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Using This Manual 
 
A “Quick Reference Guide” at the end of this manual summarizes all the commands you will need 
to know for this course by chapter.   
 
More detailed information and examples are given for each chapter.   If this is your first exposure to R, 
we recommend reading through the detailed chapter descriptions as you come to each chapter in the 
book. 
 
Commands are given using color coding.  Code in red represents commands and punctuation that 
always need to be entered exactly as is.  Code in blue represents names that will change depending 
on the context of the problem (such as dataset names and variable names).  Text in green following # 
is either optional code or comments.  This often includes optional arguments that you may want to 
include with a function, but do not always need.    In R anything following a # is read as a comment, 
and is not actually evaluated 
 
For example, the command mean is used to compute the mean of a set of numbers.  The information 
for this command is given in this manual as 
 
mean(y)     

Whenever you are computing a mean, you always need to type the parts in red,  mean( ).  Whatever 
you type inside the parentheses (the code in blue) will depend on what you have called the set of 
numbers you want to compute the mean of, so if you want to calculate the mean body mass index for 
data stored in a variable called BMI , you would type mean(BMI).   
 
Text after # represents a comment - this is only for you, and R will ignore this code if it is typed. 
 

IMPORTANT:  Many commands in this manual require installation of the Lock5 package, which 
includes all datasets from the textbook, as well as many commands designed to make R coding easier 
for introductory students.   This package only needs to be installed once, and can be installed with the 
following command: 

source("/shared/kari.lock.morgan@gmail.com/Lock5.R") 
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About R and RStudio 
 
R is a freely available environment for statistical computing.  R works with a command-line interface, 
meaning you type in commands telling R what to do.  RStudio is a convenient interface for using R, 
which can either be accessed online (http://beta.rstudio.org/) or downloaded to your computer.  For 
more information about RStudio, go to http://www.rstudio.com/.   
 

 
 
The bottom left panel is the console.  Here you can type code directly to be sent to R. 
 
The top left is called the RScript, and is basically a text editor that color codes for you and sends 
commands easily to R.  Using a separate R script is nice because you can save only the code that 
works, making it easy to rerun and edit in the future, as opposed to the R console in which you would 
also have to save all your mistakes and all the output.  We recommend always saving your R Scripts so 
you have the commands easily accessible and editable for future use.  Code can be sent from the 
RScript to the console either by highlighting and clicking this icon:  or else by typing 
CTRL+ENTER at the end of the line.  Different RScripts can be saved in different tabs. 
 
The top right is your Workspace and is where you will see objects (such as datasets and variables).  
Clicking on the name of a dataset in your workspace will bring up a spreadsheet of the data. 
 
The bottom right serves many purposes.  It is where plots will be appear, where you manage your files 
(including importing files from your computer), where you install packages, and where the help 
information appears.  Use the tabs to toggle back and forth between these screens as needed.   
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Getting Started with RStudio 
 
Basic Commands 
 
Basic Arithmetic 
Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

 
+ 
– 
* 
/ 
^ 

Other 
Naming objects 
Open help for a command 
Creating a set of numbers 

 
= 
? 
c(1, 2, 3) 

 

Entering Commands 

Commands can be entered directly into the R console (bottom left), following the > prompt, and sent to 
the computer by pressing enter.  For example, typing 1 + 2 and pressing enter will output the result 3: 
 
> 1+2 
[1] 3 
 
Your entered code always follows the > prompt, and output always follows a number in square 
brackets.  Each command should take its own line of code, or else a line of code should be continued 
with { } (see examples in Chapters 3 and 4). 
 
It is possible to press enter before the line of code is completed, and often R will recognize this.  For 
example, if you were to type 1 + but then press enter before typing 2, R knows that 1+ by itself 
doesn’t make any sense, so prompts for you to continue the line with a + sign.  At this point you could 
continue the line by pressing 2 then enter.  This commonly occurs if you forget to close parentheses or 
brackets.  If you keep pressing enter and keep seeing a + sign rather than the regular > prompt that 
allows you to type new code, and if you can’t figure out why, often the easiest option is to simply press 
ESC, which will get you back to the normal > prompt and allow you to enter a new line of code. 
 
You can also enter this code into the RScript and run it from there.  Create a new RScript by File - 
New - R Script.  Now you can type in the R Script (top left), and then send your code to the console 
either by pressing  or CTRL+ENTER.  Try typing 1+2 in the R Script and sending it to the console. 
 
Capitalization and punctuation need to be exact in R, but spacing doesn’t matter.  If you get errors 
when entering code, you may want to check for these common mistakes: 

- Did you start your line of code with a fresh prompt (>)?  If not, press ESC. 
- Are your capitalization and punctuation correct?   
- Are all your parentheses and brackets closed?  For every forward (, {, or [, make sure there is a 

corresponding backwards ), }, or ].  When working in the RScript if you click next to (, the 
corresponding ) will be highlighted.  
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The basic arithmetic commands are pretty straightforward.  For example, 1 + (2*3) would return 7.    
You can also name the result of any command with a name of your choosing with =.  For example 
 
x = 3*4 
 
sets x to equal the result of 3*4, or equivalently sets x = 12.  The choice of x is arbitrary - you can 
name it whatever you want.  If you type x into the console now you will see 12 as the output: 
	
  
> x 
[1] 12 
 
Naming objects and arithmetic works not just with numbers, but with more complex objects like 
variables.  To get a little fancier, suppose you have variables called Weight (measured in pounds) and 
Height (measured in inches), and want to create a new variable for body mass index, which you 
decide to name BMI.  You can do this with the following code: 
 
BMI = Weight/(Height^2) * 703 
 
If you want to create your own variable or set of numbers, you can collect numbers together into one 
object with c( ) and the numbers separated by commas inside the parentheses.  For example, to 
create your own variable Weight out of the weights 125, 160, 183, and 137, you would type 
 
Weight = c(125, 160, 183, 137) 
 
To get more information on any built-in R commands, simply type ? followed by the command name, 
and this will bring up a separate help page. 
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Loading Data 
 
 

There are several different ways you may want to get data in RStudio: 
 
Loading Data from a Google Doc 

1. From within the google spreadsheet, click File -> Publish to Web -> Start Publishing. 
2. Type google.doc("key"), where key should be replaced with everything in between key= 

and # in the link for the google doc. 
 
