Problem 1a.) Following the hint, we solve for λ and get

$$0 = -2(z'z)(\beta - \hat{\beta}) + a\lambda$$

$$0 = -2a'(z'z)^{-1}(z'z)(\beta - \hat{\beta}) + a'(z'z)^{-1}a\lambda$$

$$\lambda = 2(a'(z'z)^{-1}a)^{-1}(a'\beta - a'\hat{\beta})$$

$$\tilde{\lambda} = 2(a'(z'z)^{-1}a)^{-1}(\eta - \hat{\eta})$$

using parital derivative

wrt λ .

Now plug this in and solve for β .

$$0 = -2(z'z)(\beta - \hat{\beta}) + 2a(a'(z'z)^{-1}a)^{-1}(\eta - \hat{\eta})$$

$$(\beta - \hat{\beta}) = (z'z)^{-1}a(a'(z'z)^{-1}a)^{-1}(\eta - \hat{\eta})$$

$$\tilde{\beta} = (z'z)^{-1}a(a'(z'z)^{-1}a)^{-1}(\eta - \hat{\eta}) + \hat{\beta}.$$

Because of how we set up the langrage function, $\tilde{\beta}$ gives us the value of β that maximizes $g(\beta)$, subject to the constraint that $a'\beta = \eta$. If we plug $\tilde{\beta}$ into $g(\beta)$, we will get $h(\eta)$. So,

$$\begin{split} h(\eta) &= g(\tilde{\beta}) \\ &= \left((z'z)^{-1} a(a'(z'z)^{-1}a)^{-1} (\eta - \hat{\eta}) \right)^T (z'z) \left((z'z)^{-1} a(a'(z'z)^{-1}a)^{-1} (\eta - \hat{\eta}) \right) \\ &= \left((\eta - \hat{\eta})^T (a'(z'z)^{-1}a)^{-1} a'(z'z)^{-1} \right) (z'z) \left((z'z)^{-1} a(a'(z'z)^{-1}a)^{-1} (\eta - \hat{\eta}) \right) \\ &= (\eta - \hat{\eta})^T (a'(z'z)^{-1}a)^{-1} (a'(z'z)^{-1}a) (a'(z'z)^{-1}a)^{-1} (\eta - \hat{\eta}) \\ &= (\eta - \hat{\eta})^T (a'(z'z)^{-1}a)^{-1} (\eta - \hat{\eta}) \end{split}$$

as desired.

Problem 1b) $l^*(\eta)$ is defined as the maximum value of $-f(-g(\beta))$ subject to the constraint that $a'\beta = \eta$. Part a. proves that $h(\eta)$ is the value of $g(\beta)$ maximized under that constraint. So

$$\begin{split} h(\eta) \text{ is } max(g(\beta)) \text{ given } a'\beta &= \eta, \\ \Rightarrow -h(\eta) \text{ is } min(-g(\beta)) \text{ given } a'\beta &= \eta, \\ \Rightarrow f(-h(\eta)) \text{ is } min(f(-g(\beta))) \text{ given } a'\beta &= \eta \text{ because f is monotonic,} \\ \Rightarrow -f(-h(\eta)) \text{ is } max(-f(-g(\beta))) \text{ given } a'\beta &= \eta, \end{split}$$

as desired.

Problem 2.) We are given in the question that for the hypothesis test $H_0: a'\beta \leq \eta_0$, we can define our rejection region as $\{\hat{\beta} : \eta_0 \leq a'\hat{\beta} - cs/\sqrt{n_a} \text{ for some fixed cutoff } c. We must show the size is <math>1 - F_{n-p}(c)$, where $F_{\nu}(x)$ is the cdf function of a t-distribution with ν df evaluated at x. The size of a test is defined as,

$$p(\text{Reject } H_0|H_0) = p(\eta_0 \le a'\hat{\beta} - cs/\sqrt{n_a}|H_0)$$
$$= p(\eta_0 - a'\beta \le a'\hat{\beta} - a'\beta - cs/\sqrt{n_a}|H_0)$$
$$= p(\frac{\eta_0 - a'\beta}{s/\sqrt{n_a}} + c \le \frac{a'\hat{\beta} - a'\beta}{s/\sqrt{n_a}}|H_0).$$

In the notes, it was shown that $\frac{a'\hat{\beta}-a'\beta}{s/\sqrt{n_a}} \sim t_{n-p}$. Let $T \sim t_{n-p}$, then

$$= p(\frac{\eta_0 - a'\beta}{s/\sqrt{n_a}} + c \le T|H_0)$$

Note that $\frac{\eta_0 - a'\beta}{s/\sqrt{n_a}}$ is a decreasing function in $a'\beta$, making $p(\frac{\eta_0 - a'\beta}{s/\sqrt{n_a}} + c \leq T)$ increasing in $a'\beta$. Since H_0 is assumed, the largest $a'\beta$ can be is η_0 . Therefore,

$$\leq p(\frac{\eta_0 - \eta_0}{s/\sqrt{n_a}} + c \leq T)$$
$$= p(c \leq T)$$
$$= 1 - F_{n-p}(c)$$

as desired.

