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What Are We Trying to Do

• Advanced science often requires 
advanced computer models. 

• These are expensive, complicated with 
many inputs and output and 
may represent only our best guess 
at the underlying process

• To be useful we need to calibrate these 
models so that they can reproduce 
experimental data

• Understand uncertainties and errors in
this process and build a systematic
model-data comparison

• “How well does our model 
reproduce reality?”

• “What is the true value of a given 
parameter?”
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A Typical Computer Model

Inputs

Processing

Outputs

Observable 
Reality

Comparison?

Initial Conditions

Choice of Model
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A Typical Computer Model - The Weather

Inputs

Processing

Outputs

Comparison?

Initial 
Conditions

Choice of Model

Temperatures
Pressures
Wind Speed

Geography

Turbulence?
Resolution

...

Did it work?

What didn’t work? 

Where? 
What is most important?
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We are parameter space explorers!	 

• Validation and verification, calibration and 
sensitivity analysis all depend on knowing the 
model output throughout the parameter space.

• Fundamental tension: rigor <->  results

• Want to minimize the computational cost and 
maximizes the amount of useful information 
gained

• We can address the run-time issue by generating 
a statistical model of the code, an emulator

Theoretical
PhysicsReality Computer

Model Emulator

Experiment Calibration
Parameters

F����� �.�: A schematic representation of the connections between reality, theory, experi-
ment, our computer model or simulator, and the statistical emulator or surrogate we will
create of it.

observations as Y
f

px, u‹q then

Y
f

px, u‹q “ Y
r

px, u‹q ` ✏
f

pxq (1.2)
Y

r

px, u‹q “ Y
m

px, u‹q ` bpx, u‹q,

where ✏
f

pxq represents the error in the experimental observations and bpx, uq is
some unknown function representing the discrepancy between our model and re-
ality. This is all well and fine however we generally have no idea what u‹ should be
and so we have to evaluate Y

m

over a range of values of u. Furthermore the func-
tional form of b is strongly confounded with u, for di�ering values of u the model
will produce varying output changing the form of b. The form given in (1.2) was
first promulgated by Kennedy and O’Hagan [5]. Though this is by no means the
only possible formulation it is a reasonable place to begin for most simulators.

With the information we have it is impossible to uniquely determine both u‹
and the correct form of b. Imagine two people with weights ✓

1

, ✓
2

standing on a
scales at the same time, the measured weight would be

y “ ✓
1

` ✓
2

.

No matter how we repeat the process or the values of the two weights we will not
be able to make a sensible estimate of either one with only observations of y. In
this case the quantities ✓

1

, ✓
2

are not statistically identifiable. Of course if were to
able to hold one weight fixed (✓

1

say ) while systematically varying the other we
would be able estimate ✓

1

. However this is a rather di�erent situation since the
systematic variation of ✓

2

promotes it from a random quantity to a certain one.
Returning to the (1.2) we can make certain choices of prior distribution for the

discrepancy which attempt to balance the functional form of b so that its influence
is “small” relative to that of the computer model Y

m

. This is reasonable since we
typically have a fairly large number of observations of the computer model output
across the x, u space, although this is typically biased towards the u side of things,
and a far smaller number of experimental observations since these are typically
drastically more expensive to obtain than most computer models.

4
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 Exploration not Minimization
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drastically more expensive to obtain than most computer models.

4
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across the x, u space, although this is typically biased towards the u side of things,
and a far smaller number of experimental observations since these are typically
drastically more expensive to obtain than most computer models.

4
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Simple Vs Complex Codes

• Easy to make observations of 
the physical process

• Solving a set of simple 
equations, initial conditions 
well known

• Deterministic

• always certain we are 
solving the correct problem

• eg: heat equation, diffusion 
etc.

• ‘Engineering problems’

• Difficult to make multiple 
observations, expensive

• Complicated set of strongly 
interacting equations. Initial 
conditions may be uncertain.

• may be somewhat Stochastic

• may not be the correct formal 
description of the 
phenomenon!