Loading Data from the Textbook 

1. Find the name of the dataset you want to access as it’s written in bold in the textbook, for 
example, AllCountries, and type data(AllCountries).   

 
Loading Data from a Spreadsheet on your Computer 

1. From your spreadsheet editing program (Excel, Google Docs, etc.) save your spreadsheet as a 
.csv (Comma Separated Values) file on your computer.   

2. In the bottom right panel, click the Files tab, then Upload.  Choose the .csv file and click OK. 
3. In the top right panel, click Import Dataset, From Text File, then choose the dataset you just 

uploaded.  If needed adjust the options until the dataset looks correct, then click Import. 
 
Manually Typing Data 

If you survey people in your class asking for GPA, you could create a new variable called gpa (or 
whatever you want to call it) by entering the values as follows: 
 

gpa = c(2.9, 3.0, 3.6, 3.2, 3.9, 3.4, 2.3, 2.8) 
 
 
Viewing Data 
 
Once you have your dataset loaded, it should appear in your workspace (top right).  Click on the name 
of the dataset to view the dataset as a spreadsheet in the top left panel.  Click the tabs of that panel to 
get back to your RScript.  



R Users Guide - 7  Statistics: Unlocking the Power of Data 

Using R in Chapter 1 
 
Loading Data 
Load a dataset from a google doc1 
Load a dataset from the textbook 
Help for textbook datasets 
Type in a variable 

 
google.doc("key")#key: between key= and # in url  
data(dataname) 
?dataname 
variablename = c(3.2, 3.3, 3.1) 

Variables 
Extract a variable from a dataset 
Attach a dataset 
Detach a dataset 

 
dataname$variablename 
attach(dataname) 
detach(dataname) 

Subsetting Data 
Take a subset of a dataset 

 
subset(dataname, condition) 

Random Sample 
Taking a random sample of size n 
n random integers 1 to max 

 
sample(dataname, n) #use for data or variable 
sample(1:max, n) 

 
Loading and Viewing Data 
 
Let's load in the AllCountries data from the textbook with the following command: 
 
data(AllCountries) 
 
This loads the dataset, and you should see it appear in your workspace.  To view the dataset, simply 
click on the name of the dataset in your Workspace and a spreadsheet of the data will appear in the top 
left.  Scroll down to see all the cases and right to see all the variables. 
 
If the dataset comes from the textbook, you can type ? followed by the data name to pull up 
information about the data: 
 
?AllCountries 
 
 
Variables 
 
If you want to extract a particular variable from a dataset, for example, Population, type 
 
AllCountries$Population 
 
If you will be doing a lot with one dataset, sometimes it gets cumbersome to always type the dataset 
name and a dollar sign before each variable name.  To avoid this, you can type 
 
attach(AllCountries) 
 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  For	
  your	
  own	
  google	
  spreadsheet,	
  within	
  the	
  google	
  spreadsheet	
  you	
  first	
  have	
  to	
  do	
  File	
  -­‐>	
  Publish	
  to	
  Web	
  -­‐>	
  Start	
  
Publishing.	
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Now you can access variables from the AllCountries data simply by typing the variable names directly.  
If you choose to use this option however, just remember to detach the dataset when you are done: 
 
detach(AllCountries) 
 
 
Subsetting a Dataset 
 
To take a subset from a dataset, say all countries with a population greater than 1 million (units are in 
millions), you can create a new dataset and use the subset command: 
 
newdata = subset(AllCountries,  Population < 1) 
 
You could have named it anything, I just choose newdata.  If you didn't attach AllCountries or already 
detached it, then you need to use AllCountries$Population, not just Population. 
 

Taking a Random Sample 
 
You can take a random sample from either a variable or dataset with sample.  Suppose we want to 
take a random sample of 10 countries from the Country variable in AllCountries, we could use 
 
sample(Country, 10) 
 
If we want to take a random sample of 10 rows from the AllCountries dataset, we could use 
 
sample(AllCountries, 10) 
 
While you can sample directly from a list of cases in R, a more general way to generate a random 
sample is to randomly generate n (the sample size) numbers between 1 and the number of cases you 
want to sample from (max): 
 
sample(1:max, n) 
 
 
Randomized Experiment 
 
If you want to randomize a sample into two different treatment groups for a randomized experiment, 
you can take a random sample from the whole sample to be the treatment group, and the rest of the 
sample would then go in the control group.  
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Using R in Chapter 2 
 

One Categorical (x) 
Frequency table 
Proportion in group A 
Pie chart 
Bar chart 

 
table(x) 
mean(x == "A") 
pie(table(x)) 
barplot(table(x)) 

Two Categorical (x1, x2) 
Two-way table 
Proportions by group 
Difference in proportions 
Segmented bar chart  
Side-by-side bar chart 

 
table(x1, x2) 
mean(x1=="A"~x2) 
diffProp(x1=="A"~x2) 
barplot(table(x1, x2), legend=TRUE) 
barplot(table(x1,x2),legend=TRUE,beside=TRUE) 

