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Thinking about a prior

A prior pdf on a parameter θ ∈ Θ that indexes a statistical model X ∼ p(x|θ),
reflects the analyst’s pre-data understanding/knowledge/belief about θ. When θ is
an interpretable quantity, “belief about θ” is tangible. Example: θ = proportion of
students in support of a university policy. If θ is merely an artifact of our formalization
ofX through the pdfs p(x|θ), then belief about θ really means belief aboutX consistent

with the statistical model. Example: Xi = increase in sleep hours, Xi
IID∼ N(µ, σ2).

Ideally, we would like to construct the prior pdf π(θ) to match an expert’s belief
about θ and/or X. However, belief is a mental condition, so one first need to quantify
the expert’s belief. Such a prior is usually called a subjective prior, as it is based
upon an individual’s subjective belief. A commonly used alternative is to go for a
default/non-informative/low-informative/uniform prior that essentially reflects a lack
of strong and precisely quantified prior information. Often such a prior is called an
objective prior. We will look at both kinds and try to understand the rational behind
them. (BTW, the use of the qualifiers subjective/objective is highly controversial and
sometimes quite misleading.)

We shall make use of the following two examples:

1. X = number of female births out of n placenta-previa births. Model X ∼
Bin(n, p), p = female birth-rate under placenta previa (a certain pregnancy com-
plication).

2. Y1, · · · , Yn = (self reported) weekly food expenditures of n Duke undergraduates.

Model Yi
IID∼ N(µ, σ2).

Subjective prior: basic considerations

To quantify an expert’s belief about X and/or θ we must ask her questions whose
answers will relate to some sorts of numerical summaries of these variables. Our task
would then be to find a prior distribution π(θ) so that the same summaries now calcu-
lated based on the complete model X ∼ f(x|θ), θ ∼ π(θ) match the answers given by
the expert. How do we make an expert quantify her beliefs?

A general strategy: the bisection approach

Suppose we want to quantify our beliefs about a scalar variable Z and then choose a
pdf/pmf f(z) that matches these quantified beliefs. There are various things we can
quantify about Z, e.g., its center, spread, a range that is likely to contain most possible
values, whether it is likely to be asymmetrically distributed around its center and so
on. It is known, through experimentation, that we are fairly good at quantifying beliefs
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about “central values”, but not so good at quantifying beliefs about spread or range.
In particular, the question that we can most reliably answer is:

What is the number q1 that we think Z is equally likely to be larger or
smaller than?

By “reliably answer” I mean that in answering this question, what we really believe
and what we say we believe are usually close [psychologists have ways of figuring out
what we really believe, or so they claim.]

Once we identify q1, we must restrict our choice of f(z) to pdfs that have q1 as their
median (i.e., 0.5-th quantile, i.e., P (Z < q1) = P (Z > q1) = 0.5 under these pdfs).
Clearly, there are infinitely many pdfs that satisfy this. To make further progress,
we need to answer more questions about our beliefs on Z. Now that the median has
already been quantified, how can we talk about “centers” any more?

There is a fairly clever approach. We next ask this,

Imagine we are told Z > q1 (recall q1 is already identified). Given this
information, what is the number q2 that Z is equally likely to be larger or
smaller than?

Once we identify q1, q2, our choice of f(z) must satisfy conditions: P (Z < q1) = 1/2
and P (Z < q2) = 3/4 under this pdf. So q2 gives the 0.75-th quantile of f(z).

We can repeat this on the left side, given the information Z < q1 identify q3 that
Z is equally likely to be larger or smaller than. Then q3 is the 0.25-th quantile f(z).
Continuing like these, we can identify the 0.875-th, the 0.125-th, the 0.9375-th, the
0.0625-th,... quantiles of f(z).

Stopping

Of course we can’t continue forever. Pretty soon we start answering “I don’t know”,
“I really don’t know”, “leave me alone”... Wherever we stop, we’d still have a large
collections of pdfs that will match the quantities we have identified as the desired
quantiles. At this point, we usually choose the one (among the matching ones) that is
convenient to work with1.

More intelligently, we can start with a collection of convenient pdfs (like a conjugate
family of prior pdfs for a Bayesian analysis) and keep quantifying q1, q2, · · · until a
member of this family is uniquely determined as the only one that provides a match.
If the collection of pdfs is indexed by k many unknown quantities, then we are likely
to get a unique, exact match by the time we have quantified k quantiles.

