
Random Vector

A random vector U ∈ Rk is a vector (U1, U2, · · · , Uk)
T of scalar random variables Ui defined

over a common probability space. The expectation and variance of U are defined as:

EU :=


EU1

EU2
...

EUk

 ,VarU := E({U−EU}{U−EU}T ) =


VarU1 Cov(U1, U2) . . . Cov(U1, Uk)

Cov(U2, U1) VarU2 . . . Cov(U2, Uk)
...

...
. . .

...
Cov(Uk, U1) Cov(Uk, U2) . . . VarUk

 .

It is easy to check that if X = a + BU where aRp and B is a p × k matrix, then X is a
random vector in Rp with EX = a + B EU , VarX = BVar(U)BT . You should also note
that if Σ = VarU for some random vector U , then Σ is a k× k non-negative definite matrix,
because for any a ∈ Rk, aTΣa = Var(aTU) ≥ 0.

Multivariate Normal

Definition. A random vector U ∈ Rk is called a normal random vector if for a ∈ Rk, aTU
is a (one dimensional) normal random variable.

Theorem 1. A random vector U ∈ Rk is a normal random vector if and only if one can write
U = m+AZ for some m ∈ Rk and k×k matrix A where Z = (Z1, · · · , Zk)

T with Zi
IID∼ N(0, 1).

Proof. “If part”. Suppose U = m+AZ with m, A and Z as in the statement of the theorem.

Then for any a ∈ Rk,

aTU = aTm+ aTAU = b0 +
n∑

i=1

biZi

for some scalars b0, b1, · · · , bk. But a linear combination of independent (one dimensional)
normal variables is another normal, so aTU is a normal variable.

“Only if part” Suppose U is a normal random vector. It suffices to show that a V = m+AZ
with Z as in the statement of the theorem, and suitably chosen m and A, has the same
distribution as U . For any a ∈ Rk, the moment generating function MU (a) of U at a is

EeaTU = EeX where X = aTU is normally distributed by definition. But, by one dimensional
normal distribution theory, EeX = eEX+ 1

2
VarX = ea

TEU+ 1
2
aT (VarU)a = ea

Tµ+aTΣa where we
denote EU by µ and VarU by Σ. Note that Σ is non-negative definite and thus can be written
as Σ = AAT for some k × k matrix A.

Write V = µ+ AZ where Z = (Z1, · · · , Zk)
T with Zi

IID∼ N(0, 1). Then, by the “if part”,
V is a normal random vector, and because Zi’s are IID with mean 0 and variance 1, EV = µ
and VarV = Σ. So by above discussion MV (a) = ea

Tµ+ 1
2
aTΣa = MU (a). So U and V have

the same moment generating function. Because this moment generating function is defined
for all a ∈ Rk, it uniquely determines the associated probability distribution. That is, V and
U have the same distribution.

Notation. If a random k-vector U is a normal random vector, then by above proof, its
distribution is completely determined by its mean µ = EU and variance Σ = VarU . We shall
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denote this distribution by Nk(µ,Σ). Note that U ∼ Nk(µ,Σ) then means that U = µ+AZ
for Z as in the above theorem, where A satisfies Σ = AAT .

Theorem 2 (Linear transformations). If U ∼ Nk(µ,Σ) and a ∈ Rp and B is p × p
matrix, then V = a+BU ∼ Np(a+Bµ,BΣBT ).

Proof. Write U = µ + AZ where Z is as in Theorem 1 and A satisfies Σ = AAT . Then,
V = a+BU = (a+Bµ) + (BA)Z. This proves the result.

Theorem 3 (Density). A Nk(µ,Σ) distribution with a positive definite Σ, admits the
following pdf:

f(x) = (2π)−k/2(detΣ)−1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, x ∈ Rk.

Proof. Suppose X ∼ Nk(µ,Σ) then X = µ + AZ where AAT = Σ and A is non-singular
(because Σ is p.d.). The joint pdf of Z1, · · · , Zk is given by

g(z1, · · · , zk) =
k∏

i=1

1√
2π

exp

{
−z2i

2

}
= (2π)−k/2 exp

{
−1

2
zT z

}
, z = (z1, · · · , zk)T ∈ Rk.