One Quantitative (y) 
Mean 
Median 
Standard deviation 
5-Number summary 
Percentile 
Histogram 
Boxplot 

 
mean(y)     
median(y)   
sd(y)       
summary(y) 
percentile(y, 0.05) 
hist(y) 
boxplot(y)  

One Quantitative (y) and 
One Categorical (x) 
Means by group 
Difference in means 
Standard deviation by group 
Side-by-side boxplots 

 
 
mean(y ~ x) 
diffMean(y ~ x) 
sd(y ~ x) 
boxplot(y ~ x)  

Two Quantitative (y1, y2) 
Scatterplot 
Correlation 

 
plot(y1, y2) 
cor(y1, y2)  

Labels 
Add a title 
Label an axis 

#optional arguments for any plot: 
main = "title of plot" 
xlab = "x-axis label", ylab = "y-axis label" 

 
 
Example – Student Survey 
 
To illustrate these commands, we’ll explore the StudentSurvey data.  We load and attach the data: 
 
data(StudentSurvey) 
attach(StudentSurvey) 
 

Click on the dataset name in the workspace to view the data and variable names.   
 
The following are commands we could use to explore each of the following variables or pairs of 
variables.  They are not the only commands we could use, but illustrate some possibilities.  
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Award preferences (one categorical variable): 
 
table(Award) 
barplot(table(Award)) 
 
Award preferences by gender (two categorical variables): 
 
table(Award, Gender) 
barplot(table(Award, Gender), legend=TRUE) 
 
Pulse rate (one quantitative variable): 
 
summary(Pulse) 
hist(Pulse) 
 
Hours of exercise per week by award preference (one quantitative and one categorical variable): 
 
mean(Pulse~Award) 
boxplot(Pulse~Award) 
 
Pulse rate and SAT score (two quantitative variables): 
 
plot(Pulse, SAT) 
cor(Pulse, SAT) 
 
 
More Details for Plots 
 
If you want to get a bit fancier, you can add axis labels and titles to your plots.  This is especially 
useful for including units, or if your variable names are not self-explanatory.  You can specify the x-
axis label with xlab, the y-axis label with ylab, and a title for the plot with main.  For example, 
below would produce a labeled scatterplot of height versus weight: 
 
plot(Height, Weight, xlab = "Height (in inches)", ylab = "Weight 
(pounds)", main = "Scatterplot") 
 
These optional labeling arguments work for any graph produced. 
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Using R in Chapter 3 

 
 
Repeat Code 1000 Times do(1000)* 
Sampling Distribution for Mean do(1000)*mean(sample(y, n)) 
Bootstrap Distribution for Mean do(1000)*mean(sample(y, n, replace=TRUE)) 
Generating a Sampling 
Distribution for any Statistic  

do(1000)*{ 
  samp = sample(pop.data, n) 
  statistic(samp$var1, samp$var2) 
} 

Manually Generating a 
Bootstrap Distribution for any 
Statistic 

do(1000)*{ 
    boot.samp = sample(data, n, replace=TRUE) 
    statistic(boot.samp$var1, boot.samp$var2) 
} 

Using a  
Bootstrap Distribution 

hist(boot.dist) 
sd(boot.dist) 
percentile(boot.dist, c(0.025, 0.975)) 

Generate a Bootstrap CI bootstrap.interval(var1, var2) #level = .95 
 
 
To create a sampling distribution or a bootstrap distribution, we need to first draw a random sample 
(with or without replacement), calculate the relevant statistic, and repeat this process many times.   
 
As a review, we can select a random sample with the command sample().  We can then calculate 
the relevant statistic on this sample, as we learned how to do in Chapter 2.  The new part is doing this 
process many times. 
 
do() 

do(1000)* provides a convenient way to do something 1000 (or any desired number) times.  R will 
repeat whatever follows the * 1000 times.  If the code fits on one line then everything can be written 
after the * on the same line.  If the code to be done multiple times takes up multiple lines, we can use 
{} as follows: 

do(1000)*{ 
  code to be repeated 
} 
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Example: Sampling Distribution for a Mean 
 
We have population data on the gross income for all 2011 Hollywood movies stored in the dataset 
HollywoodMovies2011 under the variable name WorldGross.  Suppose we want to generate a 
sampling distribution for the mean gross income for samples of size 30.  First, load and attach the data. 
 
Let’s first compute one statistic for the sampling distribution.  We take a random sample of 30 values 
and call it samp (we could call it anything), and compute the sample mean: 
 
samp = sample(WorldGross, 30) 
mean(samp) 
 
If preferred, we could have done this in all one line, by nesting commands: 
 
mean(sample(WorldGross, 30)) 
 
Equivalently, we could take a random sample of 10 movies from the dataset (which is necessary for 
doing a sampling distribution for more than one variable), and compute the sample mean: 
	
  
samp = sample(HollywoodMovies2011, 30) 
mean(samp$WorldGross) 
	
  
We now repeat this process many (say 1,000) times to form the sampling distribution, with do().  There 
are several options for how to do this: 
	
  
do(1000)* mean(sample(WorldGross, 30)) 
	
  
or	
  
	
  
do(1000)*{ 
   samp = sample(HollywoodMovies2011, 30) 
   mean(samp$WorldGross) 
} 
	
  
If you want to, you can save this sampling distribution so you can do things like visualize it or take the 
standard deviation to compute the standard error: 
	
  
samp.dist = do(1000)* mean(sample(WorldGross, 30)) 
hist(samp.dist) 
sd(samp.dist) 
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Example: Bootstrap Confidence Interval for a Correlation 

