

RStudio Users Guide

to accompany

Statistics: Unlocking the Power of Data
by Lock, Lock, Lock, Lock, and Lock

R Users Guide - 2 Statistics: Unlocking the Power of Data

Using This Manual

A “Quick Reference Guide” at the end of this manual summarizes all the commands you will need
to know for this course by chapter.

More detailed information and examples are given for each chapter. If this is your first exposure to R,
we recommend reading through the detailed chapter descriptions as you come to each chapter in the
book.

Commands are given using color coding. Code in red represents commands and punctuation that
always need to be entered exactly as is. Code in blue represents names that will change depending
on the context of the problem (such as dataset names and variable names). Text in green following #
is either optional code or comments. This often includes optional arguments that you may want to
include with a function, but do not always need. In R anything following a # is read as a comment,
and is not actually evaluated

For example, the command mean is used to compute the mean of a set of numbers. The information
for this command is given in this manual as

mean(y)

Whenever you are computing a mean, you always need to type the parts in red, mean(). Whatever
you type inside the parentheses (the code in blue) will depend on what you have called the set of
numbers you want to compute the mean of, so if you want to calculate the mean body mass index for
data stored in a variable called BMI , you would type mean(BMI).

Text after # represents a comment - this is only for you, and R will ignore this code if it is typed.

IMPORTANT: Many commands in this manual require installation of the Lock5 package, which
includes all datasets from the textbook, as well as many commands designed to make R coding easier
for introductory students. This package only needs to be installed once, and can be installed with the
following command:

source("/shared/kari.lock.morgan@gmail.com/Lock5.R")

R Users Guide - 3 Statistics: Unlocking the Power of Data

About R and RStudio

R is a freely available environment for statistical computing. R works with a command-line interface,
meaning you type in commands telling R what to do. RStudio is a convenient interface for using R,
which can either be accessed online (http://beta.rstudio.org/) or downloaded to your computer. For
more information about RStudio, go to http://www.rstudio.com/.

The bottom left panel is the console. Here you can type code directly to be sent to R.

The top left is called the RScript, and is basically a text editor that color codes for you and sends
commands easily to R. Using a separate R script is nice because you can save only the code that
works, making it easy to rerun and edit in the future, as opposed to the R console in which you would
also have to save all your mistakes and all the output. We recommend always saving your R Scripts so
you have the commands easily accessible and editable for future use. Code can be sent from the
RScript to the console either by highlighting and clicking this icon: or else by typing
CTRL+ENTER at the end of the line. Different RScripts can be saved in different tabs.

The top right is your Workspace and is where you will see objects (such as datasets and variables).
Clicking on the name of a dataset in your workspace will bring up a spreadsheet of the data.

The bottom right serves many purposes. It is where plots will be appear, where you manage your files
(including importing files from your computer), where you install packages, and where the help
information appears. Use the tabs to toggle back and forth between these screens as needed.

R Users Guide - 4 Statistics: Unlocking the Power of Data

Getting Started with RStudio

Basic Commands

Basic Arithmetic
Addition
Subtraction
Multiplication
Division
Exponentiation

+
–
*
/
^

Other
Naming objects
Open help for a command
Creating a set of numbers

=
?
c(1, 2, 3)

Entering Commands

Commands can be entered directly into the R console (bottom left), following the > prompt, and sent to
the computer by pressing enter. For example, typing 1 + 2 and pressing enter will output the result 3:

> 1+2
[1] 3

Your entered code always follows the > prompt, and output always follows a number in square
brackets. Each command should take its own line of code, or else a line of code should be continued
with { } (see examples in Chapters 3 and 4).

It is possible to press enter before the line of code is completed, and often R will recognize this. For
example, if you were to type 1 + but then press enter before typing 2, R knows that 1+ by itself
doesn’t make any sense, so prompts for you to continue the line with a + sign. At this point you could
continue the line by pressing 2 then enter. This commonly occurs if you forget to close parentheses or
brackets. If you keep pressing enter and keep seeing a + sign rather than the regular > prompt that
allows you to type new code, and if you can’t figure out why, often the easiest option is to simply press
ESC, which will get you back to the normal > prompt and allow you to enter a new line of code.

You can also enter this code into the RScript and run it from there. Create a new RScript by File -
New - R Script. Now you can type in the R Script (top left), and then send your code to the console
either by pressing or CTRL+ENTER. Try typing 1+2 in the R Script and sending it to the console.

Capitalization and punctuation need to be exact in R, but spacing doesn’t matter. If you get errors
when entering code, you may want to check for these common mistakes:

- Did you start your line of code with a fresh prompt (>)? If not, press ESC.
- Are your capitalization and punctuation correct?
- Are all your parentheses and brackets closed? For every forward (, {, or [, make sure there is a

corresponding backwards), }, or]. When working in the RScript if you click next to (, the
corresponding) will be highlighted.

