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| stand between two worlds, am at home in neither, and in consequence have rather a hard time of it. You
artists call me a commoner, and commoners feel tempted to arrest me ...
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What Are We Trying to Do

N
, | » “How well does our model
- Advanced science often requires reproduce reality?”
advanced computer models.
P - “What is the true value of a given
. . . parameter?”
» These are expensive, complicated with y
many inputs and output and
may represent only our best guess J
at the underlying process . ’

- To be useful we need to calibrate these ety \
models so that they can reproduce \ \ & ALY
experimental data e ' Y o o

- Understand uncertainties and errors in
this process and build a systematic
model-data comparison
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A Typical Computer Mo

Inputs I nitial Conditions
Choice of Model Observable
Processing o Reality

Outputs I Comparison?
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A Typical Computer Model - The Weatherr—
e

/ emperatures
Inputs | < Pressures L
Initial Wind Speed ]
Condltlons Geography

Turbulence?

Resolution

Did it work?

Where? \

L What didn’t work"? l

What is most important?

Comparison®?
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We are parameter space explorers!

 Validation and verification, calibration and
sensitivity analysis all depend on knowing the
model output throughout the parameter space.

* Fundamental tension: rigor <-> results

« Want to minimize the computational cost and
maximizes the amount of useful information

gained
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- We can address the run-time issue by generating
a statistical model of the code, an emulator
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Exploration not Minimization
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What do | mean by a computer model?

Yy, w) = V(@) + e5(2)
Y. (z,u,) =Y, (x,u,) + b(z,u,),




What do | mean by a computer model?

Field Observations Field Observations

\ / Errors

Yy, w) = V(@ u) + ¢{2)
Y. (z,u,) =Y, (x,u,) + b(z,u,),




What do | mean by a computer model?

Field Observations ‘Reality’ Field Observations

\ / / Errors
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What do | mean by a computer model?

Field Observations ‘Reality’ Field Observations

\ / / Errors

Yi(x,ue) = Yo(x,us) + €f(x)
Yi(x,uy) = Y, (x,u.) + b(x, uy),
\ \

Model Output 3|as

Yoz, u) : RP= x RPv — RF




What do | mean by a computer model?

Field Observations ‘Reality’ Field Observations

\ / / Errors

Yi(x,ue) = Yo(x,us) + €f(x)
Yi(x,uy) = Y, (x,u.) + b(x, uy),

b(x
\ \

Model Output ~ Blas’

scary

Observation Yo (2,u) : RP x RPv — R
Parameters Calibration
Experimentally Well Param eters

Controlled Computationally Well

Controlled
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What do | mean by a computer model?

1

Field Observations Reality Field Observations

\ / / Errors

Yi(z,u.) = Yo(2,u.) + €4(2)
Yi(x,u) = Y (z,u,) + b(z,u,),
Model Output ~ Blas

scary

Observation Yoo (z,u) : RP* x RP* — R”
Parameters Callbratlon True value, unknown,
Experimentally Well Param eters u * may not beI best fitting
value

Controlled Computationally Well

Controlled
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Simple Vs Complex Codes

- Easy to make observations of .
the physical process

« Solving a set of simple .
equations, initial conditions
well known
« Deterministic .
- always certain we are .
solving the correct problem
 eQg: heat equation, diffusion
etc. | .

‘Engineering ‘problems’

Difficult to make multiple
observations, expensive

Complicated set of strongly
interacting equations. Initial
conditions may be uncertain.

may be somewhat Stochastic

may not be the correct formal
description of the
phenomenon!

eg. galaxy formation, heavy
lon collisions, climate

‘Research problems’
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High Energy Nuclear Ph

With H.Petersen (FIAS), S.Pratt (MSU)
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Nucleon structure I1s non
Nucleii Are Interesting trivial

Flash of
Lead light

block Microscope

Fluor n
oL uorescent

_.-----e @ ________ 9 screen
EEE B Scattering
angle

Polonium Gold
sample foil

MSTW 2008 NLO PDFs (68% C.L.)
~~1.2 T T T

xf(x,Q?

_Rutherford I

0.8

0.6

10 10° 1072 10" 1 10

1A =100,000 fm x
I
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Let’s Collide Nucleii At High Energies

~ . TANDEMS '

PHOBOS N ' ‘ j; ‘ RHIC:
' Brookhaven
National Lab NY

JENIX

@' counter-rotating
8 beams of ions
s from p to Au @
e #sNN-5 500 GeV

PP, PP, Pbe at 7 Tev

———

LHGC: C
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't goes bang

»
- A

‘€MS Expériment at the LHE, CERN

~

.. “Data recorded: 20‘1‘0-N9v-0§ 19:22:07.823203 GMT(11:22.072C

LY [ .
Run # Event: 150431 / 541464
_ LN

- «‘}h‘ .\

. X ~

-~

(c) CERN 2009. Al nghts reserved
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Matter Produced is a Quark Gluon Plasma

Ordinary Matter:

