Random Vector

A random vector U € RF is a vector (Ur,Usg,--- ,Uk)T of scalar random variables U; defined
over a common probability space. The expectation and variance of U are defined as:

EU; Varly  Cov(Ui,Us) ... Cov(Uy,Uy)

EU Cov(Us, U VarU- ... Cov(Us,U,
EU = | |, varU = EQU-EUMU-EU}T) = (U2 1) R (2. Us)

EUk COV(Uk, Ul) COV(Uk, UQ) . VarUk

It is easy to check that if X = a + BU where aRP and B is a p X k matrix, then X is a
random vector in R? with EX = a + B EU, VarX = BVar(U)BT. You should also note
that if ¥ = VarU for some random vector U, then ¥ is a k X k non-negative definite matrix,
because for any a € R*, a”Xa = Var(a"U) > 0.

Multivariate Normal

Definition. A random vector U € RF is called a normal random vector if for a € R¥, aTU
is a (one dimensional) normal random variable.

Theorem 1. A random vector U € RF is a normal random vector if and only if one can write
11D

U =m+AZ for somem € R* and kxk matriz A where Z = (Zy,--- , Z3,)T with Z; ~ N(0,1).

Proof. “If part”. Suppose U = m+ AZ with m, A and Z as in the statement of the theorem.
Then for any a € R¥,

n
aTU =a"m+aT AU = by + Z b; Z;
i=1
for some scalars by, by, ,bx. But a linear combination of independent (one dimensional)
normal variables is another normal, so a’ U is a normal variable.

“Only if part” Suppose U is a normal random vector. It suffices to show that a V =m+ AZ
with Z as in the statement of the theorem, and suitably chosen m and A, has the same
distribution as U. For any a € RF, the moment generating function Mg (a) of U at a is
Eet' U = EeX where X = aTU is normally distributed by definition. But, by one dimensional
normal distribution theory, EeX = (EXH3VALX _ aTEU+5aT (Varl)a _ o’ p+aSa where we
denote EU by p and VarU by . Note that ¥ is non-negative definite and thus can be written
as ¥ = AAT for some k x k matrix A.

Write V = p+ AZ where Z = (Zy,--- , Z;;)T with Z; ~ N(0,1). Then, by the “f part”,
V' is a normal random vector, and because Z;’s are IID with mean 0 and variance 1, EV = p
and VarV = ¥. So by above discussion My (a) = ea’ ntzaTla My (a). So U and V have
the same moment generating function. Because this moment generating function is defined
for all @ € R¥, it uniquely determines the associated probability distribution. That is, V and
U have the same distribution.

Notation. If a random k-vector U is a normal random vector, then by above proof, its
distribution is completely determined by its mean y = EU and variance ¥ = VarU. We shall



denote this distribution by Nj(u,X). Note that U ~ Ni(u, ¥) then means that U = p+ AZ
for Z as in the above theorem, where A satisfies ¥ = AA”.

Theorem 2 (Linear transformations). If U ~ Ni(u,X) and a € RP and B is p X p
matriz, then V = a+ BU ~ N,(a + Bu, BEBT).

Proof. Write U = 1+ AZ where Z is as in Theorem 1 and A satisfies ¥ = AAT. Then,
V =a+ BU = (a+ Bp) + (BA)Z. This proves the result.

Theorem 3 (Density). A Np(u,X) distribution with a positive definite ¥, admits the
following pdf:

f(x) = 2m)*2(det )"V 2 exp {—;(x —w)I's Nz - M)} , xRk

Proof. Suppose X ~ Ni(i,%) then X = pu+ AZ where AAT = ¥ and A is non-singular
(because ¥ is p.d.). The joint pdf of Z1,---, Zj is given by

k
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Therefore, by multivariate change of variable formula for the transformation X = u+ AZ
with inverse transformation Z = A~1(X — p) and hence Jacobian J = (det A)~!, the pdf of
X is,
flz) = |(det A)"Hg(A™ (&~ p), z€R
1
= (2m)7%/2| det A| " exp {—2(x — )T (AATY Yz - u)} , zeRF
1
= (2m)7*2(det X)) % exp {—2(:6 — )Tz - ,u)} , T €RF

as det ¥ = (det A)2.
Theorem 4 (independence). Let U ~ Ni(u,X). Suppose for some 1 < p < k, ¥ can be

partitioned as
5 _ < Zay) Opxw—p))
O-pxp  2(22)

where Y11y is p X p, Y29y 18 (k —p) X (k —p) and Opxn denotes the matriz of zeros of the
specified dimensions. Similarly partition

Uny ~ Np(py: 2a1))s Ug) ~ Ne—p(ii(2); X22))
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and U1y and Uy are independent.