R Users Guide - 5 Statistics: Unlocking the Power of Data

The basic arithmetic commands are pretty straightforward. For example, 1 + (2*3) would return 7.
You can also name the result of any command with a name of your choosing with =. For example

x = 3*4

sets x to equal the result of 3*4, or equivalently sets x = 12. The choice of x is arbitrary - you can
name it whatever you want. If you type x into the console now you will see 12 as the output:
	

> x
[1] 12

Naming objects and arithmetic works not just with numbers, but with more complex objects like
variables. To get a little fancier, suppose you have variables called Weight (measured in pounds) and
Height (measured in inches), and want to create a new variable for body mass index, which you
decide to name BMI. You can do this with the following code:

BMI = Weight/(Height^2) * 703

If you want to create your own variable or set of numbers, you can collect numbers together into one
object with c() and the numbers separated by commas inside the parentheses. For example, to
create your own variable Weight out of the weights 125, 160, 183, and 137, you would type

Weight = c(125, 160, 183, 137)

To get more information on any built-in R commands, simply type ? followed by the command name,
and this will bring up a separate help page.

R Users Guide - 6 Statistics: Unlocking the Power of Data

Loading Data

There are several different ways you may want to get data in RStudio:

Loading Data from a Google Doc

1. From within the google spreadsheet, click File -> Publish to Web -> Start Publishing.
2. Type google.doc("key"), where key should be replaced with everything in between key=

and # in the link for the google doc.

Loading Data from the Textbook

1. Find the name of the dataset you want to access as it’s written in bold in the textbook, for
example, AllCountries, and type data(AllCountries).

Loading Data from a Spreadsheet on your Computer

1. From your spreadsheet editing program (Excel, Google Docs, etc.) save your spreadsheet as a
.csv (Comma Separated Values) file on your computer.

2. In the bottom right panel, click the Files tab, then Upload. Choose the .csv file and click OK.
3. In the top right panel, click Import Dataset, From Text File, then choose the dataset you just

uploaded. If needed adjust the options until the dataset looks correct, then click Import.

Manually Typing Data

If you survey people in your class asking for GPA, you could create a new variable called gpa (or
whatever you want to call it) by entering the values as follows:

gpa = c(2.9, 3.0, 3.6, 3.2, 3.9, 3.4, 2.3, 2.8)

Viewing Data

Once you have your dataset loaded, it should appear in your workspace (top right). Click on the name
of the dataset to view the dataset as a spreadsheet in the top left panel. Click the tabs of that panel to
get back to your RScript.

R Users Guide - 7 Statistics: Unlocking the Power of Data

Using R in Chapter 1

Loading Data
Load a dataset from a google doc1
Load a dataset from the textbook
Help for textbook datasets
Type in a variable

google.doc("key")#key: between key= and # in url
data(dataname)
?dataname
variablename = c(3.2, 3.3, 3.1)

Variables
Extract a variable from a dataset
Attach a dataset
Detach a dataset

dataname$variablename
attach(dataname)
detach(dataname)

Subsetting Data
Take a subset of a dataset

subset(dataname, condition)

Random Sample
Taking a random sample of size n
n random integers 1 to max

sample(dataname, n) #use for data or variable
sample(1:max, n)

Loading and Viewing Data

Let's load in the AllCountries data from the textbook with the following command:

data(AllCountries)

This loads the dataset, and you should see it appear in your workspace. To view the dataset, simply
click on the name of the dataset in your Workspace and a spreadsheet of the data will appear in the top
left. Scroll down to see all the cases and right to see all the variables.

If the dataset comes from the textbook, you can type ? followed by the data name to pull up
information about the data:

?AllCountries

Variables

If you want to extract a particular variable from a dataset, for example, Population, type

AllCountries$Population

If you will be doing a lot with one dataset, sometimes it gets cumbersome to always type the dataset
name and a dollar sign before each variable name. To avoid this, you can type

attach(AllCountries)

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 For	
 your	
 own	
 google	
 spreadsheet,	
 within	
 the	
 google	
 spreadsheet	
 you	
 first	
 have	
 to	
 do	
 File	
 -­‐>	
 Publish	
 to	
 Web	
 -­‐>	
 Start	

Publishing.	

R Users Guide - 8 Statistics: Unlocking the Power of Data

Now you can access variables from the AllCountries data simply by typing the variable names directly.
If you choose to use this option however, just remember to detach the dataset when you are done:

detach(AllCountries)

Subsetting a Dataset

To take a subset from a dataset, say all countries with a population greater than 1 million (units are in
millions), you can create a new dataset and use the subset command:

newdata = subset(AllCountries, Population < 1)

You could have named it anything, I just choose newdata. If you didn't attach AllCountries or already
detached it, then you need to use AllCountries$Population, not just Population.

Taking a Random Sample

You can take a random sample from either a variable or dataset with sample. Suppose we want to
take a random sample of 10 countries from the Country variable in AllCountries, we could use

sample(Country, 10)

If we want to take a random sample of 10 rows from the AllCountries dataset, we could use

sample(AllCountries, 10)

While you can sample directly from a list of cases in R, a more general way to generate a random
sample is to randomly generate n (the sample size) numbers between 1 and the number of cases you
want to sample from (max):

sample(1:max, n)

Randomized Experiment

If you want to randomize a sample into two different treatment groups for a randomized experiment,
you can take a random sample from the whole sample to be the treatment group, and the rest of the
sample would then go in the control group.