Phases of QCD matter:
* phases determined by

- heat & compress QCD matter:
(electro-magnetic) interaction

» collide heavy atomic nuclel
« apply heat & pressure to study « numerical simulations:
phase-diagram

liquid critical point

© arl |
= SEAAEES The Phases of QCD
A ‘ *(6‘ Future LHC Experiments
\ —
¢ ‘- -
= \ : =
- : ! 12
o solid phase sy !
o : conpressible \  sypercritical fluid
: liquid |
i
critical pressure | .
Per |
i
'
'
|
1
1
1

phase
p, [riple point ; gaseous phase !
P Critical Point
vapour i
Hadron Gas ;
critical Superconductor
temperature /
Tep Ter Matter Neutron Stars
> -
Temperature

9(.):) PI‘Q\/
Baryon Chemical Potential
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Record This With Detectors

DA CMS - LHC

Large-Q2 Tracking

TPC’s, Si-Vertex Tracking T\_v;mnumqu"us] _INNER TRACKER | | CRYSTAL ECAL |
RICH, EM Cal, TOF ' |

~420 Participants

Slll(ofl iﬂel
Coils Magnet rac ["VERY FORWARD |
/ CALORIMETER |
. | J
~E«M
” Calorimeter

MCAL

me Projection
amber

» Tﬂte Of

< EM:( mos

/ £ Forward Time Projection Chamber %

- Measurements of Hadronic Observables Total Weight  : 14,500 1., '
using a Large Acceptance Overall longth T 2100 m [ SUPERCONDUCTING GOL]
- Event-by-Event Analyses of Hadrons and Magnetic field : 4 Tesla —
Jets, Forward physics, Leptons, Photons =

some of the most complicated
machines ever built
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What do detectors detect? Particles

Raw Data

Recorded
Counts

Energy measurements

Hit positions & times

Tracks

Reconstructed

Particle Charges

Particle Identities

Particle Trajectories

Particle Momenta

Muon
Spectrometer

Hadronic
Calorimeter

Proton

Electromagnetic

.
Calonmeter :’Electron"
»

Solenoid magnet

Transition
Radiation
Tracking Tracker 3 c

Pixel/SCT
detector

.
Neutron /
: ¥

Neutrino

The dashed tracks
are invisible to
the detector

A" 'R A

5 -
rvbDeoian

http://atlas.

Thursday, March 20, 14



t’s Big Data

- LHC keeps about 25 Pb of data a year Y Large. Hadron Collider Data /Sear

25 000 000 6B

« 20 million PP collisions per second (40MHz) Tweets /Year

Human N)emory

- Use triggers (hardware/software) to cut
down to keep an interesting subset (300Hz)

{5 000 000 3 WOrH OF WOICFO\UC oervers

- Data rate to further processing ~ 500MB/s US Library ®
of Congress

* Tiered global distribution of the raw and ‘oL e
\ Wikipedial

progressively summarized data
2,500,000 B
Py,

, ——
PATA P pgyy R — ™

/IH numbers aﬂoroximafz. * 5inary Dafa.
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nuclear collision process

hadronic phase
QGP and and freeze-out

hydr nami nsion
initial state ydrodynamic expansio

re-equilibrium
P q hadronization

Challenges:

- time-scale of the collision process: 102* seconds! [too short to resolve]
- characteristic length scale: 107> meters! [too small to resolve]

- confinement: quarks & gluons form bound states @ hadronization, experiments don’t observe them directly

- The matter produced is Very hot ~ 500,000 x Solar Core ~ eN27 K
* Energy contained in a RHIC collision ~ 30 TeV ~ 6udJ

- Energy density at RHIC is ~ 5GeV / fmA3, at this density the yearly US energy use
would fit into a box 5pm on a side.
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Simulation of a collision

Time: 1.00

rapidity
5.9
5
2.5
0
2.5
&
-7/

'\

7l\xﬂADA/. us
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Simulation of a collision

Time: 4.00

rapidity
5.9
5
2.5
0
2.5
-5
-7/

Y

MADA.US
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Simulation of a collision

Time: 5.70

rapidity
5.9
5
2.5
0
2.5
&
-7/

Y

MADA.US

Thursday, March 20, 14



Simulation of a collision

Time: 6.38

rapidity
5.9
5
2.5
0
2.5
&
-7/

Y

MADA.US
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Simulation of a collision

Time: 7.02

rapidity
5.9
5
2.5
0
2.5
&
-7/

Y
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Simulation of a collision

Time: 9.36

rapidity
5.9
5
2.5
0
-2.5
-5
-/

Y
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Simulation of a collision

Time: 11.82

rapidity
5.9
5
2.5
0
2.5
&
-7/

Y
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Simulation of a collision

Time: 12.38

rapidity
5%.9

2.5
0
-2.9

-7/

Y

MADA.US
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Simulation of a collision

Time: 14.86

rapidity
55.9

Y

MADA.US
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Simulation of a collision

Time: 19.82

rapidity
5.9
5
2.5

Y
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Simulation of a collision

WY

7
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High Energy Nuclear Physics

@« R
Collision g b - ~
. heory | . 3 Initial State
kPredictionsj Model
* L Modeled ol
! Inform™ \ Quarklon
Particles '
4 ™\ 1
Raw Data : Simulation Simulation
N /  Reconstruct
& ' Inform
e ~ " YTy
Particle Data : i Quark Gluon
| Plasma
S / I | [T )

: -
Remove J Particles
Deteotor\r ; ~ / Model
Biases N )