• eg: galaxy formation, heavy 
ion collisions, climate

• ‘Research problems’
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High Energy Nuclear Physics
With H.Petersen (FIAS), S.Pratt (MSU)
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Nucleii Are Interesting

Rutherford

Nucleon structure is non 
trivial
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RHIC
BRAHMSPHOBOS

PHENIX
STAR

AGS

TANDEMS

Helen Caines -XVth UK Summer School - Sept. 2009 22

1 km

v = 0.99995⋅c

counter-rotating 
beams of ions 
from p to Au @ 
√sNN=5-500 GeV

RHIC - a collider

Wednesday, September 16, 2009

Let’s Collide Nucleii At High Energies

RHIC: 
Brookhaven 

National Lab NY

LHC: CERN  

pp, pPb, PbPb at 7 TeV
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It goes bang
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Matter Produced is a Quark Gluon Plasma

Ordinary Matter:
• phases determined by 

(electro-magnetic) interaction
• apply heat & pressure to study 

phase-diagram

Phases of QCD matter:
• heat & compress QCD matter:
‣collide heavy atomic nuclei

• numerical simulations: 
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Record This With Detectors

Helen Caines -XVth UK Summer School - Sept. 2009 35

STAR
 Solenoidal field

 Large-Ω Tracking

TPC’s, Si-Vertex Tracking

RICH, EM Cal, TOF

~420 Participants

•  Measurements of Hadronic Observables 
   using a Large Acceptance
•  Event-by-Event Analyses of Hadrons and 
   Jets, Forward physics, Leptons, Photons

PHENIX
Axial Field

High Resolution & Rates

2 Central Arms, 2 Forward Arms

 TEC, RICH, EM Cal, Si, TOF, µ-ID

~450 Participants

• Leptons, Photons, and Hadrons in Selected
  Solid Angles
• Simultaneous Detection of Various Phase 
  Transition Phenomena

RHIC - the two “large” experiments

Wednesday, September 16, 2009

some of the most complicated 
machines ever built

Text

CMS - LHC
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What do detectors detect? Particles

• Counts

• Energy measurements

• Hit positions & times

• Tracks

Raw Data 
Recorded

• Particle Charges

• Particle Identities

• Particle Trajectories

• Particle Momenta

Reconstructed
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It’s Big Data

• LHC keeps about 25 Pb of data a year

• 20 million PP collisions per second (40MHz)

• Use triggers (hardware/software) to cut 
down to keep an interesting subset (300Hz)

• Data rate to further processing ~ 500MB/s

• Tiered global distribution of the raw and 
progressively summarized data
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nuclear collision process

Challenges:
• time-scale of the collision process: 10-24 seconds! [too short to resolve]
• characteristic length scale: 10-15 meters! [too small to resolve]
• confinement: quarks & gluons form bound states @ hadronization, experiments don’t observe them directly

initial state

pre-equilibrium

QGP and
hydrodynamic expansion

hadronization

hadronic phase
and freeze-out

• The matter produced is Very hot ~ 500,000 x Solar Core ~ e^27 K 

• Energy contained in a RHIC collision ~ 30 TeV  ~ 6µJ 

• Energy density at RHIC is ~ 5GeV / fm^3, at this density the yearly US energy use 
would fit into a box 5µm on a side. 
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Simulation of a collision

Thursday, March 20, 14



Simulation of a collision
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Simulation of a collision
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Simulation of a collision
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Simulation of a collision
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High Energy Nuclear Physics 

Raw Data

Unfolded Data

Particles

Remove
Detector
Biases

Particle Data

Reconstruct

Theory 
Predictions

Inform

Modeled
Quark Gluon 

PlasmaFreezeout 
Model 

Simulated 
Particles

Inform

Jet 
Simulation

Initial State 
Model

Hydro 
Simulation

QGP?

Collision

Modeled
Quark Gluon 

Plasma
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Unfolded Data

Particles

Remove
Detector
Biases

Particle Data

Reconstruct

Theory 
Predictions

Inform

Modeled
Quark Gluon 

PlasmaFreezeout 
Model 

Simulated 
Particles

Inform

Jet 
Simulation

Initial State 
Model

Hydro 
Simulation

QGP?

Collision

Modeled
Quark Gluon 

Plasma
We want to learn 

about QGP

We can only 
observe its 
remnants
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High Energy Nuclear Physics 

Raw Data

Unfolded Data

Particles

Remove
Detector
Biases

Particle Data

Reconstruct

Theory 
Predictions

Inform

Modeled
Quark Gluon 

PlasmaFreezeout 
Model 

Simulated 
Particles

Inform

Jet 
Simulation

Initial State 
Model

Hydro 
Simulation

QGP?

Collision

Modeled
Quark Gluon 

Plasma
We want to learn 

about QGP

We can only 
observe its 
remnants

Progress through calibrated 
simulations 
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Gaussian Process 
Emulators
Theory and Practice
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Gaussian Processes

• A stochastic process

• Mean function: 

• Covariance function: 
+ve def

• Any finite marginalization is 
MVN

• very flexible

F����� �.�: A realization from a Gaussian Process model of a massless relativistic scalar
field in 1 ` 1 dimensions. The GP has mean zero and covariance function given by (3.10).
The dashed lines are drawn along null (light-like) directions, it is interesting to note that
the fluctuation structure is fairly well correlated with these directions.

where for now we have assumed that we can make observations of the computer
model output without any noise or uncertainty and that the model output is uni-
variate and real. We will use a Bayesian approach to develop a statistical model
of the output of the code, an emulator. This is done by taking a Gaussian process,
with a given covariance function C and mean µ, as the prior distribution for the
simulator output and conditioning it a set of observations of the simulator.

