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Beyond simple models

For the Bayesian paradigm, so far we have only used models consisting of simple
exponential family distributions. In contrast, we did see classical statistics being used
in a broader context (see notes from Feb 15 and 17). Such uses came through statistical
procedures for which frequentist guarantees could be attached for much larger collection
of models. These procedures are rarely based on the likelihood function w.r.t to the
large model, usually because the ML approach breaks down when applied to such large
collections.

What about Bayesian models and analysis with models that go beyond simple
exponential family distribution? Can we keep using the likelihood function and apply
Bayes theorem? How much of extension can we make and still be able to use the
Bayesian paradigm? It turns out that we can indeed match extensions from the classical
paradigm, and yet be able to use the likelihood function and thus obey the likelihood
principle. However, this requires a careful construction of models and a careful choice
of the prior distribution.

A standard way to extend a simple exponential family distribution model to a
larger collection is to use the concept of mixtures. The collection of two-component
normal mixture pdfs is much larger than the collection of normal pdfs. With more
components we get larger collections and can accommodate richer variations in the
data distribution. We can even go up to infinite component models. Such extensions
are focus of this handout.

Mixtures

The use of exponential family distributions can sometimes be justified based on first
principles. In many cases it is felt that the population consists of homogeneous sub-
groups. Observables from each subgroup can be adequately modeled with an expo-
nential family distribution. But different subgroups can have very different parameter
values.

Example (Sweden speed limit experiment). R documentation on the dataset Traffic
(in MASS).

An experiment was performed in Sweden in 1961-2 to assess the effect of a speed
limit on the motorway accident rate. The experiment was conducted on 92 days
in each year, matched so that day j in 1962 was comparable to day j in 1961.
On some days the speed limit was in effect and enforced, while on other days
there was no speed limit and cars tended to be driven faster. The speed limit
days tended to be in contiguous blocks.

The variables recorded were year (1961 or 1962), day (of year), limit (was it
imposed?) and y (traffic accident count of that day).
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Consider only those days when speed limit was imposed. On any of these days it
is reasonable to model the accident count as a Poisson variable. But certainly there
are may intrinsic differences between these days that would alter the rate (weather,
holidays, etc.). One can think of two types of days: ‘Up’ and ‘Down’ with high and
low susceptibility of traffic accidents respectively.

With K (in above K = 2) levels of the intrinsic factors, the extended model looks
like:

f(y|θ) =
n∏

j=1

[ K∑
l=1

ωlPoi(yj|λl)

]
where θ = (ωl, λl)

K
l=1 with ωl > 0,

∑
l ωl = 1 and λl > 0.

Prior distribution on θ. There is no conjugate prior distribution for θ! A reasonable
choice is

π(θ) = Dir(ω|a1, · · · , aK)
K∏
l=1

Ga(λl|b1l, b2l)

The Dirichlet distributions are a multivariate extension of the beta distributions and
are conjugate to multinomial sampling densities. The gamma distributions, as we have
seen before, are conjugate to the Poisson sampling distributions. We shall see shortly
that these are semi-conjugate specifications.

Variable augmentation. Let zj denote the level day j belongs to. Then the above
model is equivalent to:

f(y|z, θ) =
n∏

j=1

Poi(yj|λzj)

π(z|θ) =
n∏

j=1

Multinomial(zj|K,ω)

π(θ) = Dir(ω|a1, · · · , aK)
K∏
l=1

Ga(λl|b1l, b2l)

The zj’s are called latent variables as they are not directly observable – for us, they
are just unknown quantities and hence a part of the parameters. We shall look at the
joint posterior distribution of (θ, z).

Posterior computation. The likelihood function Ly(z, θ) equals

Ly(z, θ) = const×
n∏

j=1

e−λzjλyj
zj
= const×

k∏
l=1

e−mlλlλmlȳl
l
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where ml = #{j : zj = l} and ȳl =
1
ml

∑
j:zj=k yj. With the same notations we can also

simplify π(z|θ) as

π(z|θ) = const×
n∏

j=1

ωzj = const×
l∏

l=1

ωml
l .