Unfolded Data
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High Energy Nuclear Physics
4 =)
o 4 ) 4 )
Collision heory Initial State
- D VG N Drmr*lir\’rian\ Mode]
’
| QGP7? | f Modeled |
) VWe want to learn Quark Gluon
o Particles | @bout QGP g N
4 ) ~ N HydI'O \‘ Jet
Raw Data We can only Simulation Simulation
- &j Recony  observe its > , / 7 g
( . remnants - /' Modeled
Particle Data ~ '* o r N Quark Gluon
' Plasma
. y " Simulated Freezeout 9
Remove
ctor\f ~ Model

Dete

Biases

Unfolded Data

~

PaW
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High

—nergy Nuclear Physics

4 ™\ s — ~
heory | _ > Initial State
g Drmr*lin’rian\ Model
Modeled N
We want to learn p Quark Gluon
about QGP Plasma
éa ) HydrO Jet
V\/e can only Simulation Simulation
observe ItS
remnants o
> “~ Quark Gluon

(

<| Progress through calibrated

simulations

| Freezeout

”|  Model

Plasma

J

Thursday, March 20, 14



(Gaussian Process
—mulators

Theory and Practice
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(Gaussian Processes

A stochastic process
GP (u(-),C(,-)) : R" = R,
- Mean function: ,LL()

 Covariance function: C('7 )
+ve def

 Any finite marginalization is
MVN

P(CIZ‘l,CIZQ,CIZ'g) ~ MVN(ﬁ, K),

= (p(xr), p(xe), pw(xs))"
Kz‘,j = G(xzaxj)
- very flexible — |

, ArL = (t—t i)’ — |z — 2
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GP Emulators

00 02 04 06 08 1.00 1 2 3 4 5
X (arb) X (arb)

Unconditioned Draws Conditioned on training data
- A Gaussian Process emulator is a statistical approximation to a function.

- Condition a probability distribution for a family of functions (GP) to produce
samples which pass through a set of training points.

- draws are then a statistical approximation to the simulator

Rasmussen & Williams, “Gaussian Processes for Machine Learning” MIT Press
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Simple Example

y=5"exp(-3x)sin(10x)+2

e - _

training points
- - model
/,_~\\
4 .\
¢ IS T .
\\_.———’

1.0 N

0.0

0.5
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Simple Example

y=5%"exp(-3x)sin(10x)+2

LO —
/’ h
ToR , ‘\
/ \ ® Training points
,I . _\\ - = MOde|
. N —— Emulated mean
" N - — Confidence
<t —
> o
N —
o —

0.0 0.5 1.0 1.5
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—ssentlal Detalls

Condition a Gaussian Process on observations of model

Prior Mean from linear regression model, Prior Covariance from observations

Covariance function sets “weights” of nearby training points.

power exponential: , (x: ! )a
_ /
Cr(x,x',©) = 61 exp (— > oo )

Length scale (9@ sets sensitivity to fluctuations in model output

Theta = 0.1 Theta=1.5 Theta = 0.68

_|_
_|_

0o 1 2 3 4 5 0o 1 2 3 4 5 0o 1 2 3 4 5

Thursday, March 20, 14



Covariance Function

- Choice of C has influence on the shape of the predictive distribution.

ENTAYE'
- Power Exponential: Cf(x, X/, @) — 01 exp (_ Zl_ (x 92) )

— \ 01 I~
) . 21—91 291I’ 291r
Matern Class: Ce(r,©) = (07) o Ko, 05

Power Exponential Covariance functions

Matern Covariance functions

o |
@ |
© o
)| — theta_1=05
© _— thzt2_1=2
— theta_1=5
(D) D o
S O =
c 2 - c ©
S S
@ @
S <« 3 T
O o’ o °
(a\] AN
o o
[ I I I I I [ [ I I I I I - -.I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
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The posterior distribution (how it actually works)

« GP Prior: mean from linear regression, covariance defined by choice of
covariance fn and design.

» After conditioning on training data -> MVN posterior distribution.
in(x) = h(x)" 3+ e(x)C (y - HE) TR (0, )

- Mean mixes broad trends (linear regression) and local
fluctuations around these (correlation term).

S (x5, %;) = ¢(x1,%;) — e(x;)” Cle(x;) + D(xg, x;)

* Prior variance is restricted by a correlation term, gamma arises
from linear regression model.

Cij = (X4, ;)
)T

c(x)" = (c(x1,X),...,¢c(Xn,X))

“Bayesian Calibration of computer models” Kennedy & O’Hagan. J.R.Statist.Soc. B 63, 2001
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The posterior distribution

- Mean mixes broad trends (linear regression) and
local fluctuations around these (correlation term).

i(x) = h(x)" B +c(x)C" (y — HB)

y (arb)

egression Term + Emulator Term

—

RVad

Regression Term Only

Regression Term + Emulator Term + Correction

/

X (arb)

Thursday, March 20, 14



The posterior distribution

f}(xi,xj) = c(x;,X;) — C(Xi)TC_lc(Xj) + I'(x4, %)

* Prior variance is restricted by a correlation term, gamma arises
from linear regression model.

y (arb)