Let us denote the design, the set of d points in the parameter space where the
model has been evaluated, as

D “ tx
1

, x
2

, . . . , x
d

u, x
i

P Rn. (3.12)

The vector of d outputs evaluated at these points is

Y “ pY
m

px
1

q, Y
m

px
2

q, . . . , Y
m

px
d

qq . (3.13)

Our GP prior amounts to Y
m

| C, µ „ GPpµ,Cq, we can update this prior with
our set of observations pD,Yq to obtain a posterior distribution for the simulator
output Y‹ at some yet untried set of k points X‹ “ tx‹,1

, . . . , x‹,k

u . Our observations
of the model output represent a finite marginalization of our GP prior, as such they

32

3. The vector
z “ µ ` Su (3.8)

where u is a vector of k standard normal samples, i.e. u
i

„ Np0, 1q, is the
desired sample from the GP.

We directly see that the vector z has the correct expectation Erzs “ µ. The covari-
ance of z is also correct

covrzs “ Erzz|s “ ErSupSuq

|
s,

“ SEruu|
sS|

“ SS|
“ C. (3.9)

Some illustrations of samples drawn from GP’s can be see below in Fig: 3.8 and
Fig: 3.9, a more complex example is shown in Fig: 3.1. Here a GP is used as a
model for the space-time fluctuations of a massless relativistic scalar field in 1 ` 1

dimensions. The GP has mean zero and covariance function

Cpx, yq “

1

2

`
iG`

px, yq ` iG´
px, yq

˘
, (3.10)

G˘
px, x1

q “

´i

4⇡2

1

�x2

˘
, �x2

˘ “ pt ´ t1
˘ i✏q2

´ }x ´ x1
}

2

where G˘
px, yq are positive and negative frequency massless free-field Green func-

tions. In Wightman’s axiomatic construction of QFT [161] one can show that the
two point function of the field itself W px, yq “ x0|�pxq�pyq|0y is itself positive defi-
nite, which could also be interesting to simulate.

Practically one may need to add a vector of random noise w with w „ Np0, ✏q
and ✏ ! 1 to the diagonal of the covariance matrixC. The eigenvalues of covariance
matrices usually fall o� very rapidly which can make the Cholesky decomposition
numerically unstable. This adds noise with variance ✏2 to the generated samples,
however one can usually select a su�ciently small value of ✏ such that the linear
algebra converges without appreciably changing the samples.

This Cholesky decomposition based method is Opk3

q, for very large values of
k the linear algebra may become unstable and computationally impractical. There
are several other more mathematically complex methods for simulating (drawing
samples from) Gaussian processes which are more computationally e�cient see
[10, 162, 163, 164].

3.3 GPs for Interpolation (or regression)

We can use a GP as a method for interpolating the output of a computer model,
for the purposes of this section we will not distinguish between the parameter sets
u and x. Let us denote the model output at a point x in the combined parameter
space as

Y
m

pxq “ fpxq, Rn

Ñ R (3.11)
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3.1 An introduction to Gaussian Processes

A Gaussian Process
GP pµp¨q,Cp¨, ¨qq : Rn

Ñ R, (3.2)
is a stochastic process over some n dimensional space specified via a mean function
µp¨q and a covariance function Cp¨, ¨q. A GP has the fundamental property that the
finite marginalization of the process to some set of points X “ tx

1

, . . . , x
k

u will
be distributed as a multivariate-normal (MVN) with mean and covariance given
by µ and C. Thus, restricting the process to a single point x would give P pxq „

Npµpxq,Cpx, xqq, for a set of three points

P px
1

, x
2

, x
3

q „ MVNp~µ, Kq, (3.3)
~µ “ pµpx

1

q, µpx
2

q, µpx
3

qq

| ,

K
i,j

“ Cpx
i

, x
j

q.

where K
i,j

is the i, j’th element of the covariance matrix.
A Gaussian process is translation invariant or stationary if

µpsq “ µps ` hq, Cps ` h, t ` hq “ Cps, tq (3.4)

for all h 1. If this is the case then the mean must be constant and the covariance func-
tion can only depend on the distance between two locations Cps, tq “ Cps´ t, 0q. In
this case Cps, tq “ C