1If we are more careful, we choose a few of such pdfs and perform our analysis under each, and
then present all. If we are lucky the reports are close. Otherwise, we say there is too much prior
uncertainty to come up with a singular analysis.
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Belief quantification for placenta-previa births

Quantifying p

If we decide to use a Be(a, b) as the prior for p, then we should be able to identify a
and b by asking the expert about the median and either the first or the third quartile
of θ (but in the language described above). Which quartile we go for may depend on
whether the expert believes that placenta-previa might result in unusually low or high
female birth rate.

Once we find these answers, say q1 and q2 from the expert, we look for a, b that
best match these. This might require running a numerical routine as follows:

## get median q1 and 3-rd quartile q2 of p

fn <- function(par){

a <- par[1]

b <- par[2]

return(sum((pbeta(c(q1, q2), a, b) - c(1/2, 3/4))^2))

}

optim(c(1, 1), fn)

For example, with q1 = 0.485 and q2 = 0.6, this code gives a = 4.34 and b = 4.59.

Quantifying X

The female birth-rate p can be thought of an intangible quantity that’s merely an
artifact of our binomial model. In this case we could try to make the expert answer
questions about X directly. We can ask the expert to imagine n = 1000 and then
quantify what number X is equally likely to be larger or smaller than, etc. Say we get
the median q1 and the 3-rd quartile q2 through this. Now, when X|p ∼ Bin(n, p) and
p ∼ Be(a, b), the marginal pmf of X is the beta-binomial pmf g(x|a, b) given by

g(x|a, b) =
(
n

x

)
B(a+ x, b+ n− x)

B(a, b)
, x = 0, 1, · · · , n.

To find a, b, we can modify the earlier code to:

## get median q1 and 3-rd quartile q2 of X

fn2 <- function(par){

a <- par[1]

b <- par[2]

return(sum((pbetabin.ab(c(q1, q2), n, a, b) - c(1/2, 3/4))^2))

}

optim(c(1, 1), fn2)

For q1 = 485 and q2 = 600, this code gives a = 4.38 and b = 4.62.
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Other prior distributions

Let’s go back to the case of quantifying p where the expert specifies the median to be
0.485 and the third quartile to be 0.6. Suppose she also specifies the first quartile to
be 0.4. The first quartile of Be(4.34, 4.59) is 0.371, which is not a bad match to the
expert’s answer, but might not be entirely satisfactory.

In this case matches could be found from several other useful collection of prior
distributions. One example is the collection of prior pdfs that are piecewise uniform.
The one below matches the expert’s answers (uniquely if we restrict to only 4 pieces).
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Belief quantification for food expenditure

We focus on the collection of prior pdfs {Nχ−2(m, k, r, s2) : −∞ < m < ∞, k > 0, r >
0, s2 > 0}. Since this collection is indexed by 4 quantities, we need four pieces of
quantification on Y1, Y2, · · · . We will quantify three quantities for Y1 and one quantity
for Y1 − Y2. Under our model, the pdfs of these variables indeed depend on the choice
of m, k, r, s. In particular:

Y1 −m

s
√
1 + 1/k

∼ t(r), and
Y1 − Y2

s
√
2

∼ t(r).

This is because of the following result.

Result 1. If (W,V ) ∼ Nχ−2(m, k, r, s2) and U |(W = w, V = v) ∼ N(aw, bv) then
U−am

s
√

(b+a2/k)
∼ t(r).

Proof. Must have U = aW +
√
bV Z for a Z ∼ N(0, 1) that is independent of W and

V . So, given V = v, U ∼ N(am, a2v/k + bv) = N(am, v/k′) where 1/k′ = b + a2/k.
Hence (U, V ) ∼ Nχ−2(am, k′, r, s2), from which the result follows.
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We will start by quantifying the median, the 0.75-th and the 0.875-th quantiles
q1, q2, q3 for Y1. This follows the bisection approach discussed above, but only on one
side (we do not get 0.25-th quantile, etc.). This is because we are restricted only to pdfs
of Y1 that are symmetric around the median. We also apply the bisection method on
Y1−Y2 to quantify its 0.75-th quantile (the median must be quantified 0, by symmetry
of Y1 and Y2).

Solving for m, k, r, s

Because Y1−m

s
√

1+1/k
∼ t(r), for any fraction u ∈ (0, 1) the u-th quantile of Y1 must equal

m + s
√

1 + 1/k Φ−1
r (u) where Φ−1

r (u) is the u-th quantile of the t(r) pdf. First note
that Φ−1

r (0.5) = 0 for any r. So

q1 = m+ s
√
1 + 1/k Φ−1

r (0.5) = m

and so m = q1 .