Let’s create a bootstrap confidence interval for the correlation between time and distance for Atlanta 
commuters, based on a random sample of 500 Atlanta commuters stored in the dataset 
CommuteAtlanta.  After loading and attaching the data, we can create one bootstrap sample of 
commuters by taking a sample of size 500 with replacement from the dataset: 

sample(CommuteAtlanta, 500, replace=TRUE) 

To compute a bootstrap statistic, we should give this bootstrap sample a name (we’ll use boot.samp, 
although you could choose a different name if you like), and then compute the relevant statistic 
(correlation) on the variables taken from this bootstrap sample: 

boot.samp = sample(CommuteAtlanta, 500, replace=TRUE) 
cor(boot.samp$Time, boot.samp$Distance) 

This gives us one bootstrap statistic.  For an entire bootstrap distribution, we want to generate 
thousands of bootstrap statistics!  We can use do() to repeat this process 1000 times: 

boot.dist = do(1000)*{ 
boot.samp = sample(CommuteAtlanta, 500, replace=TRUE) 
cor(boot.samp$Time, boot.samp$Distance) 

} 
 
We gave this distribution a name (boot.dist), so we are able to use it.  We first visualize the 
distribution to make sure it is symmetric (and bell-shaped for the SE method): 
 
hist(boot.dist) 
 
It may be a little left-skewed, but in general doesn’t look too bad, so we proceed.  We can compute the 
standard error and use the standard error method for a 95% confidence interval: 
	
  
se = sd(boot.dist) 
stat = cor(CommuteAtlanta$Time, CommuteAtlanta$Distance) 
stat – 2*se 
stat + 2*se 
	
  
We could also use the percentile method for a 90% confidence interval, chopping off 5% in each tail: 
	
  
percentile(boot.dist, c(0.05, 0.95)) 
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Example: bootstrap.interval() 
 
If manually coding bootstrap distributions isn’t your thing, you could instead generate a bootstrap 
confidence interval with the built-in command bootstrap.interval().  Based on whether you 
have one or two variables and whether they are categorical or quantitative, resample automatically 
guesses at which parameter you are interested in, creates a bootstrap distribution and displays it for 
you, gives you the sample statistic and standard error, and gives you a confidence interval based on the 
percentile method for any desired level of confidence.  (Life doesn’t get much easier!) 
 
For example, if you type have the CommuteAtlanta dataset loaded and attached, if you type 
 
bootstrap.interval(Time) 
	
  
	
  R	
  knows	
  that	
  Time	
  is	
  a	
  quantitative	
  variable,	
  so	
  you	
  are	
  most	
  likely	
  interested	
  in	
  a	
  mean2,	
  and	
  
you	
  will	
  get	
  the	
  following	
  output:	
  
	
  
> bootstrap.interval(Time)  
One quantitative variable   
Observed Mean: 29.11   
Resampling, please wait...   
SE =  0.927   
95% Confidence Interval:      
2.5%   97.5%   
27.3639 30.9840  
	
  
	
  
If	
  you	
  want	
  a	
  90%	
  confidence	
  interval	
  for	
  the	
  difference	
  in	
  mean	
  commute	
  time	
  by	
  sex:	
  
	
  
bootstrap.interval(Time, Sex, level = .90) 
	
  
Or	
  if	
  you	
  want	
  a	
  99%	
  confidence	
  interval	
  for	
  the	
  correlation	
  between	
  time	
  and	
  distance:	
  
	
  
bootstrap.interval(Time, Distance, level=.99) 
 
WARNING:	
  While bootstrap.interval() makes	
  generating	
  a	
  bootstrap	
  confidence	
  
interval	
  very	
  easy,	
  it	
  also	
  makes	
  it	
  easy	
  to	
  stop	
  thinking	
  about	
  what	
  you	
  are	
  doing.	
  	
  It	
  is	
  important	
  
to	
  make	
  sure	
  you	
  understand	
  the	
  process!3	
  	
    
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  If	
  you	
  are	
  interested	
  in	
  a	
  median	
  instead,	
  you	
  can	
  change	
  this	
  with	
  the	
  optional	
  argument	
  stat 
= median,	
  although	
  this	
  bootstrap	
  distribution	
  would	
  definitely	
  not	
  be	
  smooth	
  or	
  symmetric.	
  
3	
  If	
  you	
  are	
  a	
  professor,	
  you	
  may	
  want	
  to	
  teach	
  bootstrap.interval()	
  only	
  after	
  you	
  are	
  
sure	
  the	
  students	
  understand	
  the	
  process,	
  or	
  you	
  may	
  choose	
  not	
  to	
  teach	
  
bootstrap.interval()	
  at	
  all,	
  to	
  encourage	
  them	
  to	
  think	
  through	
  the	
  process	
  each	
  time.	
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Using R in Chapter 4 
 

Randomization Statistic: 
Shuffle one variable (x) 
Proportion 
Mean 

 
shuffle(x) 
coin.flips(n, p)  
mean(sample(y + shift, n, replace=TRUE)) 

Randomization Distribution do(1000)*one randomization statistic 
Finding p-value from a 
randomization distribution: 
Lower-tailed test 
Upper-tailed test 
Two-tailed test 

#rand.dist = randomization distribution 
#obs.stat = observed sample statistic 
tail.p(rand.dist, obs.stat, tail="lower")  
tail.p(rand.dist, obs.stat, tail="upper") 
tail.p(rand.dist, obs.stat, tail="two") 

Randomization Test randomization.test(y, x) #null = for one var 
#tail="lower", "upper", "two" 

 
Example: Difference in Means 
 
In many hypothesis tests, we generate a randomization sample by shuffling one of the two variables 
(the explanatory variable if the data comes from a randomized experiment), which is equivalent to 
rerandomizing the cases to treatment groups.  For example, let's do a hypothesis test to see if caffeine 
increases finger tapping rate, based on Data 4.6. 
 