R Users Guide - 9 Statistics: Unlocking the Power of Data

Using R in Chapter 2

One Categorical (x)
Frequency table
Proportion in group A
Pie chart
Bar chart

table(x)
mean(x == "A")
pie(table(x))
barplot(table(x))

Two Categorical (x1, x2)
Two-way table
Proportions by group
Difference in proportions
Segmented bar chart
Side-by-side bar chart

table(x1, x2)
mean(x1=="A"~x2)
diffProp(x1=="A"~x2)
barplot(table(x1, x2), legend=TRUE)
barplot(table(x1,x2),legend=TRUE,beside=TRUE)

One Quantitative (y)
Mean
Median
Standard deviation
5-Number summary
Percentile
Histogram
Boxplot

mean(y)
median(y)
sd(y)
summary(y)
percentile(y, 0.05)
hist(y)
boxplot(y)

One Quantitative (y) and
One Categorical (x)
Means by group
Difference in means
Standard deviation by group
Side-by-side boxplots

mean(y ~ x)
diffMean(y ~ x)
sd(y ~ x)
boxplot(y ~ x)

Two Quantitative (y1, y2)
Scatterplot
Correlation

plot(y1, y2)
cor(y1, y2)

Labels
Add a title
Label an axis

#optional arguments for any plot:
main = "title of plot"
xlab = "x-axis label", ylab = "y-axis label"

Example – Student Survey

To illustrate these commands, we’ll explore the StudentSurvey data. We load and attach the data:

data(StudentSurvey)
attach(StudentSurvey)

Click on the dataset name in the workspace to view the data and variable names.

The following are commands we could use to explore each of the following variables or pairs of
variables. They are not the only commands we could use, but illustrate some possibilities.

R Users Guide - 10 Statistics: Unlocking the Power of Data

Award preferences (one categorical variable):

table(Award)
barplot(table(Award))

Award preferences by gender (two categorical variables):

table(Award, Gender)
barplot(table(Award, Gender), legend=TRUE)

Pulse rate (one quantitative variable):

summary(Pulse)
hist(Pulse)

Hours of exercise per week by award preference (one quantitative and one categorical variable):

mean(Pulse~Award)
boxplot(Pulse~Award)

Pulse rate and SAT score (two quantitative variables):

plot(Pulse, SAT)
cor(Pulse, SAT)

More Details for Plots

If you want to get a bit fancier, you can add axis labels and titles to your plots. This is especially
useful for including units, or if your variable names are not self-explanatory. You can specify the x-
axis label with xlab, the y-axis label with ylab, and a title for the plot with main. For example,
below would produce a labeled scatterplot of height versus weight:

plot(Height, Weight, xlab = "Height (in inches)", ylab = "Weight
(pounds)", main = "Scatterplot")

These optional labeling arguments work for any graph produced.

R Users Guide - 11 Statistics: Unlocking the Power of Data

Using R in Chapter 3

Repeat Code 1000 Times do(1000)*
Sampling Distribution for Mean do(1000)*mean(sample(y, n))
Bootstrap Distribution for Mean do(1000)*mean(sample(y, n, replace=TRUE))
Generating a Sampling
Distribution for any Statistic

do(1000)*{
 samp = sample(pop.data, n)
 statistic(samp$var1, samp$var2)
}

Manually Generating a
Bootstrap Distribution for any
Statistic

do(1000)*{
 boot.samp = sample(data, n, replace=TRUE)
 statistic(boot.samp$var1, boot.samp$var2)
}

Using a
Bootstrap Distribution

hist(boot.dist)
sd(boot.dist)
percentile(boot.dist, c(0.025, 0.975))

Generate a Bootstrap CI bootstrap.interval(var1, var2) #level = .95

To create a sampling distribution or a bootstrap distribution, we need to first draw a random sample
(with or without replacement), calculate the relevant statistic, and repeat this process many times.

As a review, we can select a random sample with the command sample(). We can then calculate
the relevant statistic on this sample, as we learned how to do in Chapter 2. The new part is doing this
process many times.

do()

do(1000)* provides a convenient way to do something 1000 (or any desired number) times. R will
repeat whatever follows the * 1000 times. If the code fits on one line then everything can be written
after the * on the same line. If the code to be done multiple times takes up multiple lines, we can use
{} as follows:

do(1000)*{
 code to be repeated
}

R Users Guide - 12 Statistics: Unlocking the Power of Data

Example: Sampling Distribution for a Mean

We have population data on the gross income for all 2011 Hollywood movies stored in the dataset
HollywoodMovies2011 under the variable name WorldGross. Suppose we want to generate a
sampling distribution for the mean gross income for samples of size 30. First, load and attach the data.

Let’s first compute one statistic for the sampling distribution. We take a random sample of 30 values
and call it samp (we could call it anything), and compute the sample mean:

samp = sample(WorldGross, 30)
mean(samp)

If preferred, we could have done this in all one line, by nesting commands:

mean(sample(WorldGross, 30))

Equivalently, we could take a random sample of 10 movies from the dataset (which is necessary for
doing a sampling distribution for more than one variable), and compute the sample mean:
	

samp = sample(HollywoodMovies2011, 30)
mean(samp$WorldGross)
	

We now repeat this process many (say 1,000) times to form the sampling distribution, with do(). There
are several options for how to do this:
	

do(1000)* mean(sample(WorldGross, 30))
	

or	

	

do(1000)*{
 samp = sample(HollywoodMovies2011, 30)
 mean(samp$WorldGross)
}
	

If you want to, you can save this sampling distribution so you can do things like visualize it or take the
standard deviation to compute the standard error:
	

samp.dist = do(1000)* mean(sample(WorldGross, 30))
hist(samp.dist)
sd(samp.dist)