Prior Variance

6,

E AW

AR AY, -

Prior Variance + Emulator Correction

—6 -
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Influence of observation-noise / nugget

o° = 0.001 o° = 0.05 o°=0.1

c 1 2 8 4 50 1 2 3 4 50 1 2 3 4 5

Yin(z) = f(z) +2, R"—-R, 2z~ N(0,0%).
f(x) = sin(x) 4 2sin(2x) — 2sin(4x)
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Picking a design

Uniform Grid Latin Square
(e 0} c>o ° o} °
o ] o @ o c °
o o o o o
© o © o
o o °
> o o °
N ° ooo 3 o < o °© o
o 3 (@) (@) Oo o
AN _ o ° og o o o °
o ° o
o 2o° o o o ° :
T T T T T o o T T
0.0 0.2 04 0.6 0.8 0.0 0.4 0.8 0.0 0.4 0.8
X X X
« Should be space filling and efficient (i.e not a grid) / 123
. : . : 2 4 1
Details are not terribly important. Latin square based 31 4
deS|g nS are typ|Ca| 1\{[97%) McKay, R.J. Beckman, and W. J. Conover, Technometrics 21, pp. 239 \ 4 3 2

* Rough rule of thumb is at least 10 points per dimension.
J. L. Loeppky, J. Sacks, and W. ]J. Welch, Technometrics 51, 366 (2009).

T.]J. Santner, B. J. Williams, and W. Notz, The Design and Analysis of Computer
Experiments (Springer Verlag, New York, NY, 2003).
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Varying the number of design points
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Toy Example - The Ising Model

Emulator output for ising model, L=51.9, alpha=1.8

Log Likelihood surface for ising model

N
1_ + training points
_ 2 | e T e
©
5 S- 2
= 3
N © | £
T © e
c L)
O <
s S o
AN ! |
o A Al o | D
S % L 1 o o o o
. I
St l l =< <11l [
0 1 2 3 4 T 10 -5 0 5
Temperature(arb) |oga_rsrlg|létdur?y?)e%§r2\r/ncfe?ers
thetas = 0.0762, 1E-5, 0.0618
- Models the interaction of spins on a lattice. H = E JijSiSj
« Simple computational system, exhibits a phase transition. i3]
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—xploring the limits

- How complicated a scalar function can we emulate? An image
- How many training points can we deal with?

- Limited by numeric linear algebra ~ O(NA3)

512x512 8 bit grayscale image “lenna”

Emulator with 512 training points
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GP Resources

- Many R Packages on CRAN:

- MLEGP - fairly fast very easy to use, well documented, includes sensitivity
analysis

 gausspr - GP regression from the R core team

* tgp - Tree-GP’s an approach which allows several spatial scales, think
multi-scale-grids in FEM
* plgp, gpfit, gptk, &c &c ...

- SAVE: full package for Bayesian emulation, calibration and validation of
computer models

- The book: “Gaussian Processes for Machine Learning” by C.Rasmussen,
fulltext available free online.

- GPML code for GP regression and classification in matlab (from the book)
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R T § Do i Y A S e A T v WG, o 10

- O - - - - —

Tam W —_ Ty

A Simple Example:
UrQMD

AV WA FONELN Lot r Sl e o4 gy it S NEN

D ST, g b T LIS ) Be SO DRV A o BRW LS TS S
B NEE R RN A 4w - TR o b " -
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UrQMD - A real analysis

- Hybrid simulation of heavy ion collisions.
Microscopic transport coupled to hydrodynamical
model of QGP.

- Switch from hadronic transport model to hydro code at some time: Tstart

- Particle distributions are smoothed into inputs for hydro, Gaussian
smoothing width: &

- How does code output depend on these choices?
- Typical runs ~ 3 hours for 1 event, need 100 events per design point.

- Elicited appropriate ranges, sampled a latin-hypercube design of 30
points.

« 3 days runtime on OSG ~ 9-10 kHrs of computation

http://www.urgmd.org  http://www.opensciencegrid.org Petersen.H et al. Phys Rev.C 78 (2008)
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Constraining the initial state granularity with bulk

observables in Au4Au collisions at /sxy = 200 GeV

U rQM D Hannah Petersen'. Christopher Coleman-Smith'?, Steffen A.

Bass' and Robert Wolpert®

3.0

Emulated n(pi+) at mid rapidity Sqgrt(var)
=
Lo
Al
o
Al
© ©
- E o
(@ o -
n /)]
o
o
O training © O training
* wiheld \\\ =
g |§\7R\l - I65\ | 55| B
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5
tstart tstart

2d parameter space, scalar output.
Expect n(pi+) ~ 300 there is a large band satisfying this.