We load and attach the dataset CaffeineTaps, and see that the explanatory variable is Group and the 
response variable is Taps.   We first calculate the sample statistic, the observed difference in means: 
 
diffMean(Tap~shuffle(Group)) 
 
We now want to see what kinds of statistics we would observe, just by random chance, if the null 
hypothesis were true, or equivalently, if the explanatory variable was randomly shuffled.  To randomly 
shuffle the explanatory variable, we use 
 
shuffle(Group) 
 
We can then calculate the difference in mean tap rate for the shuffled groups: 
 
diffMean(Tap~shuffle(Group)) 
 
Now that we know how to calculate one randomization statistic, and know how to use do to repeat 
something many times (see Chapter 3), creating a randomization distribution is easy! 
 
rand.dist = do(1000)*diffMean(Tap~shuffle(Group)) 

 
To compute a p-value from this randomization distribution, we want the proportion of randomization 
statistics above the observed statistic (because we want to see if caffeine increases tap rate): 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  



R Users Guide - 16  Statistics: Unlocking the Power of Data 

obs.stat = diffMean(Tap~Group) 
tail.p(rand.dist, obs.stat, tail="upper") 
 
If we instead wanted a difference in proportions or correlation, we would calculate the statistic as 
always, just using the shuffled group instead of the actual group variable. 
 
We also use the command randomization.test, which will do the randomization test for us.  
randomization.test creates the randomization distribution by shuffling the second variable if 
two variables, or shifting a bootstrap distribution to match the null if one variable.  Thus we could 
conduct the same randomization test as above with 
 
randomization.test(Tap, Group, tail="upper") 
 
 
Test for a Single Variable 
 
Doing tests for a single variable is a bit different, because there is not an explanatory variable to 
shuffle.  Here are two examples, one for a proportion, and one for a mean. 
 

1. Dogs and Owners.  16 out of 25 dogs were correctly paired with their owners, is this evidence 
that the true proportion is greater than 0.5?   In R, you can simulate flipping 25 coins and 
counting the number of heads with 
 
coin.flips(25, 0.5) 
 
(for null proportions other than 0.5, just change the 0.5 above accordingly).  Therefore, we can 
create a randomization distribution with 
 
rand.dist = do(1000)*coin.flips(25, .5) 
 
The alternative is upper-tailed, so we compute a p-value as the proportion above 16/25: 
 
tail.p(rand.dist,16/25, tail="upper") 
 

2.  Body Temperature.  Is a sample mean of 98.26°F based on 50 people evidence that the true 
average body temperature in the population differs from 98.6°F?  To answer this we create a 
randomization distribution by bootstrapping from a sample that has been shifted to make the 
null true, so we add 0.34 to each value.  We can create the corresponding randomization 
distribution with 
 
rand.dist = do(1000)*mean(sample(BodyTemp+0.34, 50, 
replace=TRUE)) 
 
In this case we have a two-sided Ha: 
 
tail.p(rand.dist, 98.26, tail="two")  
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Using R in Chapter 5 
 

Normal Distribution: 
Find a percentile for N(0,1) 

Find the area beyond z on N(0,1) 
Find percentiles or area for any normal 

#tail="lower", tail="upper", tail="two" 
percentile("normal", 0.10)  
tail.p("normal", z, tail="lower")  
#add the optional arguments mean=, sd= 

 
Example 1:  Find z* for a 90% confidence interval. 
 
We want the middle 90% of the standard normal distribution, so want 5% in each tail, so need to find 
the 5th and 95th percentiles: 
 
percentile("normal", 0.05) 
percentile("normal", 0.95) 
 
Example 2:  Find a p-value when z = 1.5, and the alternative is upper-tailed. 
 
Because Ha is upper tailed, we find the area in the standard normal distribution above 1.5: 
 
tail.p("normal", z, tail="upper") 
 
 
Example 3:  Find the area below 60 for a normal distribution with mean 75 and 
standard deviation 12. 
 
tail.p("normal", 60, mean=75, sd=12, tail="lower") 
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Using R in Chapter 6 
 

Normal Distribution: 
Find a percentile for N(0,1) 

Find the area beyond z on 
N(0,1) 

 
percentile("normal", 0.10)  
tail.p("normal", z, tail="lower")  

t-Distribution: 
Find a percentile for t 

Find the area beyond t  

 
percentile("t", df = 20, 0.10)  
tail.p("t", df = 20, t, tail="lower")  

Inference for Proportions: 
Single proportion 
Difference in proportions 

 
prop.test(count, n, p0) #delete p0 for CI 
prop.test(c(count1, count2), c(n1, n2)) 

Inference for Means: 
Single mean 
Difference in means 

 
t.test(y, mu = mu0) #delete mu0 for CI 
t.test(y ~ x) 

Additional arguments 
p-values using tail.p 
p-values using prop.test or t.test 
Intervals using prop.test or t.test 

 
#tail="lower", "upper", "two" 
#alternative="two.sided", "less", "greater" 
#conf.level = 0.95 or confidence level 

 
There are two ways of using R to compute confidence intervals and p-values using the normal and t-
distributions: 
 

1. Use the formulas in the book and percentile and tail.p   
2. Use prop.test and t.test on the raw data without using any formulas 

 
The two methods should give very similar answers, but may not match exactly because prop.test 
and t.test do things slightly more complicated than what you have learned (continuity correction 
for proportions, and a more complicated algorithm for degrees of freedom for difference in means). 
 