Finally, by definition,

π(θ) = const×
k∏

l=1

ωak−1
l ×

k∏
l=1

λb1l−1
l e−b2lλl .

Putting all these together we see

π(z, θ|y) = const×
k∏

l=1

ωak+ml−1
l ×

k∏
l=1

λb1l+mlȳl−1
l e−(b2l+ml)λl

from which we can write down the following.

π(θ|z, y) = const× π(θ, z|y) [seen as a function of only θ]

= Dir(ω|a1 +m1, · · · , aK +mK)×
K∏
l=1

Ga(λl|b1l +mlȳl, b2l +ml)

π(z|θ, y) = const× π(θ, z|y) [seen as a function of only z]

= const×
k∏

l=1

ωml
l λmlȳl

l e−mlλl

= const×
n∏

j=1

ωzjλ
yj
zj
e−λzj

=
n∏

j=1

Multinomial(zj|K,ω(j))

where ω(j) ∝ (ω1λ
yj
1 e−λ1 , · · · , ωKλ

yj
Ke−λK ), j = 1, · · · , n.

Monte Carlo approximation and Gibbs sampling. In principle, any posterior summary
of the form

∫
h(θ, z)π(θ, z|y)dθdz can be approximated by a Monte Carlo average∫

h(θ, z)π(θ, z|y)dθdz ≈ 1

M

m∑
m=1

h(θ(m), z(m)) (1)

where (θ(1), z(1)), · · · , (θ(M), z(M)) areM samples from the posterior distribution π(θ, z|y)
(withM large). Such a sample can be collected by running a Gibbs sampler that creates
a chain of realizations (θt, zt), t = 1, 2, · · · as follows:
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• Start with an initial guess (θ0, z0).

• For t = 1, 2, · · ·

– Update zt−1 to zt by sampling from π(z|θ = θt−1, y)

– Then update θt−1 to θt by sampling from π(θ|z = zt, y).

The first B iterations of the chain are ignored (with B not too small) and then the chain
is tracked at every r-th iteration to collect a sample: (θ(m), z(m)) = (θB+mr, zB+mr),
m = 1, · · · ,M . Theoretical justification behind (1) can be found in various books on
Monte Carlo computations. My favorite is Jun Liu’s book titledMonte Carlo Strategies
in Scientific Computing.

This can be taken one step further to make prediction about any future observ-
able Y ∗ ∼ f ∗(y∗|θ∗). For example if we are interested in

∫
h(y∗)f ∗(y∗|y)dy∗ then

we can first generate samples y∗(m) of Y ∗ from f ∗(y∗|θ = θ(m)) and then use the
Monte Carlo average 1

M

∑M
m=1 h(y

∗(m)). Sampling y∗(m) may first require sampling
z∗ ∼ Multinomial(z∗|K,ω(m)).

Example (Traffic data analysis). For each group (limit = yes and limit = no) I
used the above mixture model with: K = 2, a1 = 2, a2 = 1, b1l = 2, b2l = 1/10,
l = 1, 2. For each data separately, I ran a Gibbs sampler for 2000 iterations, dis-
carded the first 1000, and saved every 10th iteration of the remaining chain, giving
a posterior sample of size M = 100. For each sampled θ(m) = (ω(m), λ(m)) I sampled

a z∗(m) ∼ Multinomial(K,ω(m)) and then sampled y∗(m) ∼ Poi(λ
(m)

z∗(m)). The resulting

(y∗(1), · · · , y∗(M)) represent samples of a future observable Y ∗ ∼ f ∗(y∗|θ) from the pos-
terior predictive f ∗(y∗|y) =

∫
f ∗(y∗|θ)π(θ, z|y)dθdz. The figure below shows f ∗(y∗|θ∗)

for θ∗ drawn from the posterior for each of the two datasets.
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Finally I compared the posterior predictive draws for the two data (speed limit
yes/no) and calculated approximate the posterior probability that a speed limit day
has less accidents than a no speed limit day. This probability turns out to be 65%.

Of course, this could be done with other choices of the parameter a1, a2 etc., or
even with a completely different specification of the model. My purpose was to show
that we can go beyond simple conjugate models and use interesting mixture extensions
of simple exponential family distributions.