0

ps ´ tq, for some C
0

phq “ Cph, 0q : Rn

Ñ R. We shall typically
be concerned with stationary GP’s, in this case all the interesting information about
the process is contained in the covariance function. Note that a stationary GP can
be used to model a simulator with some overall trend in its output. This is accom-
plished by treating the overall trend first typically with a linear model and then us-
ing the stationary GP to model the residuals. Real world random fields, such as the
distribution of oil or gold across a given geographic region, may only be approx-
imately stationary. However stationarity is a typically a reasonable assumption
for “smooth-ish” computer models which don’t undergo some dramatic change
across their parameter space. Models with “jumpy” phenomena such as phase
transitions or regime changes can also be treated but additional care is needed2 .

Not every function can be a covariance function. For starters it must be an even
function, this arises neatly from the symmetry of the covariance, writing Zp¨q as
the GP evaluated at a given point

Cps ´ tq “ covps, tq “ E rpZpsq ´ µpsqqpZptq ´ µptqs “ covpt, sq “ Cpt ´ sq.

1 Strictly this is the definition for a general stochastic process to be weakly stationary but the two
concepts are equivalent for a GP

2 In this case one might consider dividing the model output space up into distinct regions and
training di�erent GP’s in each region, see [159]
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GP Emulators	

• A Gaussian Process emulator is a statistical approximation to a function. 
• Condition a probability distribution for a family of functions (GP) to produce 

samples which pass through a set of training points.
• draws are then a statistical approximation to the simulator

Rasmussen & Williams, “Gaussian Processes for Machine Learning” MIT Press

Unconditioned Draws Conditioned on training data
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F����� �.�: Left: draws from a mean zero GP prior with a power exponential covariance
function. Right: draws from the posterior distribution after observation of a toy model
(solid points). In both panels the gray bands show approximate 95% confidence intervals
around the mean. The model function is given by (3.1).

with certainty at this location. Suppose we pick our test point to be the p’th point
in our design, then writing

µ̄px
p

q “ µ
p

`

dÿ

j“1

A
j

pY ´ µ‚q

j

, (3.20)

Aj “ pK
p,‚q

i

pK´1

‚,‚ q

ij

.

We are free to order our basis in the X space any way we like, in this case it is
convenient to pick an ordering where p is the final element in the basis, in which
case the covariance matrix K‚,‚ has the block form

K‚,‚ “

ˆ
K˝,˝ K

p,˝
K|

p,˝ K
p,p

˙
(3.21)

where K˝,˝ pd ´ 1 ˆ d ´ 1q is the covariance matrix of all the design points apart
from the p’th point, &c for K

p,˝ p1ˆd´1q. Using the Sherman-Morrison-Woodbury
inversion formula given in § A.1

K´1

‚,‚ “

ˆ
K´1

˝,˝ `

1

k

K´1

˝,˝K
p,˝K|

p,˝K
´1

˝,˝ ´

1

k

K´1

˝,˝K
p,˝

´

1

k

K|
p,˝K

´1

˝,˝
1

k

˙
(3.22)
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Simple Example
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Covariance Function: C (x, x0,�)

Choice of covariance function will a⇥ect the form of P, must be positive definite.

Decompose into C(x, x⇥,�) = Cf (x, x⇥,�) + �x,x0⇥nugget

Power exponential: Cf (x, x⇥,�) = ⇥1 exp
�
�
⇧

i
(xi�x0i )

↵

�↵i

⇥

Matern class: Cf (r ,�) = 21�✓1

�(�1)

⇤⇤
2�1r
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cec24@phy.duke.edu (Duke Physics) Emulator September 9, 2010 5 / 19

Essential Details
• Condition a Gaussian Process on observations of model

• Prior Mean from linear regression model, Prior Covariance from observations

• Covariance function sets “weights” of nearby training points.
power exponential:

• Length scale      sets sensitivity to fluctuations in model output
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Covariance Function

• Choice of C has influence on the shape of the predictive distribution.

• Power Exponential:

• Matern Class:

Covariance Function: C (x, x0,�)

Choice of covariance function will a⇥ect the form of P, must be positive definite.

Decompose into C(x, x⇥,�) = Cf (x, x⇥,�) + �x,x0⇥nugget

Power exponential: Cf (x, x⇥,�) = ⇥1 exp
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The posterior distribution (how it actually works)

• GP Prior: mean from linear regression, covariance defined by choice of 
covariance fn and design.

• After conditioning on training data -> MVN posterior distribution.
P � MVN

⇣
m̂(x), �̂

⌘

Cij = c(xi,xj)

c(x)T = (c(x1,x), . . . , c(xn,x))

• Mean mixes broad trends (linear regression) and local 
fluctuations around these (correlation term). 