R Users Guide - 13 Statistics: Unlocking the Power of Data

Example: Bootstrap Confidence Interval for a Correlation

Let’s create a bootstrap confidence interval for the correlation between time and distance for Atlanta
commuters, based on a random sample of 500 Atlanta commuters stored in the dataset
CommuteAtlanta. After loading and attaching the data, we can create one bootstrap sample of
commuters by taking a sample of size 500 with replacement from the dataset:

sample(CommuteAtlanta, 500, replace=TRUE)

To compute a bootstrap statistic, we should give this bootstrap sample a name (we’ll use boot.samp,
although you could choose a different name if you like), and then compute the relevant statistic
(correlation) on the variables taken from this bootstrap sample:

boot.samp = sample(CommuteAtlanta, 500, replace=TRUE)
cor(boot.samp$Time, boot.samp$Distance)

This gives us one bootstrap statistic. For an entire bootstrap distribution, we want to generate
thousands of bootstrap statistics! We can use do() to repeat this process 1000 times:

boot.dist = do(1000)*{
boot.samp = sample(CommuteAtlanta, 500, replace=TRUE)
cor(boot.samp$Time, boot.samp$Distance)

}

We gave this distribution a name (boot.dist), so we are able to use it. We first visualize the
distribution to make sure it is symmetric (and bell-shaped for the SE method):

hist(boot.dist)

It may be a little left-skewed, but in general doesn’t look too bad, so we proceed. We can compute the
standard error and use the standard error method for a 95% confidence interval:
	

se = sd(boot.dist)
stat = cor(CommuteAtlanta$Time, CommuteAtlanta$Distance)
stat – 2*se
stat + 2*se
	

We could also use the percentile method for a 90% confidence interval, chopping off 5% in each tail:
	

percentile(boot.dist, c(0.05, 0.95))

	
 	

R Users Guide - 14 Statistics: Unlocking the Power of Data

Example: bootstrap.interval()

If manually coding bootstrap distributions isn’t your thing, you could instead generate a bootstrap
confidence interval with the built-in command bootstrap.interval(). Based on whether you
have one or two variables and whether they are categorical or quantitative, resample automatically
guesses at which parameter you are interested in, creates a bootstrap distribution and displays it for
you, gives you the sample statistic and standard error, and gives you a confidence interval based on the
percentile method for any desired level of confidence. (Life doesn’t get much easier!)

For example, if you type have the CommuteAtlanta dataset loaded and attached, if you type

bootstrap.interval(Time)
	

	
 R	
 knows	
 that	
 Time	
 is	
 a	
 quantitative	
 variable,	
 so	
 you	
 are	
 most	
 likely	
 interested	
 in	
 a	
 mean2,	
 and	

you	
 will	
 get	
 the	
 following	
 output:	

	

> bootstrap.interval(Time)
One quantitative variable
Observed Mean: 29.11
Resampling, please wait...
SE = 0.927
95% Confidence Interval:
2.5% 97.5%
27.3639 30.9840
	

	

If	
 you	
 want	
 a	
 90%	
 confidence	
 interval	
 for	
 the	
 difference	
 in	
 mean	
 commute	
 time	
 by	
 sex:	

	

bootstrap.interval(Time, Sex, level = .90)
	

Or	
 if	
 you	
 want	
 a	
 99%	
 confidence	
 interval	
 for	
 the	
 correlation	
 between	
 time	
 and	
 distance:	

	

bootstrap.interval(Time, Distance, level=.99)

WARNING:	
 While bootstrap.interval() makes	
 generating	
 a	
 bootstrap	
 confidence	

interval	
 very	
 easy,	
 it	
 also	
 makes	
 it	
 easy	
 to	
 stop	
 thinking	
 about	
 what	
 you	
 are	
 doing.	
 	
 It	
 is	
 important	

to	
 make	
 sure	
 you	
 understand	
 the	
 process!3	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 If	
 you	
 are	
 interested	
 in	
 a	
 median	
 instead,	
 you	
 can	
 change	
 this	
 with	
 the	
 optional	
 argument	
 stat
= median,	
 although	
 this	
 bootstrap	
 distribution	
 would	
 definitely	
 not	
 be	
 smooth	
 or	
 symmetric.	

3	
 If	
 you	
 are	
 a	
 professor,	
 you	
 may	
 want	
 to	
 teach	
 bootstrap.interval()	
 only	
 after	
 you	
 are	

sure	
 the	
 students	
 understand	
 the	
 process,	
 or	
 you	
 may	
 choose	
 not	
 to	
 teach	

bootstrap.interval()	
 at	
 all,	
 to	
 encourage	
 them	
 to	
 think	
 through	
 the	
 process	
 each	
 time.	