Infinite mixtures

Letting g(yi|λ) denote the Poisson pmf, the above model is same as: Yj
IID∼ f(yj|θ) with

θ = (ω, λ) where

f(yj|θ) =
K∑
l=1

ωlg(yj|λl).

Of course this could be defined for any pmf/pdf g(yi|λ) suitable for modeling Yj’s, with
a suitable parameter λl ∈ Λg. Taking this idea to the limit, we could also define an
infinite mixture model

f(yj|θ) =
∞∑
l=1

ωlg(yj|λl)

with θ = (ω, λ) where ω = (ω1, ω2, · · · ) is a countable sequence of non-negative numbers
ωl that add up to unity, and λ = (λ1, λ2, · · · ) is a countable sequence of λl ∈ Λg. How
do we construct a prior distribution on such an infinite dimensional quantity θ?

To start with we could specify a prior distribution on λ = (λ1, λ2, · · · ) as

λl
IID∼ πg (2)

for some suitable pdf πg on Λg. Usually, πg would be a good candidate for a prior pdf

for the basic model Yj
IID∼ g(yj|λ), λ ∼ πg. One way to specify a prior distribution on

ω = (ω1, ω2, · · · ) is to set:

ω1 = β1, ωl = βl

∏
j<l

(1− βj), l = 2, 3, · · · , where β1, β2, · · ·
IID∼ Be(1, a) (3)

for some a > 0. With such a definition one has
∑k

l=1 ωl = 1−
∏k

l=1(1−βl) which tends
to 1 almost surely as k → ∞.

Notice that what we have defined above is a random θ = (ω, λ) with realizations
in the desired parameter space (i.e., ωl ≥ 0,

∑∞
l=1 ωl = 1 and λl ∈ Λg). However, we

cannot write down functional formula for a prior pdf π(θ), simply because such pdfs do
not exist in infinite dimensional spaces [they may exist, strictly speaking, but usually
don’t do in a useful way.] But we can still talk about the posterior distribution of
θ given observed data Y = y. Although this can be done in a formal way invoking
measure theory, for practical purposes it would be more useful to look at a different
equivalent representation.
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Dirichlet process

Let θ = (ω, λ) be a random element defined as in the previous section. The elements of
θ could be used to define a discrete probability measure P on Λg with atoms λ1, λ2, · · ·
bearing weights ω1, ω2, · · · . That is,

P (·) =
∞∑
l=1

ωlδθl(·),

or in other words, to any subset B ⊂ Λg the measure P assigns probability P (B) =∑∞
l=1 ωlI(θl ∈ B).
With ω and λ as defined in the previous section, the probability measure P defines

a random discrete measure on Λg and is said to have a Dirichlet process distribution
with precision a and base measure πg, denoted DP(a, πg).

Note that for any θ we can define a unique discrete measure P as above. The reverse
map is also unique but up to permutations of the indices l (i.e., up to label switching).
So properties of the random θ can be studied through properties of the random P . A
key property of P , which also justifies the name Dirichlet process is as follows.

Theorem 1. P ∼ DP(a, πg) if and only if for any finite partition B1, · · · , Bk of Λg

(i.e., Bi ∩ Bj = ∅ if i ̸= j and B1 ∪ · · · ∪ Bk = Λg), the random probability vector
(P (B1), · · · , P (Bk)) is distributed according to Dir(aπg(B1), · · · , aπg(Bk)) where πg(Bl)
denotes the probability πg assigns to the set Bl.

This result in fact uniquely characterizes a P ∼ DP(a, πg) and was actually used
to give the original definition of a Dirichlet process (by Ferguson, 1973). But the
constructive definition we saw in the previous section is more direct. A proof is beyond
our scope, but you can read Ghosh and Ramamoorthi (2003). An equally important
result about Dirichlet process is the following conjugacy property.

Theorem 2. If P ∼ DP(a, πg) and Z1, · · · , Zn
IID∼ P then P |(Z1 = z1, · · · , Zn = zn) ∼

DP(a + n, a
a+n

πg +
n

a+n
Fz,n) where Fz,n = 1

n

∑n
i=1 δzi is the discrete distribution on Λg

with atoms z1, · · · , zn all bearing the same weight 1/n.

