
Problem 1a.) Following the hint, we solve for λ and get

0 = −2(z′z)(β − β̂) + aλ

0 = −2a′(z′z)−1(z′z)(β − β̂) + a′(z′z)−1aλ

λ = 2(a′(z′z)−1a)−1(a′β − a′β̂)

λ̃ = 2(a′(z′z)−1a)−1(η − η̂) using parital derivative wrt λ.

Now plug this in and solve for β.

0 = −2(z′z)(β − β̂) + 2a(a′(z′z)−1a)−1(η − η̂)

(β − β̂) = (z′z)−1a(a′(z′z)−1a)−1(η − η̂)

β̃ = (z′z)−1a(a′(z′z)−1a)−1(η − η̂) + β̂.

Because of how we set up the langrage function, β̃ gives us the value of β that maximizes
g(β), subject to the constraint that a′β = η. If we plug β̃ into g(β), we will get h(η). So,

h(η) = g(β̃)

=
(
(z′z)−1a(a′(z′z)−1a)−1(η − η̂)

)T
(z′z)

(
(z′z)−1a(a′(z′z)−1a)−1(η − η̂)

)
=

(
(η − η̂)T (a′(z′z)−1a)−1a′(z′z)−1

)
(z′z)

(
(z′z)−1a(a′(z′z)−1a)−1(η − η̂)

)
= (η − η̂)T (a′(z′z)−1a)−1(a′(z′z)−1a)(a′(z′z)−1a)−1(η − η̂)

= (η − η̂)T (a′(z′z)−1a)−1(η − η̂)

as desired.

Problem 1b) l∗(η) is defined as the maximum value of −f(−g(β)) subject to the con-
straint that a′β = η. Part a. proves that h(η) is the value of g(β) maximized under that
constraint. So

h(η) is max(g(β)) given a′β = η,

⇒ −h(η) is min(−g(β)) given a′β = η,

⇒ f(−h(η)) is min(f(−g(β))) given a′β = η because f is monotonic,

⇒ −f(−h(η)) is max(−f(−g(β))) given a′β = η,

as desired.

Problem 2.) We are given in the question that for the hypothesis test H0 : a′β ≤ η0, we

can define our rejection region as {β̂ : η0 ≤ a′β̂ − cs/
√

na for some fixed cutoff c. We must
show the size is 1 − Fn−p(c), where Fν(x) is the cdf function of a t-distribution with ν df
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evaluated at x. The size of a test is defined as,

p(Reject H0|H0) = p(η0 ≤ a′β̂ − cs/
√

na|H0)

= p(η0 − a′β ≤ a′β̂ − a′β − cs/
√

na|H0)

= p(
η0 − a′β

s/
√

na

+ c ≤ a′β̂ − a′β

s/
√

na

|H0).

In the notes, it was shown that a′β̂−a′β
s/
√

na
∼ tn−p. Let T ∼ tn−p, then

= p(
η0 − a′β

s/
√

na

+ c ≤ T |H0)

Note that η0−a′β
s/
√

na
is a decreasing function in a′β, making p(η0−a′β

s/
√

na
+ c ≤ T ) increasing in

a′β. Since H0 is assumed, the largest a′β can be is η0. Therefore,

≤ p(
η0 − η0

s/
√

na

+ c ≤ T )

= p(c ≤ T )

= 1− Fn−p(c)

as desired.

Problem 3a)

• z′z =

[
n1 0
0 n2

]
• β̂ = (û, v̂)T

• s2 = (n1−1)s2
u+(n2−1)s2

v

n1+n2−2

Problem 3b) Using the fact given in the notes that a′β̂−a′β
s/
√

na
∼ tn−p, we can see that

p(tn−p, α
2
≤ a′β̂ − a′β

s/
√

na

≤ tn−p,1−α
2
) = 1− α

where tn−p,α is the inverse CDF function for a tn−p evaluated at α. Let t∗ = tn−p,1−α
2
.

Doing some algebraic manipulations, we get

p(a′β̂ − t∗
s

√
na

≤ a′β ≤ a′β̂ + t∗
s

√
na

) = 1− α.

If we let a′ = (1,−1) and remember that na = 1/a′(z′z)−1a, then we get
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p(ū− v̄−t∗

√
(
(n1 − 1)s2

u + (n2 − 1)s2
v

n1 + n2 − 2
)(

1

n1

+
1

n2

)

≤ µ1 − µ2 ≤ ū− v̄ + t∗

√
(
(n1 − 1)s2

u + (n2 − 1)s2
v

n1 + n2 − 2
)(

1

n1

+
1

n2

)) = 1− α.

Which means by definition that the interval ū− v̄ ± t∗
√

( (n1−1)s2
u+(n2−1)s2

v

n1+n2−2
)( 1

n1
+ 1

n2
) gives

a 95% CI for µ1 − µ2.

Problem 3c) We can easily construct a size α test for H0 : µ1 − µ2 = 0 by rejecting H0

if the confidence interval in part b does not contain 0. The p-value will be the size α that
gives us 0 being exactly on the boundary of the confidence interval. This is because a size
any larger will reject and a size as small or any smaller will fail to reject. From our data, we
get the (1− α)CI to be (19± t∗ ∗ 10.05). We need to find the t∗ st:

0 = 19− t∗ ∗ 10.05

t∗ = 1.89

1− α

2
= F17(1.89)

1− α

2
= 0.962

α = 0.076

which means that our p-value is 0.076.

Problem 3d) Using the test from question 2., we need to find the size α that puts η0 = 0
on the boundary of the rejection region. To do this, we need c st.