R Users Guide - 15 Statistics: Unlocking the Power of Data

Using R in Chapter 4

Randomization Statistic:
Shuffle one variable (x)
Proportion
Mean

shuffle(x)
coin.flips(n, p)
mean(sample(y + shift, n, replace=TRUE))

Randomization Distribution do(1000)*one randomization statistic
Finding p-value from a
randomization distribution:
Lower-tailed test
Upper-tailed test
Two-tailed test

#rand.dist = randomization distribution
#obs.stat = observed sample statistic
tail.p(rand.dist, obs.stat, tail="lower")
tail.p(rand.dist, obs.stat, tail="upper")
tail.p(rand.dist, obs.stat, tail="two")

Randomization Test randomization.test(y, x) #null = for one var
#tail="lower", "upper", "two"

Example: Difference in Means

In many hypothesis tests, we generate a randomization sample by shuffling one of the two variables
(the explanatory variable if the data comes from a randomized experiment), which is equivalent to
rerandomizing the cases to treatment groups. For example, let's do a hypothesis test to see if caffeine
increases finger tapping rate, based on Data 4.6.

We load and attach the dataset CaffeineTaps, and see that the explanatory variable is Group and the
response variable is Taps. We first calculate the sample statistic, the observed difference in means:

diffMean(Tap~shuffle(Group))

We now want to see what kinds of statistics we would observe, just by random chance, if the null
hypothesis were true, or equivalently, if the explanatory variable was randomly shuffled. To randomly
shuffle the explanatory variable, we use

shuffle(Group)

We can then calculate the difference in mean tap rate for the shuffled groups:

diffMean(Tap~shuffle(Group))

Now that we know how to calculate one randomization statistic, and know how to use do to repeat
something many times (see Chapter 3), creating a randomization distribution is easy!

rand.dist = do(1000)*diffMean(Tap~shuffle(Group))

To compute a p-value from this randomization distribution, we want the proportion of randomization
statistics above the observed statistic (because we want to see if caffeine increases tap rate):

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

R Users Guide - 16 Statistics: Unlocking the Power of Data

obs.stat = diffMean(Tap~Group)
tail.p(rand.dist, obs.stat, tail="upper")

If we instead wanted a difference in proportions or correlation, we would calculate the statistic as
always, just using the shuffled group instead of the actual group variable.

We also use the command randomization.test, which will do the randomization test for us.
randomization.test creates the randomization distribution by shuffling the second variable if
two variables, or shifting a bootstrap distribution to match the null if one variable. Thus we could
conduct the same randomization test as above with

randomization.test(Tap, Group, tail="upper")

Test for a Single Variable

Doing tests for a single variable is a bit different, because there is not an explanatory variable to
shuffle. Here are two examples, one for a proportion, and one for a mean.

1. Dogs and Owners. 16 out of 25 dogs were correctly paired with their owners, is this evidence
that the true proportion is greater than 0.5? In R, you can simulate flipping 25 coins and
counting the number of heads with

coin.flips(25, 0.5)

(for null proportions other than 0.5, just change the 0.5 above accordingly). Therefore, we can
create a randomization distribution with

rand.dist = do(1000)*coin.flips(25, .5)

The alternative is upper-tailed, so we compute a p-value as the proportion above 16/25:

tail.p(rand.dist,16/25, tail="upper")

2. Body Temperature. Is a sample mean of 98.26°F based on 50 people evidence that the true
average body temperature in the population differs from 98.6°F? To answer this we create a
randomization distribution by bootstrapping from a sample that has been shifted to make the
null true, so we add 0.34 to each value. We can create the corresponding randomization
distribution with

rand.dist = do(1000)*mean(sample(BodyTemp+0.34, 50,
replace=TRUE))

In this case we have a two-sided Ha:

tail.p(rand.dist, 98.26, tail="two")

R Users Guide - 17 Statistics: Unlocking the Power of Data

Using R in Chapter 5

Normal Distribution:
Find a percentile for N(0,1)

Find the area beyond z on N(0,1)
Find percentiles or area for any normal

#tail="lower", tail="upper", tail="two"
percentile("normal", 0.10)
tail.p("normal", z, tail="lower")
#add the optional arguments mean=, sd=

Example 1: Find z* for a 90% confidence interval.

We want the middle 90% of the standard normal distribution, so want 5% in each tail, so need to find
the 5th and 95th percentiles:

percentile("normal", 0.05)
percentile("normal", 0.95)

Example 2: Find a p-value when z = 1.5, and the alternative is upper-tailed.

Because Ha is upper tailed, we find the area in the standard normal distribution above 1.5:

tail.p("normal", z, tail="upper")

Example 3: Find the area below 60 for a normal distribution with mean 75 and
standard deviation 12.

tail.p("normal", 60, mean=75, sd=12, tail="lower")

R Users Guide - 18 Statistics: Unlocking the Power of Data

Using R in Chapter 6

Normal Distribution:
Find a percentile for N(0,1)

Find the area beyond z on
N(0,1)

percentile("normal", 0.10)
tail.p("normal", z, tail="lower")

t-Distribution:
Find a percentile for t

Find the area beyond t

percentile("t", df = 20, 0.10)
tail.p("t", df = 20, t, tail="lower")

Inference for Proportions:
Single proportion
Difference in proportions

prop.test(count, n, p0) #delete p0 for CI
prop.test(c(count1, count2), c(n1, n2))

Inference for Means:
Single mean
Difference in means

t.test(y, mu = mu0) #delete mu0 for CI
t.test(y ~ x)

Additional arguments
p-values using tail.p
p-values using prop.test or t.test
Intervals using prop.test or t.test

#tail="lower", "upper", "two"
#alternative="two.sided", "less", "greater"
#conf.level = 0.95 or confidence level

There are two ways of using R to compute confidence intervals and p-values using the normal and t-
distributions:

1. Use the formulas in the book and percentile and tail.p
2. Use prop.test and t.test on the raw data without using any formulas

The two methods should give very similar answers, but may not match exactly because prop.test
and t.test do things slightly more complicated than what you have learned (continuity correction
for proportions, and a more complicated algorithm for degrees of freedom for difference in means).