Next, in our old notations, Φ−1
r (0.75) = Φ−1

r (1 − 0.5/2) = zr(0.5) and similarly,
Φ−1

r (0.875) = zr(0.25) and so

q2 = m+ s
√

1 + 1/k zr(0.5)

q3 = m+ s
√

1 + 1/k zr(0.25)

and so zr(0.5)
zr(0.25)

= q2−m
q3−m

= q2−q1
q3−q1

. The ratio zr(0.5)/zr(0.25) is a continuous, increasing

function in r and ranges between 0 (for r → 0) and z(0.5)/z(0.25) = 0.5863347 [for
r → ∞, as zr(α) becomes z(α)]. See Figure 1. Therefore it is important that we have
q2−q1
q3−q1

within this range. Otherwise, there is no Nχ−2(m, k, r, s2) that matches our prior
belief. In case of a mismatch we may revisit some of our answers about q1, q2 and
q3. The most suspect would be q3 and a revised answer maybe considered for which
a match occurs. If q2−q1

q3−q1
is inside the range [0, 0.5863347] then we can identify r as

follows.

ratio <- (q2 - q1) / (q3 - q1)

fn <- function(r) return(qt(0.75, r) / qt(0.875, r) - ratio)

r.sol <- uniroot(fn, interval = c(1e-3, 1e3))

r <- r.sol$root

Now that we have m and r, we can also identify s′ = s
√
1 + 1/k from the identity

q2 = m + s
√

1 + 1/k zr(0.5). Namely, s′ = (q2 − q1)/zr(0.5) . But we cannot disen-

tangle s and k from this. In fact no amount of further quantification on Y1 can identify
s and k separately from s′.
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Figure 1: The ratio zr(0.5)
zr(0.25)

as a function of r.

So we now turn to Y1−Y2 whose 0.75-th quantile must equal 0+
√
2szr(0.5). Equat-

ing this to q4, and using the value of r that we obtained before, we can now identify s

by s = q4/{zr(0.5)
√
2} . Combine this with the identified value of s′ = s

√
1 + 1/k to

identify k as: k = s2/(s′2 − s2) . This is a legitimate value for k, provided s′ > s. If

we do not get this then again we need to see if we can revise our quantified beliefs.

Default, low-information priors

There’s a general notion that with sufficient data, the likelihood function dominate the
prior function, and so similar posterior distributions are obtained even when one start
with different choices of π(θ). This is not true in general, but certainly holds in the
IID and related settings. In particular, in an IID setting, i.e., with data of the form
X = (X1, · · · , Xn) with Xi

IID∼ g(xi|θ), θ ∈ Θ, if we have

√
n(θ̂MLE(X)− θ)

d→ N(0, IF1 (θ)
−1)

whenever X ∼ f(x|θ) =
∏n

i=1 g(xi|θ), then for any prior π(θ), the posterior pdf π(θ|x)
is well approximated by N(θ̂MLE(x), I

−1
x ) for almost all data X = x. Note that the

approximating normal density does not involve the prior.
This property is often used to argue that a careful specification of the prior pdf

through detailed elicitation (which is usually time consuming, especially if you have to
convince the expert that there’s some merit to this soul searching exercise) is perhaps
unnecessary, as any two low-information prior distributions are likely to produce very
similar posterior pdfs. Instead one can use an off-the shelf default, low information

6



prior and report the corresponding posterior. Note that the argument here seems to
be that the posterior will stand the sensitivity test if one was performed.

Uniform priors

Technically, a low information prior is one whose pdf π(θ) is flat compared to the
likelihood function. The flattest of flats obtains by choosing π(θ) = const, for all
θ ∈ Θ. If Θ is bounded, then this is same as choosing π as the uniform distribution on
Θ.

Interestingly, two earliest instances of Bayesian analyses, due to Bayes and Laplace,
dealt with X ∼ Bin(n, p) and used π(p) = Unif(0, 1). But they arrived at this prior
from two different angles. Bayes reasoned that he believed P (X = 0) = P (X = 1) =
· · · = P (X = n) (and hence each probability is 1/(n + 1)). This is indeed the case
when π(p) = Unif(0, 1) [but not a unique choice, there are other pdfs for which this
happens].

On the other hand, Laplace (unaware of Bayes’ work) said he had no reasons to
prefer any p = p1 over any other p = p2 as long as both p1, p2 ∈ (0, 1). The only pdf
π(p) over (0, 1) with π(p1)/π(p2) = 1 for all p1, p2 is the uniform pdf.