• Prior variance is restricted by a correlation term, gamma arises 
from linear regression model.

“Bayesian Calibration of computer models” Kennedy & O’Hagan. J.R.Statist.Soc. B 63, 2001

m̂(x) = h(x)T �̂ + c(x)C�1
⇣
y �H�̂

⌘

⇥̂(xi,xj) = c(xi,xj)� c(xi)
TC�1

c(xj) + �(xi,xj)
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The posterior distribution 

m̂(x) = h(x)T �̂ + c(x)C�1
⇣
y �H�̂

⌘
• Mean mixes broad trends (linear regression) and 

local fluctuations around these (correlation term). 

1 2 3 4 5
x HarbL
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y HarbL

Regression Term Only

Regression Term + Emulator Term

Regression Term + Emulator Term + Correction
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The posterior distribution

⇥̂(xi,xj) = c(xi,xj)� c(xi)
TC�1

c(xj) + �(xi,xj)
• Prior variance is restricted by a correlation term, gamma arises 

from linear regression model.
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Influence of observation-noise / nugget
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F����� �.�: Draws from the posterior density (blue) after observation of a toy model (3.1)
(solid black circles) with varying amounts of observation noise �. The posterior mean is
shown in red, note how the mean along with the draws no longer passes exactly through
the training points. The gray region shows a 95% confidence interval around the mean,
note how as the observation noise increases the posterior variance at the training points is
pushed away from zero.

3.6 Incorporating an explicit set of basis functions

Suppose that we want to model the mean of the computer model output with some
basis of functions hpxq, for instance if we were interested in polynomial regression
of order r then hpxq “ t1, x, x2, . . . , xr

u. We can write our statistical model for the
simulator as

Y
m

pxq “ h|
pxq� ` fpxq, Y

m

: Rn

Ñ R, f „ GP p0,Cq (3.33)

where we are now modelling the mean with our basis of r functions and some
vector of unknown constants � and then modelling the residuals with a Gaussian
Process with covariance function C. Taking a normal prior on the parameters � „

Npb, Bq pr ˆ 1q along with a design over some d points D and the associated vector
of observations Y then by integrating out � (see (A.17))

Y | D,C, b, B „ MVN pH|
‚ b, K‚,‚ ` H|

‚ BH‚q . (3.34)

where H‚ pr ˆ dq is the matrix of the r regression functions evaluated at each of
the d design locations. Following the same procedures as above we can obtain the

39

where k “ K
p,p

´ K|
p,˝K

´1

˝,˝K
p,˝. Now we can evaluate A

j

, when j “ p

A
p

“

d´1ÿ

i“1

"
Cpx

i

, x
p

q

ˆ
´

1

k
K´1

˝,˝K
p,˝

˙*
`

1

k
Cpx

p

, x
p

q,

“

1

k

`
K

p,p

´ K|
p,˝K

´1

˝,˝K
p,˝

˘
“ 1, j “ p (3.23)

for the other terms j ‰ p

A
p

“

d´1ÿ

i“1

Cpx
i

, x
p

q

ˆ
K´1

˝,˝ `

1

k
K´1

˝,˝K
p,˝K

|
p,˝K

´1

˝,˝

˙
,

´

Cpx
p

, x
p

q

k
K|

p,˝K
´1

˝,˝

“ K|
p,˝K

´1

˝,˝ `

1

k

`
K|

p,˝K
´1

˝,˝K
p,˝ ´ K

p,p

˘
K|

p,˝K
´1

˝,˝

“ K|
p,˝K

´1

˝,˝ ´ K|
p,˝K

´1

˝,˝ “ 0. (3.24)

This is su�cient to conclude that the posterior mean reverts to the values of the
input data set when evaluated at the design values. In a similar manner one can
show that the posterior variance vanishes when evaluated at points in the design.

3.5 Observations with noise

We can readily expand the GP regression procedure introduced above to the case
where we can only make observations of our model with random noise,

Y
m

pxq “ fpxq ` z, Rn

Ñ R, z „ Np0, �2

q. (3.25)

This noise is assumed to be constant over the space of model inputs or homoscedas-
tic 3. We evaluate the computer model at design set of d points D in Rn obtaining a
vector of model observations Y. The observation noise process is a-priori not spa-
tially correlated Erzpx

i

qzpx
j

qs “ �
ij

�2, as such we can again write the conditional
distribution of our observations Y given the choice of covariance function, prior
mean and design as

