(2011 SPRING) STATISTICAL INFERENCE (01) (STA215.01-S2011) > CONTROL PANEL > TEST MANAGER > TEST CANVAS

Test Canvas

Add, modify, and remove questions. Select a question type from the Add Question drop-down list and click **Go** to add questions. Use Creation Settings to establish which default options, such as feedback and images, are available for question creation.

Add Calculated	Formula	Creation Settings			
Name	Preparation Quiz				
Description	Probability background check				
Instructions	The questions on this test are multiple choice type, but answering them will require calculations/derivations with pen and paper. At any point during the test, you can save your progress and return it to later.				
	Notations: I(.) is the indicator function, I(A) = 1 if the statement A is true, and is zero otherwise. Φ (.) is the distribution function of the N(0,1) density.				
			Modify		
			Add Question Here		
Question 1	Multiple Choice	1 points	Modify Remove		
	Question Let (X, Y) be a pair of random variables where X has a probability density function given by $f(x) = (1 / x^2) I(x > 1)$ and Y is conditionally distributed as a Unif(0, x) random variable given X = x, for every x > 1. For any y > 0, the conditional density of X given Y = y is				
	Answer	A. $g(x) = \{2 \max(1, y^2) / x^3\} (x > r) $	max(1, y))		
		B. $g(x) = (2 / x^3) I(x > 1)$			
		C. $g(x) = \{max(y, 1) / x^2\} (x > max) $	x(y, 1))		
		D. $g(x) = (2y^2 / x^3) I(x > y)$			
	Correct Feedback	Correct			
	Incorrect Feedback	Incorrect			
			Add Question Here		
Question 2	Multiple Choice	1 points	Modify Remove		
	Question For a pair of random variable (X, Y), suppose $X \sim N(m, s^2)$ and $Y \mid (X = x) \sim N(a + bx, t^2)$. Then the distribution of Y is				
	Answer	A. N(a + bm, t ²)			
		B. N(a + bm, $t^2 + s^2$)			
		C. N(a + bm, t^2 + (bs) ²	²)		
		D. N(a + bm, (bt) ² + s ²			
	Correct Feedback	Correct	,		
	Incorrect Feedback	Incorrect			
			Add Question Here		
Question 2	Multiple Chaice	1 pointe			
Question 3	Multiple Choice	1 points	Modify Remove		

Question Let X = (X_1, X_2, X_3) be a vector of random counts with total count $X_1 + X_2 + X_3 = n$ a fixed positive integer. Suppose $P(X = (x_1, x_2, x_3)) = \{n! / (x_1! x_2! x_3!)\} p_1^{x_1} p_2^{x_2} p_3^{x_3} I(x_i \text{ non-negative, } x_1 + x_2 + x_3 = n)$ where p_1 , p_2 and p_3 are fixed positive numbers with $p_1 + p_2 + p_3 = 1$. Then the correlation coefficient between X_1 and X_2 is Answer В. -p₁p₂ C. -[{ p_1p_2 } / {(1 - p_1)(1 - p_2)}]^{1/2} D. -{p₁p₂} / {(1 - p₁)(1 - p₂)} Correct **Correct Feedback Incorrect Feedback** Incorrect Add Question Here **Multiple Choice** 1 points Ouestion 4 Modify Remove Question Suppose X has probability density $f(x) = (a + 1)(1 - x)^a I(0 < x < 1)$, for some a > 0. The probability density function of $Y = -\log(1 - X)$ is Answer A. $g(y) = a \exp(-ay) I(y > 0)$ B. $g(y) = (a + 1) \exp\{-(a + 1)y\} | (y > 0)$ C. $g(y) = a^2 y \exp(-ay) I(y > 0)$ D. g(y) = a (1 - y)^{a - 1} l(0 < y < 1) **Correct Feedback** Correct Incorrect Feedback Incorrect Add Question Here Question 5 + **Multiple Choice** 1 points Remove Modify **Question** Suppose X ~ Po(m) for some m > 0. If Y = exp(t X) for a t > 0, then E[Y] equals Answer A. exp(m exp(t)) B. exp(tm) C. exp(m exp(t) - m)D. exp(tm - m)Add Question Here **Ouestion 6** + **Multiple Choice** 1 points Modify Remove Question Suppose X₁, X₂, ..., X₁₀₀ are independent Be(2, 3) random variables. Then P(X₁ + X₂ + ... X₁₀₀ < 43) approximately equals Answer A. 0.854 B. 0.682 C. 0.975 D. 0.933 Add Question Here

https://courses.duke.edu/webapps/portal/frameset.jsp?tab_id=_2_1&ur...ard%2fexecute%2flauncher%3ftype%3dCourse%26id%3d_100094_1%26url%3d Page 2 of 3

Question 7	Multiple Choice	1 points	Modify Remove		
	Question Suppose $X_1, X_2,, X_n$ are independent random variables with a common distribution function $F(x)$. Let $Fn(x)$ denote the empirical distribution function: $F_n(x) = \{I(X_1 \le x) + I(X_2 \le x) + + I(X_n \le x)\} / n.$				
	Then for any x, $P(F_n(x) \le F(x) + n^{-1/2})$ is approximately				
	Answer	 Α. Φ(1) Β. Φ(1 / n) C. Φ(n^{1/2}) D. Φ(2) 			
			Add Question Here		
Question 8	Multiple Choice	1 points	Modify Remove		
	Question Let $X \sim Po(n)$ and $Y \mid (X = x) \sim Bin(x, p)$ for every non-negative integer x. Here n is a positive integer and p is a number between 0 and 1. The distribution of Y is				
	Answer	 A. Po(np) B. Bin(n, p) C. Geo(pn / (1 + n)) D. Geo(pn / (1 + pn)) 			
			Add Question Here		
Question 9	Multiple Choice	1 points	Modify Remove		
-	Question Suppose X and Y are independent $Ex(1)$ random variables. Then $(X - Y)/(X + Y)$ and X + Y are				
	Answer	A. Negatively correlatedB. Uncorrelated but dependentC. IndependentD. Positively correlated			
			Add Question Here		
Question 10 🛟	Multiple Choice	1 points	Modify Remove		
	Question Suppose $X_1, X_2,, X_n$ are independent Unif(0, a) random variables for some fixed a > 0. Then the probability density function g(z) of Z = max($X_1, X_2,, X_n$) - min($X_1, X_2,, X_n$) is given by				
	Answer A	. g(z) = (n - 1) z ⁿ⁻² l(0 < z < a) / a ⁿ⁻¹			
	В	. g(z) = n(n - 1)z ⁿ⁻² l(0 < z < a) / a ⁿ⁻¹			
		. $g(z) = n(n - 1)(a - z)z^{n-2} I(0 < z < a) / a^n$			
	D	g(z) = I(0 < z < a) / a			
			Add Question Here		
			OK)		

1/19/11 6:11 PM