0 = a′β̂ − c ∗ s/
√

na

c =
a′β̂

s/
√

na

c =
19

10.05
c = 1.89.

Since we know the size of the test from 2.) as a function of c, we can find the size that
gives that c = 1.96:

α = 1− Fn−p(1.89)

α = 1− 0.962

α = 0.038
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so our p=value is 0.038. Note, since our calculation in the two tailed boiled down to
1− F (c) = α

2
and for the one tailed it was 1− F (c) = α, the one tailed p-value will always

be 1/2 of the two tailed p-value.

Problem 4a) From the notes, we know that β̂ is approximately N(β, I−1
x ), which means

β̂−β√
I−1
x

∼ N(0, 1). Using the same logic from 3b), a 95% CI can be found using β̂±1.96∗
√

I−1
x .

Using numbers given, this is 1.006264 ± 1.96 ∗
√

(1/752132.7) which gives the interval
(1.004, 1.00852).

Problem 4b) Using the same logic as 3c) (except the pivotal quantity is normal instead
of t), the p-value is:

p = 2 ∗ (1− Φ(
β̂ − 1√

I−1
x

))

= 2 ∗ (1− Φ(5.43)) = 5.6 ∗ 10−8

In identically parallel logic to question 3d), the p-value in the one-sided case here will be
1/2 the 2-sided case. This means the one-sided p-value is 2.8 ∗ 10−8.

Problem 4c) From the notes, we have a′θ̂ is approximately N(a′θ, a′I−1
x a). Since θ =

(α, β)T , if we use a′ = (0, 1), then we get β̂ is approximately N(β, a′I−1
x a). Using this, I can

make the pivotal quantity

1.006264− 1

0.001151243
= 5.441077

Note in R, if you are trying to get the inverse of a matrix, you cannot use X−1, which
gives element-wise inverses. In simple cases like this, you can use the command SOLVE.

The p-value is then 2(1−Φ(5.44)) = 5.3∗10−8, which is very close to the profile likelihood
approximation in part b. The p-value for the one-sided test is 2.65 ∗ 10−8, again very close
to the approximation in part b.

Problem 5a) The coverage of a confidence interval is defined as p(θ0 ∈ CI|θ = θ0). Recall
from the last homework we found

• A1/2(x = 0) = {0}
• A1/2(x = 1) = {0, 1}
• A1/2(x = 2) = {1, 2}
• A1/2(x = 3) = {3}

So the idea is for each different θ0, we need to find the values of x that put θ0 in A1/2, and
then find the probability that x is any one of those values given θ = θ0

• γ(θ = 0, A1/2) = P (0 ∈ A1/2|θ = 0) = P (x = 0|θ = 0) + P (x = 1|θ = 0) = 7/10
• γ(θ = 1, A1/2) = P (1 ∈ A1/2|θ = 1) = P (x = 1|θ = 1) + P (x = 2|θ = 1) = 5/6
• γ(θ = 2, A1/2) = P (2 ∈ A1/2|θ = 2) = P (x = 2|θ = 2) = 2/3
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• γ(θ = 3, A1/2) = P (3 ∈ A1/2|θ = 3) = P (x = 3|θ = 3) = 1

Problem 5b) The confidence coefficient is infθγ(θ, A1/2) = 2/3.

Problem 6a.) To do this, we need to find the coverage of Ak for any specific θ0. Using
what we found in HW1, we have

P (θ0 ∈ Ak|θ = θ0) = P (
1

θn
0

1θ0>max(xi) ≥ k
1

max(xi)n
|θ = θ0)

= P ((
1

k
)1/nmax(xi) ≥ θ0 ≥ max(xi)|θ = θ0)

We know P (θ0 ≥ max(xi)|θ = θ0) = 1, so this condition can be dropped from the
probability statement.

= P ((
1

k
)1/nmax(xi) ≥ θ0|θ = θ0)

= P (max(xi) ≥ k1/nθ0|θ = θ0)

= 1− P (max(xi) ≤ k1/nθ0|θ = θ0)

= 1− P (x1, ..., xn ≤ k1/nθ0|θ = θ0)

= 1−
∏

P (xi ≤ k1/nθ0|θ = θ0) since iid

= 1− P (x1 ≤ k1/nθ0|θ = θ0)
n since iid

= 1− (
k1/nθ0

θ0

)n

= 1− k.

So the coverage of the set does not depend on the value of θ, which means the confidence
coefficient is 1− k.

Problem 6b) Using part a., we know A0.05 will have coverage 1− 0.05 = 0.95. A0.05 for
this data was found in HW1, and was (max(xi), (1/k)1/nmax(xi)) = (19.6, 26.45).

Problem 6c) No matter what α is, the left side of the interval will always be at 19.6. So
we must find the value of α that puts θ = 30 on the right boundary. Note, using part a. we
can say α = k. Thus, we need
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30 = (1/k)1/nmax(xi)

30 = (1/k)(1/10)19.6

k = (
19.6

30
)10

k = 0.014.

Problem 6d) Yes, this is the p-value for H0 = 30 for this data. Note that since we are
constructing a test based on a confidence interval, the rejection region is defined as the set
of values of the test statistic for which θ = 30 is not in Aα. The p-value is defined as the
size p for which if α > p, we would reject, but if α ≤ p, we would fail to reject. In this
case, decreasing α only makes the right boundary of Aα larger. Since α = 0.014 puts θ = 30
directly on the right boundary, if α > 0.014, then the right boundary for Aα would be less
than 30, which means that θ = 30 would not be in Aα and we would reject H0 : θ = 30. But
if α ≤ 0.014, then the right boundary of Aα would be larger than 30, meaning 30 ∈ Aα and
would would fail to reject H0.
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