Both men used a “no preference” argument to come up with the prior, with Bayes
applying this to X while Laplace doing the same to p. Laplace’s reasoning, however,
leaves a loophole [contributed and publicized by Fisher who declared Laplace’s methods
and in general Bayes methods to be a fundamental mistake in mathematics.] This is
described below; the key idea is of invariance.

Invariance

Consider X ∼ p(x|θ), θ ∈ [a, b] where we have chosen the low information, uniform
prior π(θ) = 1/(b − a) on [a, b]. Now consider a re-parametrization, say η = eθ. We
can rewrite our model as, X ∼ q(x|η), η ∈ [c, d], where q(x|η) = p(x| log(η)), c = ea,
d = eb. The low-information uniform prior for this model is πq(η) = 1/(d− c).

Quite remarkably, by simply reparametrizing the model, we have arrived at a com-
pletely different prior! Choosing π(θ) = 1

b−a
on θ is equivalent to choosing πq(η) =

1
η(b−a)

on η by change of variable. This is not the uniform prior on [c, d].

The Jeffreys prior

The first systematic solution to the invariance problem was proposed by Jeffreys and
it remains popular to date. Harold Jeffreys (1946) proposed to choose the prior pdf as:

πJ(θ) = const× {IF (θ)}1/2

where IF (θ) = Fisher information: = −E[X|θ]
∂2

∂θ2
log p(X|θ). If X = (X1, · · · , Xn)

with Xi being IID, then IF (θ) = nIF1 (θ) and the Jeffreys prior can be expressed as:
πJ(θ) = const× {IF1 (θ)}1/2.
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The Jeffreys prior is invariant under re-parametrization. The Jeffreys priors πJ,Θ(θ)
and πJ,E(η) for the models X ∼ p(x|θ), θ ∈ Θ and X ∼ q(x|η), η ∈ E where q(x|η) =
p(x|g(η)) for some differentiable, bijection g : E → Θ are indeed related to each other
as

πJ,E(η) = πJ,Θ(g(η))|g′(η)|

as they should be under simple change of variable. That is if you took the Jeffreys
prior for a model and then applied change of variable according to a reparametrization,
you’d get the Jeffreys prior for the reparametrized model.

Although Jefrreys’ prior construction rule appears as a nifty trick to avoid the
reparametrization problem, it has a deeper connection to uniform distributions over a
parameter space. A statistical model {f(x|θ) : θ ∈ Θ} is best viewed as a manifold
indexed by θ and a correct measure of distance between a θ and θ + dθ is given by
the Riemannian metric ρ(θ, θ + dθ) = dθT IF (θ)dθ. The Jeffreys prior is uniform over
Θ with respect to the geometry of Θ induced by this metric [which is usually different
from the Euclidean geometry of Θ.]

Improper priors

For unbounded Θ, a flat choice π(θ) = const or the Jeffreys’ construct π(θ) = const×
{IF (θ)}1/2 need not give a function that is a pdf on Θ. These functions are non-
negative, but may integrate to infinity. Some Bayesians accept such a π(θ), usually
called an improper prior, as long as the posterior π(θ|x) = const×f(x|θ)π(θ) is proper,
i.e., a pdf on Θ.

Reference priors

The concept of low information was given a formal treatment in Bernardo (1979)
and consequently in a series of papers by Berger and Bernardo. First, you measure
information gain from the data X = x, by a divergence measure between the prior and
the posterior, e.g., the Kullback-Leibler divergence K(π, π(·|x)) of π(θ|x) from π(θ).
The bigger the divergence the larger is the information gain. For a given prior π(θ),
the expected information gain under the model is

IG(π) =

∫
K(π, π(·|x))f(x|θ)π(θ)dθ

The reference prior πR(θ) is the prior π that maximized IG(π) (usually in a certain
asymptotic sense).

For one-dimensional θ, the reference prior is usually same as the Jeffreys prior.
Important differences arise when dim(θ) > 1. A catalog of low-information priors are
available at Berger and Yang.
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Default priors for binomial model

Clearly the flat prior is π(p) = Unif(0, 1). The Jeffreys prior is π(p) = const×p−1/2(1−
p)−1/2 = Be(1/2, 1/2), which is also the reference prior. If instead one uses an improper
uniform prior on η = log p

1−p
then the corresponding prior on p is π(p) = const ×

p−1(1− p)−1 which can be identified as “Be(0, 0)”, with a slight abuse of notation, as
the limiting case of Be(a, b) with a, b → 0.

