{w}^{(m)} = w^{(m)}/[w^{(1)} + \dots + w^{(M)}], m = 1, \dots, M$. Find a rearrangement $\{i_1, \dots, i_M\}$ such that $\tilde{s}^{(i_1)} \leq \tilde{s}^{(i_2)} \leq \dots \leq \tilde{s}^{(i_M)}$. Find the largest m such that $\tilde{w}^{(i_1)} + \dots + \tilde{w}^{(i_m)} < 1 - \alpha$. Reject H_0 if $S(x) > s^{(i_m)}$.

Prove that Fisher's test indeed has size $\leq \alpha$.

[Hint: Despite the long description, the mathematics of checking size is fairly straightforward. BUT, notice that in calculating $P(S(X) > s^{(i_m)})$ both the statistic S(X) and the bound $s^{(i_m)}$ depend on X.]

[A real hint: Try proving that when p satisfies H_0 , the conditional distribution of X given $X_{i} = x_i$, $X_{j} = x_{j}$, $i = 1, \dots, k_1$, $j = 1, \dots, k_2$ is the discrete distribution over \mathcal{T}_x with the probability of $\tilde{x}^{(i)}$ being $\tilde{w}^{(i)}$.]

[And a note: The strategy outlined above is not exactly what is followed in practice, simply because a complete enumeration of \mathcal{T}_x is difficult. Instead, various Monte Carlo approximations are used to sample \tilde{x} from \mathcal{T}_x .]

- 2. A researchers surveys n college students and counts how many support, how many oppose and how many are undecided about a recently introduced federal policy. Letting X_1, X_2, X_3 denote these counts, she models $X = (X_1, X_2, X_3)$ as $X \sim \mathsf{Multinomial}(n, p), p \in \Delta_3$.
 - (a) Give the p-value for testing $H_0: p = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ against $p_0 \neq (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ based on Pearson's chi-square tests for observed counts $X_1 = 140, X_2 = 165, X_3 = 195$.
 - (b) The researcher wants to test whether the actual proportions of supporters and opposers in the entire college are equal. Give a mathematical formulation of this null hypothesis.
 - (c) Find the restricted MLE of p under the null hypothesis in part (b) [i..e., maximize the likelihood function only over the null set].
 - (d) Give the p-value for testing the null hypothesis in part (b) based on Pearson's chi-square tests, with same observed counts as in part (a).

3. Natality records $X_i = (Low_i, Cigarettes_i, Black_i)$, were collected for $i = 1, \dots, n = 500$ births in the US in the month of June, 1997. The measurements were $Low_i = 1$ if *i*-th birth record has birthweight < 2500g, $Y_i = 0$ otherwise; $Black_i$ = (average) daily number of cigarettes smoked by the mother during pregnancy; $Black_i = 1$ if the mother is African American and $Black_i = 0$ otherwise. These data are modeled as

$$\log \frac{P(\mathsf{Low}_{\mathsf{i}} = 1)}{1 - P(\mathsf{Low}_{\mathsf{i}} = 1)} = \beta_1 + \beta_2 \mathsf{Cigarettes}_i + \beta_3 \mathsf{Black}_i + \beta_4 \mathsf{Cigarettes}_i \times \mathsf{Black}_i.$$

For the observed data x (see here), the glm() function in R produces

$$\hat{\beta}_{\rm MLE}(x) = \begin{pmatrix} -3.170\\ 0.079\\ 1.064\\ -0.003 \end{pmatrix}, \quad I_x^{-1} = \begin{pmatrix} 0.065 & -0.003 & -0.065 & 0.003\\ -0.003 & 0.001 & 0.003 & -0.001\\ -0.065 & 0.003 & 0.192 & -0.011\\ 0.003 & -0.001 & -0.011 & 0.005 \end{pmatrix}$$

Give a mathematical formalization of the following hypotheses and calculate the corresponding p-values based on the Wald test:

- (a) Cigarettes has no effect on the probability of low birthweight.
- (b) **Cigarettes** has the same effect on the probability of low birthweight for African American and non-African American mothers.
- 4. Scalar observations X_1, \dots, X_n are modeled as $X_i = \mu + \epsilon_i, \epsilon_i \stackrel{\text{ID}}{\sim} f \in \mathcal{F}_{sym}, \mu \in (-\infty, \infty)$. Here \mathcal{F}_{sym} is the set of all pdfs on \mathbb{R} that are symmetric around zero and have a finite variance. Consider two estimators \bar{X} and X_{med} for μ . It is known that when $X_i = \mu_0 + \epsilon_i$ with $\epsilon_i \stackrel{\text{ID}}{\sim} f_0 \in \mathcal{F}_{sym}$ one has

$$\sqrt{n}(\bar{X}-\mu_0) \xrightarrow{d} N(0,\sigma^2(f_0)), \quad \sqrt{n}(X_{\text{med}}-\mu_0) \xrightarrow{d} N\left(0,\frac{1}{4f_0(0)^2}\right),$$

where $\sigma^2(f_0) = \int x^2 f_0(x) dx$ is the variance under f_0 . Calculate the asymptotic relative efficiency of X_{med} with respect to \bar{X} for each of the following choices of f:

- (a) f = N(0, 1), i.e., $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$
- (b) f = Lap(0, 1), i.e., $f(x) = \frac{1}{2}e^{-|x|}$
- (c) f = Logis(0, 1), i.e., $f(x) = \frac{e^x}{(1+e^x)^2}$