Proof. Because ¥ is non-negative definite, so must be any of its diagonal blocks. Therefore
there are p x p and (k — p) x (k — p) matrices A(j) and A(y) such that ¥(;;) = A(l)Aa) and
S(22) = A2)Aly). Clearly, ¥ = AAT with

(2)
A— ( A OpX(k—p)> ]
Ok—p)xp A
Because U is normal, we must have U = pu+ AZ where Z = (Z1,--- , Z,)" with Z; '~ N(0,1).
Write Zqy = (Z1,- -~ , Zp)T and Zioy = (Zp+1,- - , Z)T. Then Z(1y and Z (9 are independent

<U(1>> _ (M(l)) N ( A 0px<k—p)> (Zu)) _ (M(l) +A(1>Z<1>> .
Ua) 1(2) O—pyxp  A) Z(2) 12) + A@2)Z(2)
From this the result follows.

Sample mean and variance of normal data

Theorem 5. Let X; ~ N(u,02). Then

LW = 2=~ N(O, 1),
2. v =Xal= X" 2

3. and V and W are independent.

Proof. Suffices to prove for = 0 and 62 = 1 (otherwise take X; = (X; — u)/0). Let
X denote the random vector (Xi,---,X,)T € R™. Then, X,, ~ N,(0nx1,I,) where I,
denotes the n x n identity matrix with 1 on the diagonals and zero elsewhere. Let B be a
n X m orthogonal matrix whose first row equals (1/y/n)11xy, where 1,,x, denote the matrix
of the given dimensions (such an orthogonal matrix can be constructed by the Gram-Schmidt
method). Take Y = BX. Then

Y ~ Nn(onxlaBBT) = Nn (Onxlaln),

as, B is orthogonal. Therefore the coordinate variables Y1, Ys, -+ ,Y, of Y are IID N(0,1).
Now argue,

L Yi=(1/yn)lixmX = (1/v/n) Y X; = v/nX. So W =Y; ~ N0, 1).
2. YTY = XTX (since B is orthogonal), and so Y2+ Y2 +---+ Y2 = X2+ X2+ -+ X2.
But Y = nX2. Hence
n
Y24 +Y2= ZXQ—nX2 Y (X -X)P=V.
i=1

So, V=Y#+ - +Y?2~x2_, as this is a sum of squares of n — 1 IID standard normal
variables.

3. W =Y7 and V is a function of Y5, - - - | Y},, hence these two are independent as Y;’s are
independent.



Quadratic forms

A kxk symmetric matrix H is called idempotent if H?2 = H. The eigenvalues of an idempotent
matrix are either 0 or 1. To see this, note that if X is an eigenvalue of an idempotent matrix
H then Hv = \v for some v # 0. Pre-multiply both sides by H to get H?v = AHv = \?w.
But H? = H and so H?v = Hv = \v. Thus A\?v = \v, and because v # 0 this implies A\? = ).
So A € {0,1}.

Because the rank of a symmetric matrix is equal to the number of its non-zero eigenvalues,
the only full-rank idempotent matrix is the identity matrix. If H is idempotent with rank m
then I}, — H is idempotent with rank k —m (because (Iy — H)(Iy —H) =I;, — H — H + H? =
I, — H).

For any set of linearly independent vectors vy, --- ,v, € RF, the linear space {a1v1 +
oo 4 AUy ar, -, a, € R} is the same as the space of vectors C(V) = {Vb: b € R™}
where V' = [v1 : vy : -+ 1 vy] is the k X m matrix with columns v;. This space is called the

column space of V. The matrix H = V(VTV)~'VT is idempotent and gives the orthogonal
projection matrix onto C(V) (that means for any x € R¥, the Euclidean distance |z — y||,
y € C(V) is minimized at y = Hx and Hx and x — Hx are orthogonal.).

The converse is also true, every idempotent matrix H of rank m is the orthogonal pro-
jection matrix onto C(V') for some k x m matrix V' with independent columns. This can
be seen by writing H = > ", viviT where v;’s are eigenvectors corresponding to the m
non-zero eigenvalues (which must equal 1) of H. Take V = [v; : v : -+ : vy]. Then
H=vVT =vWVTVv)"WWT as VIV = I,,,.