The table below shows posterior summaries of p based on various choices of priors
discussed so far. The actual data was n = 980 with x = 437.

Prior Posterior median (95% interval) P (p < 0.5|x) P (p < 0.485|x)
Be(4.34, 4.59) 0.45 ( 0.42 , 0.48) 1 0.991
Unif(0, 1) 0.45 ( 0.42 , 0.48) 1 0.991
Be(1/2, 1/2) 0.45 ( 0.42 , 0.48) 1 0.991
Be(0, 0) 0.45 ( 0.42 , 0.48) 1 0.992

Default priors for linear Gaussian model

For the linear model Yi = zTi β + ϵi, ϵi
IID∼ N(0, σ2) where (β, σ2) ∈ Rp × R+, the Fisher

information matrix in (β, σ2) is (n/2) × σ−2(ZTZ). Consequently, the Jeffreys prior

is πJ(β, σ
2) = const × σ−(p+2). In particular, for our model Y1, · · · , Yn

IID∼ N(µ, σ2),
the Jeffreys prior is πJ(µ, σ

2) = const/σ3. The reference prior, instead, is πR(µ, σ
2) =

const/σ2. Both are improper priors.
Many scholars suggest (including Jeffreys) that πR is a “better” choice that πJ .

This can be formalized through decision theory (Berger’s book, Ch 6.6).
The posterior distribution of (β, σ2) under the reference prior is πR(β, σ

2|y, z) =
Npχ

−2(β̂LS, Z
TZ, n − p, s2y|z). Consequently, a 100(1 − α)% posterior credible interval

for η = aTβ is given by

aT β̂LS ∓ sy|z
√
aT (ZTZ)−1a× zn−p(α).

This is also the formula of the 100(1−α)% ML confidence interval for β. So the Bayes
95% credible interval also has a 95% confidence coefficient. On the hand, the 95% ML
confidence interval also has a Bayes interpretation.

Some comments

Subjective priors

The qualifier “subjective” stems from the generally held notion that knowledge is ob-
jective while belief is subjective. We shouldn’t however forget that knowledge is a belief
that’s unanimously agreed upon. Scientific knowledge is a belief or theory that couldn’t
be falsified despite best efforts. The very need of choosing a prior on Θ says that we
are not universally agreed upon a single value from it. So it’s perfectly natural that
subjective beliefs about Θ will differ from one expert to another.
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The onus is on the expert to convince others that her belief is justified in light of
the current (pre-data) knowledge.

Arguably, there will be some aspects of the prior that would be more convincing
than others. For these less precisely understood parts, other specifications can be con-
sidered and a sensitivity analysis can be performed. If the conclusion on the important
features of the model/future data remain about the same with different specifications,
then there is no need to make these parts more precise. If on the other hand, the
conclusion on the important features is sensitive to these different specification, then
there is a need to better understand these secondary aspects. This can be done with
additional studies, more expert elicitation, etc. If this fails to resolve the issue, then
we have to acknowledge that precise conclusions cannot be drawn based on current
knowledge.

An issue with default prior finding rules

What we discussed earlier are not really prior pdfs but rules to find a prior pdf for
a given statistical model. That the final outcome depends on the model could be
somewhat unpleasant.

Take for example a study where one wants to study the proportion p of men in a
population with a rare genetic condition. One could either survey n men and record
in X the number of men who exhibit the condition. Alternatively, one could keep
surveying until 10 men with the rare conditions are found, in this case data is Y = the
number of men surveyed until the 10th hit.

The Jeffreys prior for the first scenario is π(p) = Be(1/2, 1/2) while for the second
scenario is π(p) = Be(0, 1/2). But certainly our understanding about the quantity p
doesn’t change based on how we decide to learn about it!

“An” analysis and not “the” analysis

Ultimately we should all remember that we only perform one possible analysis of the
data under one set of assumptions and knowledge. Whether one such set will satisfy
all is debatable. Depends on how varied current knowledge and opinion is about
the subject matter. Knowledge can be shared to bring everyone on the same page.
Opinions can be debated to rule out ones that are obviously insane. What remain
are all potential sets of assumptions under which the analysis can be re-done. If the
answers change from one set to another in an important way, then it is important to
acknowledge that.

It is in this context that the qualifier “objective”, often assigned to default, low-
information priors, can be very misleading. An analysis done with a default prior is
by no means more “objective” than other possible choice of the prior distribution. It
is just one of many.
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