Published: Petersen et al, J.Phys.G38: 045102, (2011)
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UrQMD - Validation

* Repeat analysis, withhold 5 of the 30 training points.
Emulated n(pi+) at mid rapidity
. — E(m(zi)|y:)

N Y
E?“’I“(yz) — \/V ZL’Z |y@)

Errors

2.5 3.0

sigma

2.0

sigma
1.5

O training
X witheld

1.0

0.0 0.5 1.0 1.5 2.0 25 30| 2
tstart
o
Expect deviations to be Student-T ° oo 05 " J 2.0 25 30
distributed tstart
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UrQMD Comparison with Experimental Data

Emulated n(pi+) at mid rapidity Sqrt(var)

3.0

Pion Yield at mid rapidity, UrQMD and data

25

T o UrQMD Runs © © ;
o | A STAR 2003 % %e
© ] _ o o —_ .0.0 0.5 1.0 tsl;rt 2.0 2.5 3.0 ° 0.0 0i5 1i0 tsl‘;rt 2i0 2i5 3.0
o - T T O ) .
» B - % T - o « We actually have information about the
2 To - uncertainty and we should use it!
pd o __ - © : :
8 - o | _0° -] - Systematic and Stat errors in reported
T;; o o 77 E) '"—'—'"'""""_'_"'_'_'LL'"'"'—'—' """""" data
s _ j T 1 o ——T ol 0T T - Systematic and Stat errors from the code.
® | R IO P ol ... Oge.. T _. _
- o = __T 7 1L T{j T « The variance from the emulator
T T T l © l L -+ ° © E Z 2
g4 ° j o | I 72 — (Elyemu] — Z)
L1 Var(model) 4+ Var(data) + Var(emu)
[ I I I I I I
0 5 10 15 20 25 30
runNumber
bars indicate statistical & systematic errors « Use all this information to slice up the
parameter space into “possible” and “not-so-
Adams et al (STAR 2003), nucl-ex:0310004v1 possible” regions
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Feasibility, including all known error sources Emulator + Data Errors

Q
™
o
-
d R | | | | |
0.0 1.0 2.0 3.0
c tstart (fM/C)
©
Emulator + Urqmd Errors
Q
™
Q
— QN
£
° o
-
Q
o

0.0 0.5 1.0 1.5 2.0 2.5 3.0

tstart (fm/ C)
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Functional

Data

GENERAL

—
>

wj{] F\ i

[ —

DYNAMICS

N

!-42‘
) L

annual report 1955
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Functional data, multivariate output.

What if model output is a vector?

Emulate each component separately.

- Not ideal for large dimension
vectors

- May lose correlation between
components.

Principle Components

Transform data to an orthogonal
basis which maximizes variance in
each direction.

Create orthogonal emulators of
descending importance.

0.4

0.2

-0.4 -0.2 0.0
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Principle Components (PCA) - An Aside

+ Construct an orthogonal & independent basis from our observations.
- Suppose cpts of vectorial observations are sampled from an MVN

Yi = {yi,---,yn}t ¥;~ MVN(,&, i) (i) = %Z(yz’)j

.

> = E(y: — i) (v — i)

* An eigendecomposition of the sample-covariance matrix, provides this basis.
> =UAU"

 Eigenvectors for largest eigenvalue provides direction with largest variance.
« Successive eigenvalues correspond to less “various” directions.
« Only need to keep the top r eigenvalues. 1

* Project observations onto this basis L, = —U,,T(Y — Ia)
* Now construct emulators for each cpt of Z. V ir

Y*~ g+ U/A-Z,
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Watch out for Outliers

« Eigendecomposition is very sensitive to outlying points

o

* perturbation due to outlying points « |

> &Y+ €V + O(?)

3.0

2.5

2.0

Vs = (=271 Yts = 20tV + Ve Yo + Btafis) -

Al
-

y2
1.5

Va,ﬂ = IQﬂﬁ (ﬂa - Yooflt) + 2l (ﬂﬁ - qut) + (K?itﬂit - ﬂaﬂﬂ)} .

1.0

0
o

- New matrix elements are proportional
to extent that points outly the trend _

o
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Plon Spectra -

PCA

Top 4 evs are 99.6236% of total

showing the first few principle cpts

o
Q
- ____o——o—° g
o—0 ©
o O/ E : : <
S igenvalues give variance S
° described by each component
N
o
o %’%_ - pion spectra
=) o
E — T~
2 N
< o
L 8 =
5
o
o
8 —
Eigenvectors are orthogonal,
S S higher order terms are purely
- © noise.
3> 8-
o) (ep]
[ [ [ [ [ [
| 1 2 3 4 5 6

N
200
l

100
l

Centering and scaling the data improves emulator
and PCA performance.
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Principle Components - Joint Implausibility

- Emulators are constructed P.C space, independent.

- Mutual covariance matrix is therefore diagonal. Can predict variance at any
new location (diagonal matrix).

- Rotate this cov-matrix back to ‘observable space’. We can predict the full
covariance matrix at any location in the parameter space.

Kij(x) = Covlyi(m),yj@dl ~ Y U U ALS VarlZg(:)),
a,B,v=1
« Use this to construct the joint implausibility.

T2 (x) = (E[Yy] = m(x)) (Kij(x) + V[Ys]) " (B[Yf] —io(x))

 This gives a just-smart-enough measure of how the model deviates from the
field data
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Galaxy Formation
ChemTreeN

With F.Gomez (MSU), B.O’Shea (MSU),
R.Wolpert
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ChemtreeN

A galaxy formation model, captures the interplay of gravitational
(darkmatter) and nuclear physics (star formation life-cycle etc)

* A hybrid code:

* First: darkmatter only simulations model bulk gravitational structure. This
is an N-body tree code. Very Slow. Supercomputer Slow.