The commands prop.test and t.test give both confidence intervals and p-values. For
confidence intervals, the default level is 95%, but other levels can be specified with conf.level.
For p-values, the default is a two-tailed test, but the alternative can be changed by specifying either
alternative = "less" or alternative = "greater".

Using Option 1 directly parallels the code in Chapter 5, so we refer you to the Chapter 5 examples.
Here we just illustrate the use of prop.test and t.test.

Example 1: In a recent survey of 800 Quebec residents, 224 thought that Quebec should separate
from Canada. Give a 90% confidence interval for the proportion of Quebecers who would like Quebec
to separate from Canada.

prop.test(224, 800, conf.level=0.90)

Example 2: Test whether caffeine increases tap rate (based on CaffeineTaps data).

t.test(Tap~Group, alternative = "greater")

R Users Guide - 19 Statistics: Unlocking the Power of Data

Using R in Chapter 7

Chi-Square Distribution
Find the area above χ2

 stat

tail.p("chisquare", df = 2, stat, tail="upper")

Chi-Square Test
Goodness-of-fit

Test for association

chisq.test(table(x)) #if null probabilities not
equal, use p = c(p1, p2, p3) to specify
chisq.test(table(x1, x2))

Randomization Test
Goodness-of-fit
Test for association

chisq.test(table(x), simulate.p.value=TRUE)
chisq.test(table(x1, x2), simulate.p.value=TRUE)

Option 1: Use formula to calculate chi-square statistic and use pchisq

If we get χ2 = 3.1 and the degrees of freedom are 2, we would calculate the p-value with

percentile("chisquare", df=2, 3.1, tail="upper")

Option 2: Use chisq.test on raw data

1. Goodness of Fit. Use the data in APMultipleChoice to see if all five choices (A, B, C, D, E)
are equally likely:

chisq.test(table(Answer))

2. Test for Association. Use the data in StudentSurvey to see if type of award preference is
associated with gender:

chisq.test(table(Award, Gender))

Randomization Test

If the expected counts within any cell are too small, you should not use the chi-square distribution, but
instead do a randomization test. If you use chisq.test with small expected counts cell, R helps
you out by giving a warning message saying the chi-square approximation may be incorrect.

If the sample sizes are too small to use a chi-squared distribution, you can do a randomization test with
the optional argument simulate.p.value within the command chisq.test. This tells R to
calculate the p-value by simulating the distribution of the χ2 statistic, assuming the null is true, rather
than compare it to the theoretical chi-square distribution.

For example, for a randomization test for an association between Award and Gender:

chisq.test(table(Award, Gender), simulate.p.value=TRUE)

R Users Guide - 20 Statistics: Unlocking the Power of Data

Using R in Chapter 8

F Distribution
Find the area above F-statistic

tail.p("F", df1=3, df2=114, F, tail="upper")

Analysis of Variance summary(aov(y ~ x))
Pairwise Comparisons pairwise.t.test(y, x, p.adjust="none")

As with t-tests and chi-square tests, one option is to calculate the F-statistic by hand, and then compare
it to the F distribution using tail.p. The (much easier) option is to use R's built in analysis of
variable function, aov.

Analysis of Variance

Let's test whether the average number of ants that feed on a sandwich differs by type of filling, using
data from SandwichAnts (Data 8.1).

We can calculate the sample means in each group, visualize the data, and check the conditions for
ANOVA with

mean(Ants ~ Filling)
boxplot(Ants ~ Filling)
sd(Ants ~ Filling)
table(Filling)

In the sample, we see that the most ants came to the ham & pickles sandwich, and the least to the
vegemite. The sample standard deviations within each group are close enough to proceed. The sample
sizes are very small, so we should proceed with caution, but looking at the boxplots we see the data
appear to be at least symmetrically distributed within each group, without any outliers, so we proceed.

We can calculate the entire ANOVA table directly with

summary(aov(Ants ~ Filling))

Pairwise Comparisons

Finding the overall ANOVA significant, we may want to test individual pairwise comparisons. We
can test all pairwise comparisons with

pairwise.t.test(Ants, Filling, p.adjust = "none")

This gives us the p-value corresponding to each pairwise comparison. The optional argument
p.adjust = "none" tells R to give the raw p-values and not adjust for multiple comparisons. If
you leave off this argument R will increase the p-values to account for multiple comparisons, but the
details here are beyond the scope of this text.