The commands prop.test and t.test give both confidence intervals and p-values.  For 
confidence intervals, the default level is 95%, but other levels can be specified with conf.level.  
For p-values, the default is a two-tailed test, but the alternative can be changed by specifying either 
alternative = "less" or alternative = "greater". 
 
Using Option 1 directly parallels the code in Chapter 5, so we refer you to the Chapter 5 examples.  
Here we just illustrate the use of prop.test and t.test. 
 
Example 1:  In a recent survey of 800 Quebec residents, 224 thought that Quebec should separate 
from Canada.  Give a 90% confidence interval for the proportion of Quebecers who would like Quebec 
to separate from Canada. 
 
prop.test(224, 800, conf.level=0.90) 
 
Example 2: Test whether caffeine increases tap rate (based on CaffeineTaps data). 
 
t.test(Tap~Group, alternative = "greater")  
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Using R in Chapter 7 
 

Chi-Square Distribution 
Find the area above χ2

 stat 
 
tail.p("chisquare", df = 2, stat, tail="upper") 

Chi-Square Test 
Goodness-of-fit 
 
Test for association 

 
chisq.test(table(x)) #if null probabilities not 
equal, use p = c(p1, p2, p3) to specify 
chisq.test(table(x1, x2)) 

Randomization Test 
Goodness-of-fit 
Test for association 

 
chisq.test(table(x), simulate.p.value=TRUE) 
chisq.test(table(x1, x2), simulate.p.value=TRUE) 

 
Option 1: Use formula to calculate chi-square statistic and use pchisq 
 
If we get χ2 = 3.1 and the degrees of freedom are 2, we would calculate the p-value with 
 
percentile("chisquare", df=2, 3.1, tail="upper")  
 
Option 2: Use chisq.test on raw data 
 

1. Goodness of Fit.  Use the data in APMultipleChoice to see if all five choices (A, B, C, D, E) 
are equally likely: 

 
chisq.test(table(Answer)) 
 

2. Test for Association. Use the data in StudentSurvey to see if type of award preference is 
associated with gender: 

 
chisq.test(table(Award, Gender)) 

 
Randomization Test 
 
If the expected counts within any cell are too small, you should not use the chi-square distribution, but 
instead do a randomization test.  If you use chisq.test with small expected counts cell, R helps 
you out by giving a warning message saying the chi-square approximation may be incorrect. 
 
If the sample sizes are too small to use a chi-squared distribution, you can do a randomization test with 
the optional argument simulate.p.value within the command chisq.test.  This tells R to 
calculate the p-value by simulating the distribution of the χ2 statistic, assuming the null is true, rather 
than compare it to the theoretical chi-square distribution. 
 
For example, for a randomization test for an association between Award and Gender: 
 
chisq.test(table(Award, Gender), simulate.p.value=TRUE) 
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Using R in Chapter 8 
 

F Distribution 
Find the area above F-statistic 

tail.p("F", df1=3, df2=114, F, tail="upper") 

Analysis of Variance summary(aov(y ~ x)) 
Pairwise Comparisons pairwise.t.test(y, x, p.adjust="none") 

 
As with t-tests and chi-square tests, one option is to calculate the F-statistic by hand, and then compare 
it to the F distribution using tail.p.  The (much easier) option is to use R's built in analysis of 
variable function, aov. 
 
Analysis of Variance 
 
Let's test whether the average number of ants that feed on a sandwich differs by type of filling, using 
data from SandwichAnts (Data 8.1).   
 
We can calculate the sample means in each group, visualize the data, and check the conditions for 
ANOVA with  
 
mean(Ants ~ Filling) 
boxplot(Ants ~ Filling) 
sd(Ants ~ Filling) 
table(Filling) 
 
In the sample, we see that the most ants came to the ham & pickles sandwich, and the least to the 
vegemite.  The sample standard deviations within each group are close enough to proceed.  The sample 
sizes are very small, so we should proceed with caution, but looking at the boxplots we see the data 
appear to be at least symmetrically distributed within each group, without any outliers, so we proceed. 
 
We can calculate the entire ANOVA table directly with 
 
summary(aov(Ants ~ Filling)) 
 
 
Pairwise Comparisons 
 
Finding the overall ANOVA significant, we may want to test individual pairwise comparisons.  We 
can test all pairwise comparisons with 
 
pairwise.t.test(Ants, Filling, p.adjust = "none") 
 
This gives us the p-value corresponding to each pairwise comparison.  The optional argument 
p.adjust = "none" tells R to give the raw p-values and not adjust for multiple comparisons.  If 
you leave off this argument R will increase the p-values to account for multiple comparisons, but the 
details here are beyond the scope of this text. 
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Using R in Chapter 9 
 

Simple Linear Regression 
Plot the data 
Fit the model 

Give model output 
Add regression line to plot 

 
plot(y ~ x) # y is the response (vertical) 
lm(y ~ x)   # y is the response) 
summary(model) 
abline(model) 

Inference for Correlation cor.test(x, y) 
#alternative = "two.sided", "less", "greater" 

Prediction 
Calculate predicted values 
Calculate confidence intervals 
Calculate prediction intervals 
Prediction for new data 

 
predict(model) 
predict(model, interval = "confidence") 
predict(model, interval = "prediction") 
predict(model, as.data.frame(cbind(x=1))) 

