
STA 215: Statistical Inference
HW 4 Due Wed Apr 04 2012

1. Consider the Gaussian linear model Yi = zTi β + ϵi, ϵi
IID∼ N(0, σ2). As always, let y =

(y1, · · · , yn)T denote the vector of observations on Yi’s, Z denote the n × p design matrix,
β̂LS = (ZTZ)−1ZT y and s2y|z =

1
n−p

∑n
i=1(yi − zTi β̂LS)

2 = ∥y − Zβ̂LS∥2/(n− p).

(a) For the reference prior π(β, σ2) = const/σ2, show that the posterior distribution (given
Y = y) is Nχ−2(β̂LS, Z

TZ, n− p, s2y|z) whenever n > p

[Hint: use the identity: ∥y − Zβ∥2 = ∥y − Zβ̂LS∥2 + ∥Z(β̂LS − β)∥2 to simplify the
log-likelihood function. You should be able to write a “proof” in about 5 lines.]

(b) For π(β, σ2) = Nχ−2(m0,K0, r0, s
2
0) where m0 is a real number, K0 is a p × p positive

definite matrix, r0 > 0 and s0 > 0, show that the posterior is Nχ−2(mn,Kn, rn, s
2
n)

where

mn = (K0 + ZTZ)−1(K0m0 + ZT y), Kn = K0 + ZTZ

rn = r0 + n, rns
2
n = r0s

2
0 + yT y+mT

0 K0m0 −mT
nK

T
nmn.

(c) The formulas in part (b) are correct even when n ≤ p. However, for n > p, the expression
for rns

2
n simplifies to r0s

2
0 + (n − p)s2y|z + (β̂LS − m0)

T (K−1
0 + (ZTZ)−1)−1(β̂LS − m0).

Also mn can be re-written as mn = (K0 +ZTZ)−1(K0m0 +ZTZβ̂LS). Establish this for

the special case: Yi
IID∼ N(µ, σ2).

2. Suppose the duration (in seconds) of a smile of a certain eight week old baby follows a
Unif(0, θ) distribution with θ > 0 unknown. The data X consists of n observed durations
X1, · · · , Xn from the baby. We are interested in a future observation X∗ = Xn+1.

(a) Suppose θ is assigned a Pa(a, b) prior with pdf π(θ) = aba/θa+1, θ > b for some a, b > 0.
Write down the expression for P (X1 > x) in terms of a, b and an arbitrary x > 0.

(b) An expert quantifies her beliefs as

• X1 is equally likely to be smaller or larger than 10.

• When X1 > 10, it is equally likely to be smaller or larger than 20.

Identify a > 0, b > 0 that match these quantifications.

(c) Based on the prior chosen in part (b) and observations (10.4, 19.6, 12.8, 14.8, 1.3, 0.7,
5.8, 6.9, 8.9, 9.4), what is the posterior predictive probability that X∗ would exceed 15?

(d) Based on the same observations, what is the plug-in predictive probability thatX∗ would
exceed 15 when θ is estimated by its MLE?

3. Weekly food expenditures X1, · · · , Xn of n Duke undergraduate students are modeled as
Xi

IID∼ N(µ, σ2), with (µ, σ2) assigned a Nχ−2(m0, k0, r0, s
2
0) prior. During the lecture on

03/16, we determined that m0 = 150, k0 = 1, r0 = 0.7 and s0 = 29.45 match our (collective)
prior belief about these expenditures.

(a) Give a 95% posterior predictive interval for a future observable X∗ based on the above
choice of the prior and the following observations (n = 22):

125 140 200 200 190 100 140 250 125 180 110

125 120 130 140 150 120 100 95 195 95 130
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(b) Get the same but with prior π(µ, σ2) = const/σ2, the reference prior.

(c) Compare the two answers.

4. In an experiment, n1 = 12 infant rats were assigned to a high protein diet while n2 = 7
rats were assigned to a regular diet. For each rat, body weight gain between 28th and 84th
days after birth were recorded. Let U1, · · · , Un1 denote these measurements for the high
protein group and V1, · · · , Vn2 denote the same for the regular diet group. Consider the

model Ui
IID∼ N(µ1, σ

2), Vj
IID∼ N(µ2, σ

2), Ui’s, Vj ’s are independent, with model parameters
µ1, µ2 ∈ (−∞,∞) and σ2 > 0.

We are interested in inferring whether the high-protein diet leads to a superior body weight
gain than the low-protein diet, based on the following observations:

Diet Weight gain (grams)

High 134 146 104 119 124 161 107 83 113 129 97 123
Low 70 118 101 85 107 132 94

In HW 2 (#3(d)) we calculated the p-value for H0 : µ1 ≤ µ2, based on ML tests, to be 0.038
based on data given below. Here we would look at a Bayesian analysis with the reference
prior π(µ1, µ2, σ

2) = const/σ2.

(a) Write down the name and parameters of the posterior distribution of (µ1, µ2, σ
2). Argue

why the posterior probability of µ1 ≤ µ2 is exactly equal to the ML-based p-value for
H0 : µ1 ≤ µ2.

(b) Consider a future observable U∗ from the high-protein group and a future observable V ∗

from the low-protein group. Calculate the posterior predictive probability of U∗ ≤ V ∗.

(c) What would you conclude about the relative effects of high and low protein diets on
body weight gain? Explain.

5. Consider X = (X1, · · · , Xn) modeled as Xi
IID∼ g(xi|µ, λ), µ > 0 unknown and λ > 0 known

where

g(xi|µ, λ) = I(xi > 0)

(
λ

2πx3i

)1/2

exp

{
− λ(xi − µ)2

2µ2xi

}
is the inverse-Gaussian pdf. It is known that the expectation under this pdf equals µ. Find
the Jeffreys prior for µ.

6. To study whether early injection of IV fluids could be harmful to patients with penetrating
injuries to the torso, data were collected at Ben Taub General Hospital in Houston under
two treatment settings. In the early resuscitation group, n1 = 309 patients were given fluids
before they reached the hospital. Another n2 = 289 patients in the delayed resuscitation
group did not receive any fluid until they reached the operation theater. Let X1, X2 denote
the number of survivors in the two groups (subscript 1 is for “early resuscitation”).

(a) Consider the model X1 ∼ Bin(n1, p1), X2 ∼ Bin(n2, p2), X1 and X2 are independent,
with π(p1, p2) = 1 for (p1, p2) ∈ [0, 1]2. Show that given observations X1 = 193 and
X2 = 203, the posterior distribution of p1 − p2 is well approximated by a N(a, b2)
distribution and find the values of a and b. [Hint: use the fact that a Be(a, b) distribution,
for large a > 0, b > 0 is well approximated by N(m, s2) where m = a/(a + b) and
s2 = m(1−m)/(a+ b+ 1).

2



(b) Summarize the evidence against H0 : p1 = p2 under the (approximate) posterior distri-
bution in part (a).

(c) Toward a formal testing of H0 : p1 = p2, denote the model in part (a) as M1 and let M0

denote the model: X1 ∼ Bin(n, p), X2 ∼ Bin(n, p), X1, X2 independent with p assigned
the Unif(0, 1) prior distribution. Calculate the Bayes factor of M1 to M0.

(d) Based on (b) and (c), what do you conclude about the relative effectiveness of the two
resuscitation treatments?
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