A discrete set of differential equations models the baryonic evolution.
Fastish (relative to N-body)

- Goal is to understand the relative importance of the baryonic and
darkmatter evolutions.

« Attempt this by exploring the influence of varying the parameters in the
baryonic sector combined with using a small set of N-body histories.
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z = 48.4 T = 0.05 Gyr

The darkmatter component

Merger trees

'500 kpc

al w

ioadividual parest hados. Sholag throwh the tree hoviscetally givs th stributen of mases i the
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Zz = 36.0 T = 0.08 Gyr

The darkmatter component

Merger trees

| |
' 500 kpc



z = 30.8 T = 0.10 Gyr

The darkmatter component

Merger trees

| |
' 500 kpc



Z = 24.3 T = 0.14 Gyr

The darkmatter component

e .
|
:

Merger trees

‘4’
| |

r 3
500 Kkpc
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z = 20.3 1= 0118 Gyr

|

The darkmatter cemponent
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The darkmatter component.
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The baryonic component

Dark Energy
Accelerated Expansion

Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.

r:." ' h—-‘\ dn'fi .

! -84 m&
|

e

0t m

S

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years
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Astrophysical processes modeled:
ChemTreeN (Tumlinson 2010)

Shock heating & radiative cooling

- Photoionization squelching Particle tagglﬂg
- Star formation (quiescent & burst) to distribute stars:
- SN heating & SN-driven winds e.g. 59 most bound

Chemical evolution

Stellar populations

TABLE 2
MODEL PARAMETERS.
Parameter Fiducial Value Range Description Explored
Zr 10 5-19 Epoch of re-ionization Yes
Joary 0.05 0-0.2 Baryonic mass fraction Yes
Sesc 50 0-110 Escape factor of metals Yes
€ x 1 x 10719 02-1.8 Star formation efficiency (10710 yr~1) Yes
mi 0.07 0.04-0.2 SN I iron yield (M) Yes
f1a 0.015 e SN Ia probability No
ESN 0.0015 S SNe energy coupling No
m{j‘e 0.5 e SN Ia iron yield (M) No

Thursday, March 20, 14



ChemTreeN Analysis

CHARACTERIZING THE FORMATION HISTORY OF MILKY WAY-LIKE STELLAR HALOES WITH MODEL
EMULATORS

FACUNDO A. GOMEZ

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA and
Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI 48824, USA

CHRISTOPHER E. COLEMAN-SMITH
Department of Physics, Duke University, Durham, NC, 27708, USA

« Controlled experiments: Take true “parameters” from model itself. 3 parameter design

Lobs = (Zry Jesc) fbary) = (10, 50, 0.05).

5 values from the Luminosity Function (LF)

* Intercept and slope of the Luminosity-Metallicity relation

Training set:
/ observables

10°
A>
2 1
V. 10
Z.

10°

200 models
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Columns are Luminosity Bins

ChemTreeN - |mp‘aus|b|||ty (separate emulators),

Rows are projections

Difficult to
constrain
parameters
with
individual
emulators

10 30 SfQ 70 90 10 30 SP 70 90 10 30 SfQ 70 90 10 30 SfQ 70 90 10 30 5fQ 70 90

€sC €SC €SC €sC €sC
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Columns are slices in parameter space

ChemTreeN — JOiﬂt ‘mplaUSAbl‘lty Rows are projections

Joint
Implausibility
gives a scalar

field over
parameter
space

4

Strongly
constrains
parameters

20 40f60 80 100 20 4Of60 80 100 20 40f60 80 100 20 40f60 80 100 20 40f60 80 100

€SC €SC €SC €SC €SC
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Calibration
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Inference about calibration parameters ‘U 4

V(o u.) = Yi(z,u.) + ()

Yo (x,u,) =Y, (x,u,) + b(z,u,),

- Combine field observations Yf and model observations Ym to infer something
about the calibration parameters

* Field observations
Yr = (Yf(xl)w--vyf(xn))7 L EZDJC
* Model observations
Y=Yz, u1),...,.Ye(zm,um)), z; €D
* Do not have to be made at the same design points

D. Higdon, M. Kennedy, J. Cavendish, J. Cafeo, and R. Ryne, SIAM Journal
on Scientific Computing 26, 448 (2004).
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HPD lower (95%) mean HPD upper (95%)

Fast Faithful Model

0.089
0.556

0.5
0.629

0.911
0.707

prior
posterior

< <
ol | ol |
a o
ol | ol
5 o { \}~ S o
X ol | }\ X ol |
= X } =
«© | E «© | “
& ____——""__ S
© 1 ©c |\ M= "c---------
- ] | | | | - | | | |
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
u u
I I I [ I I I [
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

» Model can be evaluated for no cost & accurately reproduces reality
Yi(z;) = Yiu(xi, uy) + €(x;),
- Likelihood for field observations
L(ys | Yin(us))ocexp {
* Picking some sensible prior

T (e | yp) o L(Ys | Yin(us)) 7 (us),

1=1...n,

—%(yf — Ym(u*))TEf(yf - Ym(u*))