R Users Guide - 21 Statistics: Unlocking the Power of Data

Using R in Chapter 9

Simple Linear Regression
Plot the data
Fit the model

Give model output
Add regression line to plot

plot(y ~ x) # y is the response (vertical)
lm(y ~ x) # y is the response)
summary(model)
abline(model)

Inference for Correlation cor.test(x, y)
#alternative = "two.sided", "less", "greater"

Prediction
Calculate predicted values
Calculate confidence intervals
Calculate prediction intervals
Prediction for new data

predict(model)
predict(model, interval = "confidence")
predict(model, interval = "prediction")
predict(model, as.data.frame(cbind(x=1)))

Let's load and attach the data from RestaurantTips to regress Tip on Bill. Before doing regression,
we should plot the data to make sure using simple linear regression is reasonable:

plot(Tip~Bill) #Note: plot(Bill, Tip) does the same

The trend appears to be approximately linear. There are a few unusually large tips, but no extreme
outliers, and variability appears to be constant as Bill increases, so we proceed. We fit the simple
linear regression model, saving it under the name mod (short for model - you can call it anything you
want). Once we fit the model, we use summary to see the output:

mod = lm(Tip ~ Bill)
summary(mod)

Results relevant to the intercept are in the (Intercept) row and results relevant to the slope are in the
Bill (the explanatory variable) row. The estimate column gives the estimated coefficients, the std.
error column gives the standard error for these estimates, the t value is simply estimate/SE, and the p-
value is the result of a hypothesis test testing whether that coefficient is significantly different from 0.

We also see the standard error of the error as "Residual standard error" and R2 as "Multiple R-
squared". The last line of the regression output gives details relevant to the ANOVA table: the F-
statistic, degrees of freedom, and p-value.

After creating a plot, we can add the regression line to see how the line fits the data:

abline(mod)

 Suppose a waitress at this bistro is about to deliver a $20 bill, and wants to predict her tip. She can get
a predicted value and 95% (this is the default level, change with level) prediction interval with

predict(mod,as.data.frame(cbind(Bill = 20)),interval = "prediction")

Lastly, we can do inference for the correlation between Bill and Tip:

cor.test(Bill, Tip)

R Users Guide - 22 Statistics: Unlocking the Power of Data

Using R in Chapter 10

Multiple Regression
Fit the model

Give model output

lm(y ~ x1 + x2)
summary(model)

Residuals
Calculate residuals
Residual plot
Histogram of residuals

model$residuals
plot(predict(model), model$residuals)
hist(model$residuals)

Prediction
Calculate predicted values
Calculate confidence intervals
Calculate prediction intervals
Prediction for new data

predict(model)
predict(model, interval = "confidence")
predict(model, interval = "prediction")
predict(model,as.data.frame(cbind(x1=1,x2=3)))

Multiple Regression Model

We'll continue the RestaurantTips example, but include additional explanatory variables: number in
party (Guests), and whether or not they pay with a credit card (Credit = 1 for yes, 0 for no).

We fit the multiple regression model with all three explanatory variables, call it tip.mod, and
summarize the model:

tip.mod = lm(Tip ~ Bill + Guests + Credit)
summarize(tip.mod)

This output should look very similar to the output from Chapter 9, except now there is a row
corresponding to each explanatory variable.

Conditions

To check the conditions, we need to calculate residuals, make a residual versus fitted values plot, and
make a histogram of the residuals:

plot(tip.mod$fit, tip.mod$residuals)
hist(tip.mod$residuals)

Categorical Variables

While Credit was already coded with 0/1 here, this is not necessary for R. You can include any
explanatory variable in a multiple regression model, and R will automatically create corresponding 0/1
variables. For example, if you were to include gender coded as male/female, R would create a variable
GenderMale that is 1 for males and 0 for females. The only thing you should not do is include a
categorical variable with more than two levels that are all coded with numbers, because R will treat
this as a quantitative variable.

R Users Guide - 23 Statistics: Unlocking the Power of Data

R Commands: Quick Reference Sheet

CHAPTER 1
Loading Data
Load a dataset from a google doc4
Load a dataset from the textbook
Help for textbook datasets
Type in a variable

google.doc("key")#key: between key= and # in url
data(dataname)
?dataname
variablename = c(3.2, 3.3, 3.1)

Variables
Extract a variable from a dataset
Attach a dataset
Detach a dataset

dataname$variablename
attach(dataname)
detach(dataname)

Subsetting Data
Take a subset of a dataset

subset(dataname, condition)

Random Sample
Taking a random sample of size n
n random integers 1 to max

sample(dataname, n) #use for data or variable
sample(1:max, n)

CHAPTER 2

One Categorical (x)
Frequency table
Proportion in group A
Pie chart
Bar chart

table(x)
mean(x == "A")
pie(table(x))
barplot(table(x))

Two Categorical (x1, x2)
Two-way table
Proportions by group
Difference in proportions
Segmented bar chart
Side-by-side bar chart

table(x1, x2)
mean(x1=="A"~x2)
diffProp(x1=="A"~x2)
barplot(table(x1, x2), legend=TRUE)
barplot(table(x1,x2),legend=TRUE,beside=TRUE)

One Quantitative (y)
Mean
Median
Standard deviation
5-Number summary
Percentile
Histogram
Boxplot

mean(y)
median(y)
sd(y)
summary(y)
percentile(y, 0.05)
hist(y)
boxplot(y)

One Quantitative (y) and
One Categorical (x)
Means by group
Difference in means
Standard deviation by group
Side-by-side boxplots

mean(y ~ x)
diffMean(y ~ x)
sd(y ~ x)
boxplot(y ~ x)

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4	
 For your own google spreadsheet, within the google spreadsheet you first have to do File -> Publish to Web -> Start
Publishing.