Y | D,C, µ, �2

„ MVN

`
µ‚, K‚,‚ ` �2I

d

˘
, (3.26)

where µ‚ pdq and K‚,‚ pdˆdq have the same definitions as above and the observation
error enters only along the diagonal of the covariance matrix. Proceeding as before

3 There has been significant e�ort put into developing GP’s which can handle observations coming
from a varying noise process (called heteroscedastic input) for more details see eg [165, 166].
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f(x) = sin(x) + 2 sin(2x)� 2 sin(4x)
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Picking a design

• Should be space filling and efficient (i.e not a grid)
Details are not terribly important. Latin square based
designs are typical

• Rough rule of thumb is at least 10 points per dimension. 

ulator when making the training set Y must be within these ranges. However the
resulting analysis and emulator construction will be rather easier if we transform
these ranges onto the unit hyper cube r0, 1s

n. The transformations used to achieve
this may be linear in the case of finite ra, bs and will be nonlinear for infinite initial
ranges. Standardizing the parameter space in this way is helpful as it places all the
parameters on an equal footing with respect to typical length scales. This allows
for a ready comparison of the relative sensitivity of the output to variations in each
input dimension, which is useful feedback for understanding the model.

As mentioned in the introduction to this chapter the optimal design of exper-
iments has a long and illustrious history. There are formal results for optimal ex-
perimental designs for GP emulators in certain limiting cases, these are however
somewhat academic [18]. In practice any suitably dispersed simple pattern that
spans the design space will probably work fairly well. I will heuristically discuss
and illustrate a scheme which is almost always su�cient in practical applications.
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F����� �.�: Examples of various d “ 36, n “ 2 designs. Left: points are iid draws from
a two dimensional uniform distribution. Center: the sample points are arranged on a
uniform square lattice. Right: a maximin Latin square design.

We can identify two opposing limiting procedures for distributing the d points
into our n dimensional space. We could distribute the points completely randomly
throughout the space, say by taking the points as a set of d independent uniform
samples. This will result in a relatively clumpy distribution with some rather large
distance between the points, this is the limit of the least intentional structure in the
choice of points. The other limit, the scheme with the most intentional structure,
would be to arrange the points on some kind of uniform lattice that spans the
space. Each of these schemes has strengths and weaknesses and neither is strictly
practical, the commonly used schemes represent a compromise between these two
limits.

Uniformly and independently distributed sets of random points are surpris-
ingly clumpy, as a result some parts of the parameter space are likely to be under
sampled and some will be over sampled. However this clumpiness does have the
advantage that a wide variety of length scales of the model will be sampled. A uni-
form grid with some spacing a9

`
1

d

˘
1{n will guarantee to fill the space as fairly as
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Hypercube Sampling(LHS) [19, 178, 179]. A Latin square is an nˆn array filled with
n symbols such that each symbol occurs exactly n times and exactly once in each
row and column, an example with n “ 4 is

¨

˚̊
˝

1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

˛

‹‹‚. (4.7)

Latin squares are rather interesting beasts in their own right, with many symmetry
and invariance properties. For the purposes of LHS we will relax the mathematical
definition of a Latin square to being an nˆn grid with n non zero entries arranged
such that there is only one non zero entry in each row and column, like this

¨

˚̊
˝

1

1

1

1

˛

‹‹‚. (4.8)

In Latin Hypercube Sampling we distribute our d points over an n dimensional
uniformly spaced grid (d ˆ d ˆ ¨ ¨ ¨

n´3

ˆ d) such that every possible two dimen-
sional marginalization of our grid has the relaxed Latin square property, i.e. looks
like (4.8). Since each occupied cell in this grid corresponds to some fraction of the
total volume of the parameter space the location of the corresponding design point
is typically uniformly sampled within this volume. There are several strategies for
selecting an optimal (or nearly optimal) LHS design from some ensemble of candi-
dates, again for more detail see [18]. A robust strategy is to generate a moderately
large ensemble of candidate LHS designs and select the element which has the
largest minimal interpoint distance, i.e max

designs

pmin

points

r
ij

q, this is known as a
maximin LHS design. An example maximin LHS design is plotted in the right
panel of Fig: 4.3.

The array of points produced by an LHS design is much sparser than a full
grid design, which would require dn points, and yet provides a good coverage of
the parameter space. This design is particularly good for stationary processes as it
incorporates samples at a variety of inter point distances in each dimension. How-
ever if there are strong interactions between di�erent parameters, i.e. the model
output is dominated by nonlinear terms coupling di�erent dimensions in the pa-
rameter space, then this design is likely to be so sparse that it will not be possible
to accurately assess the extent of these e�ects. This would be a bad thing.