3
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Slow Faithful Model

- Simulator is too slow, we can only observe it at some finite set of locations

Y = (Ym(xl,ul), . ,Yf(ﬁl?m,um)), Tr; € D

* Introduce augmented field and model vector T
& = (yf7 yT)T

« observation likelihood is now |

L(Z ‘ Ux,y WU, Amaﬁma Zf) OC‘ZZ‘_UQ eXp {_5 (Z o M]In—i—d)-r Zz_l (Z T /’L]In—l—d)} ’

Zz:Zm—l_<Zf O)a Z'm,:(zz'/l'fyf nyy)
0 0 STy S

- We have placed a GP prior on the simulator output

C((x,u), (x',u")) = iexp {_ Zx: (wp — xp)° B Zu] (ukm— u;{)o‘}

k=1 (6}T>a k=1 ( px+k)a
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Slow Faithful Model

Posterior mean
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Slow Faithful Model

Yo (x,u) = bz’ exp(—3x*)sin(z —u) +2, =z ¢€]0,2]

2.4
2.4

2.2
|
o
2.2
|

2.0

/
y(x,u)
2.0

y(x,u)

1.8

1.6
1.6

1.8

32 training points HPD lower (95%) mean HPD upper (95%)

prior 0.089 0.5 0.911
posterior 0.462 0.629 0.868

Thursday, March 20, 14



MSU 3+1d Hydro Analy

With S.Pratt (MSU)

/ ~ ? =
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Calibration of MSU 3+1d viscous hydro

* A 3+1d event averaged viscous hydrodynamics code with a hadronic
afterburner.

 Design includes parameters which control the initial state energy and flow
distributions and the viscosity during the hydro evolution.

- Extensive RHIC experimental data set was collected, these data were
empirically reduced to a set of 15 summary variables.

- GP emulator trained on a PCA decomposition of the 15 model output
summary variables

- Calibration was carried out using MCMC with a very simple likelihood model

1 (MY (x) = P2
L(X)ocexp<—§z > .

/

1+ o2

e
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© dimensional design

parameter description range
(dE/dy)pp | The initial energy per rapidity in the diffuse limit compared to measured value in pp collision 0.85-1.2
Osat This controls how saturation sets in as function of areal density of the target or projectile. In |30 mb—50 mb
the wounded nucleon model it is assumed to be the free nucleon-nucleon cross section of 42 mb
fun Determines the relative weight of the wounded-nucleon and saturation formulas for the initial 0-1
energy density described in (3, 4)
Faow Describes the strength of the initial flow as a fraction of the amount described in (7) 0.25-1.25
n/s|r. Viscosity to entropy ratio for T'= 170 MeV 0-0.5
0" Temperature dependence of n/s for temperatures above 170 MeV /¢, i.e., 0-5
n/s =n/slr. + aln(T/T.)

TABLE I. Summary of model parameters. Six model parameters were varied. The first four describe the initial state being
fed into the hydrodynamic module, and the last two describe the viscosity and its energy dependence.

Analyzed 0-5% and
20-30% centrality
classes
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Comprehensive RHIC data set
observable p: weighting centrality | collaboration |uncertainty
Vg n+n— |ave. over 11 p; bins from 160 MeV/c to 1 GeV/c| 20-30% | STAR" [45] 12%
Rout ave. over 4 p; bins from 150-500 MeV /c 0-5% STAR [46] 6%
Rside ave. over 4 p; bins from 150-500 MeV /c 0-5% STAR [46] 6%
Riong ave. over 4 p; bins from 150-500 MeV /c 0-5% STAR [46] 6%
Rout ave. over 4 p; bins from 150-500 MeV /¢ 20-30% | STAR [46] 6%
Rside ave. over 4 p; bins from 150-500 MeV /c 20-30% | STAR [46] 6%
Riong ave. over 4 p; bins from 150-500 MeV /c 20-30% | STAR [46] 6%
(Pe) ot 200 MeV/c < pr < 1.0 GeV/c 0-5% |PHENIX [47]| 3%
(D) jes e 400 MeV/c < py < 1.3 GeV/c 0-5% |PHENIX [47]| 3%
(Dt} 600 MeV/c < p; < 1.6 GeV/c 0-5% |PHENIX [47]| 3%
(De) ot 200 MeV/c < p; < 1.0 GeV/c 20-30% |PHENIX [47]| 3%
(D6 jes o 400 MeV /e < py < 1.3 GeV/c 20-30% |PHENIX [47]| 3%
(De) o 600 MeV/c < p; < 1.6 GeV/c 20-30% |PHENIX [47]| 3%
atr yield 200 MeV/c < pi < 1.0 GeV/c 0-5% |PHENIX [47]| 6%
ntr” yield 200 MeV/c < p: < 1.0 GeV/c 20-30% |PHENIX [47] 6%

TABLE II. Observables used to compare models to data. "To account for non-flow correlations, the value of ve was reduced
by 10% from the value reported in [45].

Model was actually calibrated
against flow, yields and pt spectra.
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Slue curves are draws from the
Results posterior distribution

protons
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Sensitivity Analysis
With F.Gomez (MSU)
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Sensitivity Analysis

- Difficult to visualize output for models in > 2 dimensions
- Calculate how sensitive model output is to varying inputs.