Problem 3a)

•
$$z'z = \begin{bmatrix} n_1 & 0 \\ 0 & n_2 \end{bmatrix}$$

• $\hat{\beta} = (\hat{u}, \hat{v})^T$
• $s^2 = \frac{(n_1 - 1)s_u^2 + (n_2 - 1)s_v^2}{n_1 + n_2 - 2}$

Problem 3b) Using the fact given in the notes that $\frac{a'\hat{\beta}-a'\beta}{s/\sqrt{n_a}} \sim t_{n-p}$, we can see that

$$p(t_{n-p,\frac{\alpha}{2}} \le \frac{a'\hat{\beta} - a'\beta}{s/\sqrt{n_a}} \le t_{n-p,1-\frac{\alpha}{2}}) = 1 - \alpha$$

where $t_{n-p,\alpha}$ is the inverse CDF function for a t_{n-p} evaluated at α . Let $t^* = t_{n-p,1-\frac{\alpha}{2}}$. Doing some algebraic manipulations, we get

$$p(a'\hat{\beta} - t^* \frac{s}{\sqrt{n_a}} \le a'\beta \le a'\hat{\beta} + t^* \frac{s}{\sqrt{n_a}}) = 1 - \alpha.$$

If we let a' = (1, -1) and remember that $n_a = 1/a'(z'z)^{-1}a$, then we get

$$p(\bar{u} - \bar{v} - t^* \sqrt{\left(\frac{(n_1 - 1)s_u^2 + (n_2 - 1)s_v^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$\leq \mu_1 - \mu_2 \leq \bar{u} - \bar{v} + t^* \sqrt{\left(\frac{(n_1 - 1)s_u^2 + (n_2 - 1)s_v^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = 1 - \alpha.$$

Which means by definition that the interval $\bar{u} - \bar{v} \pm t^* \sqrt{\left(\frac{(n_1-1)s_u^2 + (n_2-1)s_v^2}{n_1+n_2-2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ gives a 95% CI for $\mu_1 - \mu_2$.

Problem 3c) We can easily construct a size α test for $H_0: \mu_1 - \mu_2 = 0$ by rejecting H_0 if the confidence interval in part b does not contain 0. The p-value will be the size α that gives us 0 being exactly on the boundary of the confidence interval. This is because a size any larger will reject and a size as small or any smaller will fail to reject. From our data, we get the $(1 - \alpha)$ CI to be $(19 \pm t^* * 10.05)$. We need to find the t^* st:

$$0 = 19 - t^* * 10.05$$

$$t^* = 1.89$$

$$1 - \frac{\alpha}{2} = F_{17}(1.89)$$

$$1 - \frac{\alpha}{2} = 0.962$$

$$\alpha = 0.076$$

which means that our p-value is 0.076.

Problem 3d) Using the test from question 2., we need to find the size α that puts $\eta_0 = 0$ on the boundary of the rejection region. To do this, we need c st.

$$0 = a'\hat{\beta} - c * s/\sqrt{n_a}$$
$$c = \frac{a'\hat{\beta}}{s/\sqrt{n_a}}$$
$$c = \frac{19}{10.05}$$
$$c = 1.89.$$

Since we know the size of the test from 2.) as a function of c, we can find the size that gives that c = 1.96:

$$\alpha = 1 - F_{n-p}(1.89)$$

 $\alpha = 1 - 0.962$
 $\alpha = 0.038$

so our p=value is 0.038. Note, since our calculation in the two tailed boiled down to $1 - F(c) = \frac{\alpha}{2}$ and for the one tailed it was $1 - F(c) = \alpha$, the one tailed p-value will always be 1/2 of the two tailed p-value.

Problem 4a) From the notes, we know that $\hat{\beta}$ is approximately $N(\beta, I_x^{-1})$, which means $\frac{\hat{\beta}-\beta}{\sqrt{I_x^{-1}}} \sim N(0,1)$. Using the same logic from 3b), a 95% CI can be found using $\hat{\beta} \pm 1.96 * \sqrt{I_x^{-1}}$. Using numbers given, this is $1.006264 \pm 1.96 * \sqrt{(1/752132.7)}$ which gives the interval (1.004, 1.00852).

Problem 4b) Using the same logic as 3c) (except the pivotal quantity is normal instead of t), the p-value is:

$$p = 2 * (1 - \Phi(\frac{\hat{\beta} - 1}{\sqrt{I_x^{-1}}}))$$
$$= 2 * (1 - \Phi(5.43)) = 5.6 * 10^{-8}$$

In identically parallel logic to question 3d), the p-value in the one-sided case here will be 1/2 the 2-sided case. This means the one-sided p-value is 2.8×10^{-8} .