If more training points are needed, for instance due to poor diagonistics of the
current emulator, or if more computational resources become available then there
are several methods for e�ciently extending these designs [180, 181, 18].
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Varying the number of design points

this “rule” is seriously explored in [21] and found to be fairly reasonable. In Fig: 4.2
the number of design points d for a toy one dimensional model is varied between
6 and 12. For a quantifiable approach to understanding how many training points
are su�cient one can consult the statistical and machine-learning literature about
“learning curves” for GP regression (see [12, 176, 177]). The primary object of
concern here is the generalization error, this is the average over all possible designs
of a loss-function typically the L

2

distance between the true function and the GP
mean computed over the whole parameter space. Results obtained for these are
typically of fairly limited practical use and so not presented here.
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F����� �.�: The panels show the e�ects of varying the number of design points (model
samples), between 6 (left) which is clearly too few, the center panel has 9 design points
and the right has 12. Note the reduction in the 95% confidence intervals as the number of
design points increases. The red dashed line shows the true model curve given by (3.1),
the blue solid line shows the posterior mean of the GP and the open circles show the points
where the model function was evaluated.

4.3 Design

Supposing we have selected the n most interesting input parameters to explore
and we decide on some number of points d that will be su�cient for at least a first
pass, we are then left with the question of how to distribute these d points through
our n dimensional space.

Typically the nominal ranges of the model parameters will form some irregular
volume ra

1

, b
1

s b ra
2

, b
2

s b ¨ ¨ ¨ b ra
n

, b
n

s Ä Rn. Naturally the inputs fed to the sim-

58

Thursday, March 20, 14



Toy Example - The Ising Model
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• Models the interaction of spins on a lattice.
• Simple computational system, exhibits a phase transition.

H =
X

i 6=j

JijSiSj
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Exploring the limits

• How complicated a scalar function can we emulate? An image

• How many training points can we deal with?

• Limited by numeric linear algebra ~ O(N^3)

512x512 8 bit grayscale image “lenna” Emulator with 512 training points

1 hour
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GP Resources	

• Many R Packages on CRAN:
• MLEGP - fairly fast very easy to use, well documented, includes sensitivity 

analysis
• gausspr - GP regression from the R core team
• tgp - Tree-GP’s an approach which allows several spatial scales,  think 

multi-scale-grids in FEM 
• plgp, gpfit, gptk, &c &c ...
• SAVE: full package for Bayesian emulation, calibration and validation of 

computer models

• The book: “Gaussian Processes for Machine Learning” by C.Rasmussen, 
fulltext available free online. 
• GPML code for GP regression and classification in matlab (from the book)

Thursday, March 20, 14



A Simple Example:
UrQMD
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UrQMD - A real analysis

• Hybrid simulation of heavy ion collisions. 
Microscopic transport coupled to hydrodynamical
model of QGP.

• Switch from hadronic transport model to hydro code at some time:

• Particle distributions are smoothed into inputs for hydro, Gaussian 
smoothing width:

• How does code output depend on these choices?

• Typical runs ~ 3 hours for 1 event, need 100 events per design point.

• Elicited appropriate ranges, sampled a latin-hypercube design of 30 
points.

• 3 days runtime on OSG ~ 9-10 kHrs of computation

http://www.urqmd.org Petersen.H et al. Phys Rev.C 78 (2008)http://www.opensciencegrid.org

Tstart

�
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UrQMD
Emulator Validation
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Repeat analysis, withhold 5 of the 30 training points.

cec24@phy.duke.edu (Duke Physics) Emulator September 9, 2010 13 / 19

2d parameter space, scalar output.
Expect n(pi+) ~ 300 there is a large band satisfying this.

Published: Petersen et al, J.Phys.G38: 045102, (2011) 
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UrQMD - Validation

• Repeat analysis, withhold 5 of the 30 training points.
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UrQMD Comparison with Experimental Data

• We actually have information about the 
uncertainty and we should use it!
• Systematic and Stat errors in reported 

data.
• Systematic and Stat errors from the code.
• The variance from the emulator

• Use all this information to slice up the 
parameter space into “possible” and “not-so-
possible” regionsAdams et al (STAR 2003), nucl-ex:0310004v1 
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Functional Data
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Functional data, multivariate output.

• What if model output is a vector? 

• Emulate each component separately. 
• Not ideal for large dimension 

vectors
• May lose correlation between 

components.

• Principle Components 

• Transform data to an orthogonal 
basis which maximizes variance in 
each direction. 