Proof. It suffices to prove for n = 1. Larger values of n can be handled by induction.
So assume P ∼ DP(a, πg) and suppose Z1 ∼ P . Given Z1 = z1, we want to show
P ∼ DP(a+1, a

a+1
πg +

1
a+1

δz1). By the earlier theorem, it suffices to show that for any
partition B1, · · · , Bk of Λg, the conditional distribution of (P (B1), · · · , P (Bk)) given
Z1 = z1 is Dir(aπg(B1) + I(z1 ∈ B1), · · · , aπg(Bk) + I(z1 ∈ Bk))

Given a partition B1, · · · , Bk and an z1 ∈ Λg, there is a partition element Bl

containing z1. Without loss of generality we can assume this element is B1. Let
U ⊂ B1 be any set containing z1 and let πU denote the conditional distribution of
(P (B1), · · · , P (Bk)) given Z1 ∈ U . It suffices to show that

lim
U↓{z1}

πU = Dir(aπg(B1) + 1, aπg(B1), · · · , aπg(Bk)). (4)
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Now, if U ⊂ B1 then we can split B1 into B10 = U and B11 = B1 \ U to form a new
partition B10, B11, B2, · · · , Bk. By simple conjugacy of multinomial and Dirichlet dis-
tributions we have the conditional distribution of (P (B10), P (B11), P (B2), · · · , P (Bk))
given Z1 ∈ U to be Dir(aπg(B10) + 1, aπg(B11), aπg(B2), · · · , aπg(Bk)). Therefore, be-
cuase P (B1) = P (B10) + P (B11), the conditional distribution of (P (B1), · · · , P (Bk))
given Z1 ∈ U is πU = Dir(aπg(B1) + 1, aπg(B1), · · · , aπg(Bk)). This leads to (4).

A third result, which combines the above two, has much practical implications.

Theorem 3. If P ∼ DP(a, πg) and Z1, Z2, · · ·
IID∼ P then marginally, Z1 ∼ πg and

Zn+1|(Z1 = z1, · · · , Zn = zn) ∼ a
a+n

πg +
n

a+n
Fz,n.

Proof. Again suffices to prove for n = 1, because the other cases follow from this once
you invoke Theorem 2. For Z1 and any set B ⊂ Λg,

Pr(Z1 ∈ B) = E[Pr(Z1 ∈ B|P )] = E[P (B)] = πg(B)

because, from Theorem 1, P (B) ∼ Be(aπg(B), a{1− πg(B)}). So Z1 ∼ πg.

Back to infinite mixture model

Now consider the mixture model Yj
IID∼ f(yj|θ) =

∑∞
l=1 ωlg(yj|λl) with θ = (ω, λ) as

defined in (2)-(3). As in the finite mixture case, introduce latent variables ζ1, · · · , ζn
with ζj giving λl of the component l that yj belongs to. The infinite mixture model is
equivalent to:

Yj
IND∼ g(yj|ζj)

ζ1, · · · , ζn
IID∼ P

P ∼ DP(a, πg)

where P is the discrete measure associated with θ = (ω, λ). Now, we can use Theorem
3 and rewrite the above as:

f(y | ζ) =
n∏

j=1

g(yj|ζj)

π(ζ) =
n∏

j=1

[
a

a+ j − 1
πg(ζj) +

1

a+ j − 1

∑
l<j

δζl(ζj)

]
This representation deals with only a n-dimensional parameter ζ = (ζ1, · · · , ζn), the dif-
ficulties of infinity are all gone! The prior π(ζ) above is actually symmetric in ζ1, · · · , ζn
(label switching does not alter the prior probability of the whole configuration). In fact
for any i ∈ {1, · · · , n} we have

π(ζi|ζ−i) =
a

a+ n− 1
πg(ζi) +

1

a+ n− 1

∑
l ̸=i

δζl(ζi).
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This is again a consequence of Theorem 3 because Zi’s are exchangeable in the state-
ment of the theorem. In above ζ−i denotes the vector of ζl, l = 1, · · · , n without
including ζi.