- Decompose output into main-effects and interactions

d
y=n(x)=EY)+ > z(x)+ > zij(xij)+ Y zija(Xijk) + ...+ 212, 4(x)
=1

1<J 1<j<k

zi(xi) = E(Y | xi) — E(Y),
ii(xii)=E(Y | xij)—zi(xi)) — zi(x;) — E(Y), . .
2 (Xi.j) (Y Ixij) = 2i(x) = 20g) = E(Y) - A similar decomposition of
the model variance is also

possible

ECY %) = [ 104G pip(x-p | %,)

—p

This is relatively hard to compute with an
arbitrary model. Easier for emulator.
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Main Effects
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Main
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Variance decomposition
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Summary

- Cutting edge science requires expensive computer experiments
- Computer models should be calibrated to experimental data

- GP Emulators are a good way to interpolate sparse (smoothish) data with
iInput in high dimensions

« Sensitivity Analysis is a useful tool for examining your model

- High dimensional (non convex) joint distributions are difficult to analyze and
should be treated with caution.

 This inherently probabilistic approach to interpolation makes inserting an
emulator into a larger workflow (calibration, sensitivity analysis, validation)
relatively easy
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=stimating HPD Regions

- Post model calibration we have a posterior distribution for the model output
over the parameters of interest

 This joint distribution embodies all we have learnt about the model

 can be hard to interpret, may be high dimensional with non trivial
relationships between the parameters

- Simplest question we might ask, what is the shape of the “most
probable” (Highest Posterior Density) region.

* A(1-a)100% HPD region is the minimal volume set with posterior
probability (1-q)

- Is it convex? Simply Connected?

* |n >1d these are not trivial to find
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HPD Estimation with polyhedra

* Polyhedra are a natural way to discretize
bounded sets

« Develop a stochastic process of polyhedra
to estimate HPD regions in a complex data
set

+ Respects discrete nature of the data,
posterior distribution of HPD regions is given
In terms of closed sets

 Easily extended to multi-modal data

- Build a stochastic process of polyhedra and
use MHMC to develop this into a process of
HPD regions
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Preliminary Results

10

-10

Consecutive samples
from Markov Chain of Random draws from
polygons posterior distribution of

HPD regions

Thursday, March 20, 14



Multiple Polygons

Polygons own the
N I set of points they
B A contain.
e Overlapping point
a N sets are owned on
i a first-come-first
? - served basis
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Flow Coefficient Experiment (in progress)
With R.Wolpert (Duke), S.Bass (Duke), U.Heinz (OSU)
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Collision Geometry - Elliptic Flow

Reaction Z/

plan
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"_,) [ 4 “low is driven by
pressure gradients
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—M. Gehm, S. Granade, S. Hemmer, K, O’Hara, J.
Thomas - Science 298 2179 (2002)

Thursday, March 20, 14



Flow Coefficients

Final-State particle distributions
may be correlated with initial state
energy distributions

Measuring Flow Coefficients gives
Insight into collision geometry

— X 1+22vncosn(gb—<1>n),

n=1




Flow Analysis Computer Experiment

- Experimental data now available for Vn distributions, measured &)
on a per event basis, used to be averaged over many collisions) > U

- Data available for many centrality classes. Try to model the centrality
dependence along with the rest of the physics.

- VISHNew fluid dynamics + particle transport state of the art model. End to
end simulation, collision -> hydro -> final state particle production

A large set of calibration parameters, including fundamental properties of the
QGP: shear-viscosity to entropy ratio.

« Use this new data set to calibrate the model and infer distributions on the
shear-viscosity to entropy ratio. Never been rigorously done before

- Model-Data based Inference is the only way we can learn about this.
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Transport Model Parameters
Parameter Values
superMC
model Glauber or KLN
normalization factor 20-60 [GIb], 5-11 [KLN]
wounded nucleon / binary collision 0-1 [Glb] L -
N Collision Model
equation of state discrete choices Deta”S
shear viscosity 1/S ~ 0.08 [GIb], 0.16-0.20 [KLN]
thermalization time 7g 0.2-1.0 fm FlUl d
switching energy density Fgec ~ 0.502 GeV /fm?
relaxation time VisBeta 0.3-1.0 Tran Sport
Table 1: Input parameters for the initialization and hydro models. mOdel

9 Important Parameters

2 Discrete
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—Xperimental

Data
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Figure 10. The probability density distributions of the EbyE v,, in several centrality intervals for

n = 2 (left panel), n = 3 (middle panel) and n = 4 (right panel).

The error bars are statistical

uncertainties, and the shaded bands are uncertainties on the v,-shape. The solid curves are distri-

butions calculated from the measured (v,,) according to eq. (1.6). The solid curve is shown only for

0-1% centrality interval for v, but for all centrality intervals in case of v3 and vy.
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Modeling the experimental data

ATLAS suggests Bessel-Gaussian for Vn distributions (not a very good fit)

use GRW distribution, fit experimental distributions of flow coefficients

ay—1 Q
Q X —m X — m
x( m’s’“’”):rs\rm( s ) ex"{‘( s )}
Y v 2 0-5% cent.

gives a better handle on expt-model comparison

[
25

20

- fit model output with same process

15
I

» build a likelihood for the model fit-parameters

Now we can compare estimates of a few

numbers instead of entire functional forms
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