Therefore, by multivariate change of variable formula for the transformation X = µ + AZ
with inverse transformation Z = A−1(X − µ) and hence Jacobian J = (detA)−1, the pdf of
X is,

f(x) = |(detA)−1|g(A−1(x− µ)), x ∈ Rk

= (2π)−k/2| detA|−1 exp

{
−1

2
(x− µ)T (AAT )−1(x− µ)

}
, x ∈ Rk

= (2π)−k/2(detΣ)−1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, x ∈ Rk.

as detΣ = (detA)2.
Theorem 4 (independence). Let U ∼ Nk(µ,Σ). Suppose for some 1 ≤ p < k, Σ can be
partitioned as

Σ =

(
Σ(11) 0p×(k−p)

0(k−p)×p Σ(22)

)
where Σ(11) is p × p, Σ(22) is (k − p) × (k − p) and 0m×n denotes the matrix of zeros of the
specified dimensions. Similarly partition

U =

(
U(1)

U(2)

)
, and µ =

(
µ(1)

µ(2)

)
into vectors of length p and (k − p). Then

U(1) ∼ Np(µ(1),Σ(11)), U(2) ∼ Nk−p(µ(2),Σ(22))
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and U(1) and U(2) are independent.

Proof. Because Σ is non-negative definite, so must be any of its diagonal blocks. Therefore
there are p× p and (k − p)× (k − p) matrices A(1) and A(2) such that Σ(11) = A(1)A

T
(1) and

Σ(22) = A(2)A
T
(2). Clearly, Σ = AAT with

A =

(
A(1) 0p×(k−p)

0(k−p)×p A(2)

)
.

Because U is normal, we must have U = µ+AZ where Z = (Z1, · · · , Zk)
T with Zi

IID∼ N(0, 1).
Write Z(1) = (Z1, · · · , Zp)

T and Z(2) = (Zp+1, · · · , Zk)
T . Then Z(1) and Z(2) are independent

and (
U(1)

U(2)

)
=

(
µ(1)

µ(2)

)
+

(
A(1) 0p×(k−p)

0(k−p)×p A(2)

)(
Z(1)

Z(2)

)
=

(
µ(1) +A(1)Z(1)

µ(2) +A(2)Z(2)

)
.

From this the result follows.

Sample mean and variance of normal data

Theorem 5. Let Xi
IID∼ N(µ, σ2). Then

1. W = X̄−µ
σ/

√
n
∼ N(0, 1),

2. V =
∑n

i=1(Xi−X̄)2

σ2 ∼ χ2
n−1

3. and V and W are independent.

Proof. Suffices to prove for µ = 0 and σ2 = 1 (otherwise take X̃i = (Xi − µ)/σ). Let
X denote the random vector (X1, · · · , Xn)

T ∈ Rn. Then, Xn ∼ Nn(0n×1, In) where In
denotes the n × n identity matrix with 1 on the diagonals and zero elsewhere. Let B be a
n×m orthogonal matrix whose first row equals (1/

√
n)11×n where 1m×n denote the matrix

of the given dimensions (such an orthogonal matrix can be constructed by the Gram-Schmidt
method). Take Y = BX. Then

Y ∼ Nn(0n×1, BBT ) = Nn (0n×1, In) ,

as, B is orthogonal. Therefore the coordinate variables Y1, Y2, · · · , Yn of Y are IID N(0, 1).
Now argue,

1. Y1 = (1/
√
n)11×mX = (1/

√
n)

∑n
i=1Xi =

√
nX̄. So W = Y1 ∼ N(0, 1).

2. Y TY = XTX (since B is orthogonal), and so Y 2
1 +Y 2

2 + · · ·+Y 2
n = X2

1 +X2
2 + · · ·+X2

n.
But Y 2

1 = nX̄2. Hence

Y 2
2 + · · ·+ Y 2

n =
n∑

i=1

X2
i − nX̄2 =

n∑
i=1

(Xi − X̄)2 = V.