Conditional posterior and Gibbs sampling. The above conditional prior formula im-
mediately gives

π(ζi|ζ−i, y) = const×
n∏

j=1

g(yj|ζj)×

[
a

a+ n− 1
πg(ζi) +

1

a+ n− 1

∑
l ̸=i

δζl(ζi)

]

= const× g(yi|ζi)×

[
a

a+ n− 1
πg(ζi) +

1

a+ n− 1

∑
l ̸=i

δζl(ζi)

]

= const×

[
a

a+ n− 1
g(yi|ζi)πg(ζi) +

1

a+ n− 1

∑
l ̸=i

g(yi|ζl)δζl(ζi)

]
= qi0πg(ζi|yi) +

∑
l ̸=i

qilδζl(ζi),

with

πg(ζi|yi) =
g(yi|ζi)πg(ζi)∫

Λg
g(yi|z)πg(z)dz

, qi0 = ca

∫
Λg

g(yi|z)πg(z)dz, qil = cg(yi|ζl), l ̸= i

where c is a constant that makes qi0, qi1, · · · , qi,i−1, qi,i+1, · · · , qi,n sum up to unity.
Note that π(ζi|ζ−i, y) is a mixed distribution, with n − 1 atoms ζl, l ̸= i carrying

weights qil and the rest of the weight qi0 is distributed according to the pdf πg(ζi|yi). To
sample from this distribution, we first draw an index l from {0, 1, · · · , i−1, i+1, · · · , n}
with probabilities proportional to (qi0, qi1, · · · , qi,i−1, qi,i+1, · · · , qi,n). If l ̸= 0 then we
set ζi = ζl. Otherwise, we draw ζi from πg(ζi|yi).

With the conditional posterior pdfs in place, we can now do a Gibbs sampling
to generate samples of ζ from the joint posterior π(ζ|y). We start with an initial
configuration ζ0 = (ζ01 , · · · , ζ0n) and then for t = 1, 2, · · · cycle through i = 1, · · · , n to
update ζt−1

i to ζti sampled from π(ζi|ζ−i = (ζt1, · · · , ζti−1, ζ
t−1
i+1 , · · · , ζt−1

n ), y). B initial
iterations are discarded and then every r-th one is stored to form a sample ζ(m), m =
1, · · · ,M .

Example (Traffic data analysis). For each group (limit = yes and limit = no) I
used the above DP mixture model with: g(yi|ζi) = Poi(yi|ζi), a = 1 and πg = Ga(b1 =
2, b2 = 1/10). For this choice of conjugate pair of g(yi|ζi) and πg(ζi), we get

πg(ζi|yi) = Ga(b1 + yi, b2 + 1),

∫ ∞

0

g(yi|z)πg(z)dz = NBin

(
yi|b1,

b2
b2 + 1

)
the last expression denoting the negative-binomial density at yi with size b1 (number
of successes desired) and probability b2/(1 + b2) (success probability in each trial).
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For each data separately, I ran a Gibbs sampler for 2000 iterations, discarded the
first 1000, and saved every 10th iteration of the remaining chain, giving a posterior
sample of size M = 100.

To sample a future observable Y ∗ from the model, first note that we can write
Y ∗ ∼ g(y∗|ζ∗) with ζ∗|ζ ∼ a

a+n
πg(ζ

∗)+ 1
a+n

∑n
l=1 δζl(ζ

∗). And so, for each sampled ζ(m)

I first generated a l∗(m) ∼ Multinomial(n + 1, ( 1
a+n

, · · · , 1
a+n

, a
a+n

)) and then sampled

y∗(m) ∼ Poi(ζ
(m)

l∗(m)) if l
∗(m) ≤ n, otherwise sampled y∗(m) ∼ NBin(b1, b2/(b2 + 1)). The

resulting (y∗(1), · · · , y∗(M)) represent samples of a future observable Y ∗ from the model.
The figure below shows f ∗(y∗|ζ) for ζ = (ζ1, · · · , ζn) drawn from the posterior for each
of the two datasets.
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Then I compared the posterior predictive draws for the two data (speed limit
yes/no) and calculated the posterior probability that a speed limit day has less ac-
cidents than a no speed limit day. This probability turns out to be 68%.
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