Theorem 6 (quadratic form). Suppose X ~ Ni(0,I) and H is idempotent with rank m.
ThenY = XTHX ~ x2,.

Proof. Write H = >, viviT where v;’s are eigenvectors corresponding to the m non-zero
eigenvalues of H. Then H = VVT where V = [v1 : --- : vy]. Then Y = (VIX)T(VTX) =
ZT7Z where Z = VI X ~ N, (0,1,) as VIV = I,,. Therefore Y = 2172 = 72 + ... + Z2% ~
Xom-

Theorem 7 (a variant of Thm 6). Suppose X ~ Ny (0,H) where H is idempotent with
rank m, then XTX ~ x2,.

Proof. Let Y = HZ where Z ~ N(0,I;). Then Y ~ N, (0, HHT). But because H is
idempotent, HH” = H and hence Y has the same distribution as X. So X7 X has the same
distribution as Y7Y = (HZ2)T(HZ) = ZTHT'HZ = ZTHZ (because H' H = H?> = H). But
by Theorem 6, ZTHZ ~ x2,.

Least-squares estimate and residual sum of squares

Consider the Gaussian linear model
Y;:Z;FB—I—EZ, i:1727"'7n7

where z; € RP are fixed, and ¢ ~ N(0,0%). The least squares estimate of 3 is ﬁls =
(ZTZ2)~1ZTY with Y = (Y1,---,Y,)T and Z denoting n x p matrix with i-th row given by



2T Note that C(Z) is now the column space of 2.1, 2.9, -+ , 2., where z.; = (214, 225, ** , Znj) .

is the vector of observations from all n cases on the j-th attribute of the input variable.
Denote H = Z(Z7Z)"*ZT. Then Y = Zfs = HY is the projection of Y onto C(Z). This is
expected, because in least squares we minimize ||Y — Zf||? over B which is same as minimizing
|Y —v||? over v € C(Z). Notice that HZ = Z and so (I,, — H)Z = 0.

Define the residuals & = Y; — Y; = Y; — z BLS and take ¢ = (é1,---,én)T. Then
¢ =Y — ZBs = (I, — H)Y. An estimate of 02 is given by s2 = LS &2 = _L ¢T¢,
Here is the counterpart of Theorem 5 for the least-squares.

Theorem 8. Let Y, Z, BLS and H be as above. Then
1. Brs ~ Np(B,0%(Z7Z)7),
2. €~ N,(0,0%(I, — H))
3. BLS and € are independent.
4. Zele~x2 .

Proof. From what we have discussed above,
G\ _ (22T
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because HZ = Z, (I, — H)Z = Onxp and H?> = H (and so (I, — H)?> = I,, — H). This
proves assertions 1, 2 and 3 (see theorem 4 above). To prove the last assertion note that
le~ Ny—p(0,1, — H) and I,, — H is idempotent. So, by Theorem 7, 26 E~XE

Theorem 9 (confidence intervals). Let Y, Z, BLS and H be as above. Let o be any
number in (0,1). Then

1. For any vector a € RP, a # Opx1, aTBLS F zn_p(a)\/% is a (1 — «) confidence interval

L > 0.

T —
fO?" a B, where Ng = m

2. In particular, for every j = 1,2,--- ,p, 3L57j F zn_p(a)ﬁ is a (1 — «) confidence
interval for 8;, where nj; is the inverse of the j-th diagonal entry of (ZzT 7)1

Proof. The second assertion follows from the first with a = (0,---,0,1,0,---,0)7, where the
1 occurs at the j-th position. To prove the first assertion, note that by Theorem 8,

TA o N(oTR 2,T(7T 7 —1 _ _a"Bg—d"B |
1. a* Bus ~ N(a' B,0%a" (Z*' Z)""a) and hence W = i N(0,1).



5 v = (p)s? T

o2

_ 1T, 2
= 5€ €~ Xp_p-

3. W and V are independent.

Hence T =

W _ _a%Bus—ad"8 _ aTpis—a’B
VV/in—p)  s\/aT(z2T2)‘a  5/Vna tn—p. Therefore,

P(aTﬁ € aTBLS F 2p—ple) ) =P(—zp—pla) <T < zp_p(a)) =1 —a.
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