 
Let's load and attach the data from RestaurantTips to regress Tip on Bill.  Before doing regression, 
we should plot the data to make sure using simple linear regression is reasonable: 
 
plot(Tip~Bill)    #Note:  plot(Bill, Tip) does the same 
 
The trend appears to be approximately linear.  There are a few unusually large tips, but no extreme 
outliers, and variability appears to be constant as Bill increases, so we proceed.  We fit the simple 
linear regression model, saving it under the name mod (short for model - you can call it anything you 
want).  Once we fit the model, we use summary to see the output: 
 
mod = lm(Tip ~ Bill) 
summary(mod) 
 
Results relevant to the intercept are in the (Intercept) row and results relevant to the slope are in the 
Bill (the explanatory variable) row.  The estimate column gives the estimated coefficients, the std. 
error column gives the standard error for these estimates, the t value is simply estimate/SE, and the p-
value is the result of a hypothesis test testing whether that coefficient is significantly different from 0.  
 
We also see the standard error of the error as "Residual standard error" and R2  as "Multiple R-
squared".  The last line of the regression output gives details relevant to the ANOVA table: the F-
statistic, degrees of freedom, and p-value. 
 
After creating a plot, we can add the regression line to see how the line fits the data: 
 
abline(mod) 
 
 Suppose a waitress at this bistro is about to deliver a $20 bill, and wants to predict her tip.  She can get 
a predicted value and 95% (this is the default level, change with level) prediction interval with 
 
predict(mod,as.data.frame(cbind(Bill = 20)),interval = "prediction") 
 
Lastly, we can do inference for the correlation between Bill and Tip: 
 
cor.test(Bill, Tip)  
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Using R in Chapter 10 
 

Multiple Regression 
Fit the model 

Give model output 

 
lm(y ~ x1 + x2) 
summary(model) 

Residuals 
Calculate residuals 
Residual plot 
Histogram of residuals 

 
model$residuals 
plot(predict(model), model$residuals) 
hist(model$residuals) 

Prediction 
Calculate predicted values 
Calculate confidence intervals 
Calculate prediction intervals 
Prediction for new data 

 
predict(model) 
predict(model, interval = "confidence") 
predict(model, interval = "prediction") 
predict(model,as.data.frame(cbind(x1=1,x2=3))) 

 
Multiple Regression Model 
 
We'll continue the RestaurantTips example, but include additional explanatory variables: number in 
party (Guests), and whether or not they pay with a credit card (Credit = 1 for yes, 0 for no).   
 
We fit the multiple regression model with all three explanatory variables, call it tip.mod, and 
summarize the model: 
 
tip.mod = lm(Tip ~ Bill + Guests + Credit) 
summarize(tip.mod) 
 
This output should look very similar to the output from Chapter 9, except now there is a row 
corresponding to each explanatory variable.   
 
Conditions 
 
To check the conditions, we need to calculate residuals, make a residual versus fitted values plot, and 
make a histogram of the residuals: 
 
plot(tip.mod$fit, tip.mod$residuals) 
hist(tip.mod$residuals) 

 
Categorical Variables 
 
While Credit was already coded with 0/1 here, this is not necessary for R.  You can include any 
explanatory variable in a multiple regression model, and R will automatically create corresponding 0/1 
variables.  For example, if you were to include gender coded as male/female, R would create a variable 
GenderMale that is 1 for males and 0 for females.  The only thing you should not do is include a 
categorical variable with more than two levels that are all coded with numbers, because R will treat 
this as a quantitative variable.  
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R Commands: Quick Reference Sheet 
 

CHAPTER 1 
Loading Data 
Load a dataset from a google doc4 
Load a dataset from the textbook 
Help for textbook datasets 
Type in a variable 

 
google.doc("key")#key: between key= and # in url  
data(dataname) 
?dataname 
variablename = c(3.2, 3.3, 3.1) 

Variables 
Extract a variable from a dataset 
Attach a dataset 
Detach a dataset 

 
dataname$variablename 
attach(dataname) 
detach(dataname) 

Subsetting Data 
Take a subset of a dataset 

 
subset(dataname, condition) 

Random Sample 
Taking a random sample of size n 
n random integers 1 to max 

 
sample(dataname, n) #use for data or variable 
sample(1:max, n) 

 
CHAPTER 2 

One Categorical (x) 
Frequency table 
Proportion in group A 
Pie chart 
Bar chart 

 
table(x) 
mean(x == "A") 
pie(table(x)) 
barplot(table(x)) 

Two Categorical (x1, x2) 
Two-way table 
Proportions by group 
Difference in proportions 
Segmented bar chart  
Side-by-side bar chart 

 
table(x1, x2) 
mean(x1=="A"~x2) 
diffProp(x1=="A"~x2) 
barplot(table(x1, x2), legend=TRUE) 
barplot(table(x1,x2),legend=TRUE,beside=TRUE) 

One Quantitative (y) 
Mean 
Median 
Standard deviation 
5-Number summary 
Percentile 
Histogram 
Boxplot 

 
mean(y)     
median(y)   
sd(y)       
summary(y) 
percentile(y, 0.05) 
hist(y) 
boxplot(y)  

One Quantitative (y) and 
One Categorical (x) 
Means by group 
Difference in means 
Standard deviation by group 
Side-by-side boxplots 

 
 
mean(y ~ x) 
diffMean(y ~ x) 
sd(y ~ x) 
boxplot(y ~ x)  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  For your own google spreadsheet, within the google spreadsheet you first have to do File -> Publish to Web -> Start 
Publishing. 
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Two Quantitative (y1, y2) 
Scatterplot 
Correlation 

 
plot(y1, y2) 
cor(y1, y2)  