Problem 4c) From the notes, we have $a'\hat{\theta}$ is approximately $N(a'\theta, a'I_x^{-1}a)$. Since $\theta =$ $(\alpha, \beta)^T$, if we use a' = (0, 1), then we get $\hat{\beta}$ is approximately $N(\beta, a' I_x^{-1} a)$. Using this, I can make the pivotal quantity

$$\frac{1.006264 - 1}{0.001151243} = 5.441077$$

Note in R, if you are trying to get the inverse of a matrix, you cannot use X^{-1} , which gives element-wise inverses. In simple cases like this, you can use the command SOLVE.

The p-value is then $2(1 - \Phi(5.44)) = 5.3 * 10^{-8}$, which is very close to the profile likelihood approximation in part b. The p-value for the one-sided test is $2.65 * 10^{-8}$, again very close to the approximation in part b.

Problem 5a) The coverage of a confidence interval is defined as $p(\theta_0 \in CI | \theta = \theta_0)$. Recall from the last homework we found

- $A_{1/2}(x=0) = \{0\}$
- $A_{1/2}(x=1) = \{0,1\}$
- $A_{1/2}(x=2) = \{1,2\}$
- $A_{1/2}(x=3) = \{3\}$

So the idea is for each different θ_0 , we need to find the values of x that put θ_0 in $A_{1/2}$, and then find the probability that x is any one of those values given $\theta = \theta_0$

•
$$\gamma(\theta = 0, A_{1/2}) = P(0 \in A_{1/2}|\theta = 0) = P(x = 0|\theta = 0) + P(x = 1|\theta = 0) = 7/10$$

- $\gamma(\theta = 1, A_{1/2}) = P(1 \in A_{1/2}|\theta = 1) = P(x = 1|\theta = 1) + P(x = 2|\theta = 1) = 5/6$ $\gamma(\theta = 2, A_{1/2}) = P(2 \in A_{1/2}|\theta = 2) = P(x = 2|\theta = 2) = 2/3$

•
$$\gamma(\theta = 3, A_{1/2}) = P(3 \in A_{1/2}|\theta = 3) = P(x = 3|\theta = 3) = 1$$

Problem 5b) The confidence coefficient is $inf_{\theta}\gamma(\theta, A_{1/2}) = 2/3$.

Problem 6a.) To do this, we need to find the coverage of A_k for any specific θ_0 . Using what we found in HW1, we have

$$P(\theta_0 \in A_k | \theta = \theta_0) = P(\frac{1}{\theta_0^n} 1_{\theta_0 > max(x_i)} \ge k \frac{1}{max(x_i)^n} | \theta = \theta_0)$$
$$= P((\frac{1}{k})^{1/n} max(x_i) \ge \theta_0 \ge max(x_i) | \theta = \theta_0)$$

We know $P(\theta_0 \ge max(x_i)|\theta = \theta_0) = 1$, so this condition can be dropped from the probability statement.

$$= P((\frac{1}{k})^{1/n} max(x_i) \ge \theta_0 | \theta = \theta_0)$$

= $P(max(x_i) \ge k^{1/n} \theta_0 | \theta = \theta_0)$
= $1 - P(max(x_i) \le k^{1/n} \theta_0 | \theta = \theta_0)$
= $1 - P(x_1, ..., x_n \le k^{1/n} \theta_0 | \theta = \theta_0)$ since iid
= $1 - P(x_1 \le k^{1/n} \theta_0 | \theta = \theta_0)^n$ since iid
= $1 - (\frac{k^{1/n} \theta_0}{\theta_0})^n$
= $1 - k.$

So the coverage of the set does not depend on the value of θ , which means the confidence coefficient is 1 - k.

Problem 6b) Using part a., we know $A_{0.05}$ will have coverage 1 - 0.05 = 0.95. $A_{0.05}$ for this data was found in HW1, and was $(max(x_i), (1/k)^{1/n}max(x_i)) = (19.6, 26.45)$.

Problem 6c) No matter what α is, the left side of the interval will always be at 19.6. So we must find the value of α that puts $\theta = 30$ on the right boundary. Note, using part a. we can say $\alpha = k$. Thus, we need

$$30 = (1/k)^{1/n} max(x_i)$$

$$30 = (1/k)^{(1/10)} 19.6$$

$$k = (\frac{19.6}{30})^{10}$$

$$k = 0.014.$$

Problem 6d) Yes, this is the p-value for $H_0 = 30$ for this data. Note that since we are constructing a test based on a confidence interval, the rejection region is defined as the set of values of the test statistic for which $\theta = 30$ is not in A_{α} . The p-value is defined as the size p for which if $\alpha > p$, we would reject, but if $\alpha \le p$, we would fail to reject. In this case, decreasing α only makes the right boundary of A_{α} larger. Since $\alpha = 0.014$ puts $\theta = 30$ directly on the right boundary, if $\alpha > 0.014$, then the right boundary for A_{α} would be less than 30, which means that $\theta = 30$ would not be in A_{α} and we would reject $H_0: \theta = 30$. But if $\alpha \le 0.014$, then the right boundary of A_{α} would be larger than 30, meaning $30 \in A_{\alpha}$ and would would fail to reject H_0 .