So, V = Y 2
2 + · · ·+Y 2

n ∼ χ2
n−1 as this is a sum of squares of n− 1 IID standard normal

variables.

3. W = Y1 and V is a function of Y2, · · · , Yn, hence these two are independent as Yi’s are
independent.
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Quadratic forms

A k×k symmetric matrixH is called idempotent ifH2 = H. The eigenvalues of an idempotent
matrix are either 0 or 1. To see this, note that if λ is an eigenvalue of an idempotent matrix
H then Hv = λv for some v ̸= 0. Pre-multiply both sides by H to get H2v = λHv = λ2v.
But H2 = H and so H2v = Hv = λv. Thus λ2v = λv, and because v ̸= 0 this implies λ2 = λ.
So λ ∈ {0, 1}.

Because the rank of a symmetric matrix is equal to the number of its non-zero eigenvalues,
the only full-rank idempotent matrix is the identity matrix. If H is idempotent with rank m
then Ik −H is idempotent with rank k−m (because (Ik −H)(Ik −H) = Ik −H −H +H2 =
Ik −H).

For any set of linearly independent vectors v1, · · · , vm ∈ Rk, the linear space {a1v1 +
· · · + amvm : a1, · · · , am ∈ R} is the same as the space of vectors C(V ) = {V b : b ∈ Rm}
where V = [v1 : v2 : · · · : vm] is the k ×m matrix with columns vi. This space is called the
column space of V . The matrix H = V (V TV )−1V T is idempotent and gives the orthogonal
projection matrix onto C(V ) (that means for any x ∈ Rk, the Euclidean distance ∥x − y∥,
y ∈ C(V ) is minimized at y = Hx and Hx and x−Hx are orthogonal.).

The converse is also true, every idempotent matrix H of rank m is the orthogonal pro-
jection matrix onto C(V ) for some k × m matrix V with independent columns. This can
be seen by writing H =

∑m
i=1 viv

T
i where vi’s are eigenvectors corresponding to the m

non-zero eigenvalues (which must equal 1) of H. Take V = [v1 : v2 : · · · : vm]. Then
H = V V T = V (V TV )−1V T as V TV = Im.

Theorem 6 (quadratic form). Suppose X ∼ Nk(0, Ik) and H is idempotent with rank m.
Then Y = XTHX ∼ χ2

m.

Proof. Write H =
∑m

i=1 viv
T
i where vi’s are eigenvectors corresponding to the m non-zero

eigenvalues of H. Then H = V V T where V = [v1 : · · · : vm]. Then Y = (V TX)T (V TX) =
ZTZ where Z = V TX ∼ Nm(0, Im) as V TV = Im. Therefore Y = ZTZ = Z2

1 + · · ·+ Z2
m ∼

χ2
m.

Theorem 7 (a variant of Thm 6). Suppose X ∼ Nk(0,H) where H is idempotent with
rank m, then XTX ∼ χ2

m.

Proof. Let Y = HZ where Z ∼ Nk(0, Ik). Then Y ∼ Nk(0,HHT ). But because H is
idempotent, HHT = H and hence Y has the same distribution as X. So XTX has the same
distribution as Y TY = (HZ)T (HZ) = ZTHTHZ = ZTHZ (because HTH = H2 = H). But
by Theorem 6, ZTHZ ∼ χ2

m.

Least-squares estimate and residual sum of squares

Consider the Gaussian linear model

Yi = zTi β + ϵi, i = 1, 2, · · · , n,

where zi ∈ Rp are fixed, and ϵi
IID∼ N(0, σ2). The least squares estimate of β is β̂LS =

(ZTZ)−1ZTY with Y = (Y1, · · · , Yn)T and Z denoting n × p matrix with i-th row given by
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zTi . Note that C(Z) is now the column space of z·1, z·2, · · · , z·p where z·j = (z1j , z2j , · · · , znj)T
is the vector of observations from all n cases on the j-th attribute of the input variable.
Denote H = Z(ZTZ)−1ZT . Then Ŷ = Zβ̂LS = HY is the projection of Y onto C(Z). This is
expected, because in least squares we minimize ∥Y −Zβ∥2 over β which is same as minimizing
∥Y − v∥2 over v ∈ C(Z). Notice that HZ = Z and so (In −H)Z = 0.