Labels 
Add a title 
Label an axis 

#optional arguments for any plot: 
main = "title of plot" 
xlab = "x-axis label", ylab = "y-axis label" 

 
 

CHAPTER 3 
Repeat Code 1000 Times do(1000)* 
Sampling Distribution for Mean do(1000)*mean(sample(y, n)) 
Bootstrap Distribution for Mean do(1000)*mean(sample(y, n, replace=TRUE)) 
Generating a Sampling 
Distribution for any Statistic  

do(1000)*{ 
  samp = sample(pop.data, n) 
  statistic(samp$var1, samp$var2) 
} 

Manually Generating a 
Bootstrap Distribution for any 
Statistic 

do(1000)*{ 
    boot.samp = sample(data, n, replace=TRUE) 
    statistic(boot.samp$var1, boot.samp$var2) 
} 

Using a  
Bootstrap Distribution 

hist(boot.dist) 
sd(boot.dist) 
percentile(boot.dist, c(0.025, 0.975)) 

Generate a Bootstrap CI resample(var1, var2) #level = .95 
 
 

CHAPTER 4 
Randomization Statistic: 
Shuffle one variable (x) 
Proportion 
Mean 

 
shuffle(x) 
coin.flips(n, p)  
mean(sample(y + shift, n, replace=TRUE)) 

Randomization Distribution do(1000)*one randomization statistic 
Finding p-value from a 
randomization distribution: 
Lower-tailed test 
Upper-tailed test 
Two-tailed test 

#rand.dist = randomization distribution 
#obs.stat = observed sample statistic 
tail.p(rand.dist, obs.stat, tail="lower")  
tail.p(rand.dist, obs.stat, tail="upper") 
tail.p(rand.dist, obs.stat, tail="two") 

Randomization Test via 
Reallocating 

reallocate(y, x) #tail="lower", "upper", "two" 

 
 

CHAPTER 5 
Normal Distribution: 
Find a percentile for N(0,1) 

Find the area beyond z on N(0,1) 
Find percentiles or area for any normal 

#tail="lower", tail="upper", tail="two" 
percentile("normal", 0.10)  
tail.p("normal", z, tail="lower")  
#add the optional arguments mean=, sd= 

  



R Users Guide - 25  Statistics: Unlocking the Power of Data 

CHAPTER 6 
Normal Distribution: 
Find a percentile for N(0,1) 

Find the area beyond z on 
N(0,1) 

 
percentile("normal", 0.10)  
tail.p("normal", z, tail="lower")  

t-Distribution: 
Find a percentile for t 

Find the area beyond t  

 
percentile("t", df = 20, 0.10)  
tail.p("t", df = 20, t, tail="lower")  

Inference for Proportions: 
Single proportion 
Difference in proportions 

 
prop.test(count, n, p0) #delete p0 for CI 
prop.test(c(count1, count2), c(n1, n2)) 

Inference for Means: 
Single mean 
Difference in means 

 
t.test(y, mu = mu0) #delete mu0 for CI 
t.test(y ~ x) 

Additional arguments 
p-values using tail.p 
p-values using prop.test or t.test 
Intervals using prop.test or t.test 

 
#tail="lower", "upper", "two" 
#alternative="two.sided", "less", "greater" 
#conf.level = 0.95 or confidence level 

 
 

CHAPTER 7 
Chi-Square Distribution 
Find the area above χ2

 stat 
 
tail.p("chisquare", df = 2, stat, tail="upper") 

Chi-Square Test 
Goodness-of-fit 
 
Test for association 

 
chisq.test(table(x)) #if null probabilities not 
equal, use p = c(p1, p2, p3) to specify 
chisq.test(table(x1, x2)) 

Randomization Test 
Goodness-of-fit 
Test for association 

 
chisq.test(table(x), simulate.p.value=TRUE) 
chisq.test(table(x1, x2), simulate.p.value=TRUE) 

 
 

CHAPTER 8 
F Distribution 
Find the area above F-statistic 

tail.p("F", df1=3, df2=114, F, tail="upper") 

Analysis of Variance summary(aov(y ~ x)) 
Pairwise Comparisons pairwise.t.test(y, x, p.adjust="none") 
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CHAPTER 9 
Simple Linear Regression 
Plot the data 
Fit the model 

Give model output 
Add regression line to plot 

 
plot(y ~ x) # y is the response (vertical) 
lm(y ~ x)   # y is the response) 
summary(model) 
abline(model) 

Inference for Correlation cor.test(x, y) 
#alternative = "two.sided", "less", "greater" 

Prediction 
Calculate predicted values 
Calculate confidence intervals 
Calculate prediction intervals 
Prediction for new data 

 
predict(model) 
predict(model, interval = "confidence") 
predict(model, interval = "prediction") 
predict(model, as.data.frame(cbind(x=1))) 

 
 

CHAPTER 10 
Multiple Regression 
Fit the model 

Give model output 

 
lm(y ~ x1 + x2) 
summary(model) 

Residuals 
Calculate residuals 
Residual plot 
Histogram of residuals 

 
model$residuals 
plot(predict(model), model$residuals) 
hist(model$residuals) 

Prediction 
Calculate predicted values 
Calculate confidence intervals 
Calculate prediction intervals 
Prediction for new data 

 
predict(model) 
predict(model, interval = "confidence") 
predict(model, interval = "prediction") 
predict(model,as.data.frame(cbind(x1=1,x2=3))) 

 
 