R Users Guide - 24 Statistics: Unlocking the Power of Data

Two Quantitative (y1, y2)
Scatterplot
Correlation

plot(y1, y2)
cor(y1, y2)

Labels
Add a title
Label an axis

#optional arguments for any plot:
main = "title of plot"
xlab = "x-axis label", ylab = "y-axis label"

CHAPTER 3
Repeat Code 1000 Times do(1000)*
Sampling Distribution for Mean do(1000)*mean(sample(y, n))
Bootstrap Distribution for Mean do(1000)*mean(sample(y, n, replace=TRUE))
Generating a Sampling
Distribution for any Statistic

do(1000)*{
 samp = sample(pop.data, n)
 statistic(samp$var1, samp$var2)
}

Manually Generating a
Bootstrap Distribution for any
Statistic

do(1000)*{
 boot.samp = sample(data, n, replace=TRUE)
 statistic(boot.samp$var1, boot.samp$var2)
}

Using a
Bootstrap Distribution

hist(boot.dist)
sd(boot.dist)
percentile(boot.dist, c(0.025, 0.975))

Generate a Bootstrap CI resample(var1, var2) #level = .95

CHAPTER 4
Randomization Statistic:
Shuffle one variable (x)
Proportion
Mean

shuffle(x)
coin.flips(n, p)
mean(sample(y + shift, n, replace=TRUE))

Randomization Distribution do(1000)*one randomization statistic
Finding p-value from a
randomization distribution:
Lower-tailed test
Upper-tailed test
Two-tailed test

#rand.dist = randomization distribution
#obs.stat = observed sample statistic
tail.p(rand.dist, obs.stat, tail="lower")
tail.p(rand.dist, obs.stat, tail="upper")
tail.p(rand.dist, obs.stat, tail="two")

Randomization Test via
Reallocating

reallocate(y, x) #tail="lower", "upper", "two"

CHAPTER 5
Normal Distribution:
Find a percentile for N(0,1)

Find the area beyond z on N(0,1)
Find percentiles or area for any normal

#tail="lower", tail="upper", tail="two"
percentile("normal", 0.10)
tail.p("normal", z, tail="lower")
#add the optional arguments mean=, sd=

R Users Guide - 25 Statistics: Unlocking the Power of Data

CHAPTER 6
Normal Distribution:
Find a percentile for N(0,1)

Find the area beyond z on
N(0,1)

percentile("normal", 0.10)
tail.p("normal", z, tail="lower")

t-Distribution:
Find a percentile for t

Find the area beyond t

percentile("t", df = 20, 0.10)
tail.p("t", df = 20, t, tail="lower")

Inference for Proportions:
Single proportion
Difference in proportions

prop.test(count, n, p0) #delete p0 for CI
prop.test(c(count1, count2), c(n1, n2))

Inference for Means:
Single mean
Difference in means

t.test(y, mu = mu0) #delete mu0 for CI
t.test(y ~ x)

Additional arguments
p-values using tail.p
p-values using prop.test or t.test
Intervals using prop.test or t.test

#tail="lower", "upper", "two"
#alternative="two.sided", "less", "greater"
#conf.level = 0.95 or confidence level

CHAPTER 7
Chi-Square Distribution
Find the area above χ2

 stat

tail.p("chisquare", df = 2, stat, tail="upper")

Chi-Square Test
Goodness-of-fit

Test for association

chisq.test(table(x)) #if null probabilities not
equal, use p = c(p1, p2, p3) to specify
chisq.test(table(x1, x2))

Randomization Test
Goodness-of-fit
Test for association

chisq.test(table(x), simulate.p.value=TRUE)
chisq.test(table(x1, x2), simulate.p.value=TRUE)

CHAPTER 8
F Distribution
Find the area above F-statistic

tail.p("F", df1=3, df2=114, F, tail="upper")

Analysis of Variance summary(aov(y ~ x))
Pairwise Comparisons pairwise.t.test(y, x, p.adjust="none")

R Users Guide - 26 Statistics: Unlocking the Power of Data

CHAPTER 9
Simple Linear Regression
Plot the data
Fit the model

Give model output
Add regression line to plot

plot(y ~ x) # y is the response (vertical)
lm(y ~ x) # y is the response)
summary(model)
abline(model)

Inference for Correlation cor.test(x, y)
#alternative = "two.sided", "less", "greater"

Prediction
Calculate predicted values
Calculate confidence intervals
Calculate prediction intervals
Prediction for new data

predict(model)
predict(model, interval = "confidence")
predict(model, interval = "prediction")
predict(model, as.data.frame(cbind(x=1)))

CHAPTER 10
Multiple Regression
Fit the model

Give model output

lm(y ~ x1 + x2)
summary(model)

Residuals
Calculate residuals
Residual plot
Histogram of residuals

model$residuals
plot(predict(model), model$residuals)
hist(model$residuals)

Prediction
Calculate predicted values
Calculate confidence intervals
Calculate prediction intervals
Prediction for new data

predict(model)
predict(model, interval = "confidence")
predict(model, interval = "prediction")
predict(model,as.data.frame(cbind(x1=1,x2=3)))