Define the residuals ϵ̂i = Yi − Ŷi = Yi − zTi β̂LS and take ϵ̂ = (ϵ̂1, · · · , ϵ̂n)T . Then
ϵ̂ = Y − Zβ̂LS = (In − H)Y . An estimate of σ2 is given by s2 = 1

n−p

∑n
i=1 ϵ̂

2
i = 1

n−p ϵ̂
T ϵ̂.

Here is the counterpart of Theorem 5 for the least-squares.

Theorem 8. Let Y , Z, β̂LS and H be as above. Then

1. β̂LS ∼ Np(β, σ
2(ZTZ)−1).

2. ϵ̂ ∼ Nn(0, σ
2(In −H))

3. β̂LS and ϵ̂ are independent.

4. 1
σ2 ϵ̂

T ϵ̂ ∼ χ2
n−p.

Proof. From what we have discussed above,(
β̂LS

ϵ̂

)
=

(
(ZTZ)−1ZT

In −H

)
Y

∼ Nn+p

((
(ZTZ)−1ZT

In −H

)
Zβ,

(
(ZTZ)−1ZT

In −H

)
(σ2In)

(
Z(ZTZ)−1 In −H

))
= Nn+p

((
(ZTZ)−1ZTZβ
(In −H)Zβ

)
,

(
σ2(ZTZ)−1ZTZ(ZTZ)−1 σ2(ZTZ)−1ZT (In − h)
σ2(In −H)Z(ZTZ)−1 σ2(In −H)(In −H)

))
= Nn+p

((
β

0n×1

)
,

(
σ2(ZTZ)−1 0p×n

0n×p σ2(In −H)

))
because HZ = Z, (In − H)Z = 0n×p and H2 = H (and so (In − H)2 = In − H). This
proves assertions 1, 2 and 3 (see theorem 4 above). To prove the last assertion, note that
1
σ ϵ̂ ∼ Nn−p(0, In −H) and In −H is idempotent. So, by Theorem 7, 1

σ2 ϵ̂
T ϵ̂ ∼ χ2

n−p.

Theorem 9 (confidence intervals). Let Y , Z, β̂LS and H be as above. Let α be any
number in (0, 1). Then

1. For any vector a ∈ Rp, a ̸= 0p×1, a
T β̂LS ∓ zn−p(α)

s√
na

is a (1− α) confidence interval

for aTβ, where na = 1
aT (ZTZ)−1a

> 0.

2. In particular, for every j = 1, 2, · · · , p, β̂LS,j ∓ zn−p(α)
s√
njj

is a (1 − α) confidence

interval for βj, where njj is the inverse of the j-th diagonal entry of (ZTZ)−1.

Proof. The second assertion follows from the first with a = (0, · · · , 0, 1, 0, · · · , 0)T , where the
1 occurs at the j-th position. To prove the first assertion, note that by Theorem 8,

1. aT β̂LS ∼ N(aTβ, σ2aT (ZTZ)−1a) and hence W = aT β̂LS−aT β

σ
√

aT (ZTZ)−1a
∼ N(0, 1).
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2. V = (n−p)s2

σ2 = 1
σ2 ϵ̂

T ϵ̂ ∼ χ2
n−p.

3. W and V are independent.

Hence T = W√
V/(n−p)

= aT β̂LS−aT β

s
√

aT (ZTZ)−1a
= aT β̂LS−aT β

s/
√
na

∼ tn−p. Therefore,

P

(
aTβ ∈ aT β̂LS ∓ zn−p(α)

s
√
na

)
= P (−zn−p(α) ≤ T ≤ zn−p(α)) = 1− α.
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