• Create orthogonal emulators of 
descending importance. 
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F����� �.�: Left: Training data Y for the toy functional model (5.9) with k “ 128 and
d “ 64. Right: The three most significant eigenvectors of the sample covariance matrix
of Y, the legend gives the standard deviation associated with each component. The inset
figure shows the cumulative variance explained by the eigenvectors V prq (5.8).

dimension x, by inspection we would expect that we should be able to pick an
r ! k “ 128. The right hand panel in Fig: 5.2 shows the first few P.C basis functions
(eigenvectors of the sample covariance matrix), the legend gives the associated
standard deviations (square roots of the eigenvalues) for these components. Ex-
amining the scree plot and the eigenvalues makes it clear that taking r “ 3 would
give a fairly faithful reproduction of the input data, one could perhaps make a case
for including up r “ 5 but any additional components are likely to add no further
information. This is a substantial reduction from the naïve case of constructing
k “ 128 GP emulators.

The observed correlations in the data provide a low-rank approximation to the
full sample covariance matrix. However if the scree plot saturates very slowly then
there may not be a suitable lower dimensional representation. For a nice treatment
of the analysis of scree-plots and other PCA related diagnostics consult [183, 182].

After determining r one proceeds as above, but with the eigendecomposition
matrices truncated U “ U

r

pk ˆ rq and ⇤ “ ⇤

r

pr ˆ rq as such one obtains a trun-
cated vector Zpu

i

q “ tZ
1

pu
i

q, . . . , Z
r

pu
i

qu. There are other methods of dimensional
reduction (such as wavelets etc), however it can be shown that the truncated P.C
decomposition is the highest fidelity linear transformation, we lose the least infor-
mation by making this rotation.

5.3 Principal Pitfalls

Finally, it is important to note that the presence of outlying data points in a sample
set can have a very strong influence on the resulting P.C basis and weights, see
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figure shows the cumulative variance explained by the eigenvectors V prq (5.8).

dimension x, by inspection we would expect that we should be able to pick an
r ! k “ 128. The right hand panel in Fig: 5.2 shows the first few P.C basis functions
(eigenvectors of the sample covariance matrix), the legend gives the associated
standard deviations (square roots of the eigenvalues) for these components. Ex-
amining the scree plot and the eigenvalues makes it clear that taking r “ 3 would
give a fairly faithful reproduction of the input data, one could perhaps make a case
for including up r “ 5 but any additional components are likely to add no further
information. This is a substantial reduction from the naïve case of constructing
k “ 128 GP emulators.

The observed correlations in the data provide a low-rank approximation to the
full sample covariance matrix. However if the scree plot saturates very slowly then
there may not be a suitable lower dimensional representation. For a nice treatment
of the analysis of scree-plots and other PCA related diagnostics consult [183, 182].

After determining r one proceeds as above, but with the eigendecomposition
matrices truncated U “ U
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pk ˆ rq and ⇤ “ ⇤
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pr ˆ rq as such one obtains a trun-
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qu. There are other methods of dimensional
reduction (such as wavelets etc), however it can be shown that the truncated P.C
decomposition is the highest fidelity linear transformation, we lose the least infor-
mation by making this rotation.

5.3 Principal Pitfalls

Finally, it is important to note that the presence of outlying data points in a sample
set can have a very strong influence on the resulting P.C basis and weights, see
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Principle Components (PCA) - An Aside

• Construct an orthogonal & independent basis from our observations.
• Suppose cpts of vectorial observations are sampled from an MVN

(µ̂)j =
1

n

X

i

(yi)j

�̂ = E[(yi � µi)
T (yi � µi)]

Y T = {y1, . . . ,yn} yi ⇠ MVN(µ̂, �̂)

• An eigendecomposition of the sample-covariance matrix, provides this basis. 

⇥̂ = U�UT

• Eigenvectors for largest eigenvalue provides direction with largest variance.
• Successive eigenvalues correspond to less “various” directions. 
• Only need to keep the top r eigenvalues.

• Project observations onto this basis
• Now construct emulators for each cpt of Z.

Zr =
1p
�r

UT
r (Y � µ̂)

Y � ⇡ µ̂+ Ur

p
�rZr

Thursday, March 20, 14



Watch out for Outliers

• Eigendecomposition is very sensitive to outlying points

• perturbation due to outlying points

• New matrix elements are proportional
to extent that points outly the trend
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F����� �.�: A toy example of a principal component decomposition, showing the poten-
tially skewing influence of outliers. The solid black circles show 128 samples from a toy
model with y

2

“ y

1

` � where is a mean zero normally distributed random variable with
standard deviation 0.05. The red and blue lines show the two principal directions (eigen-
vectors). In the left panel �

1

“ 0.998 and �

2

“ 0.0018, the first principal component (red)
explains essentially all of the variation in the sample, as we would expect. In the right panel
outlying data points (red) have been added to the data set. As a result the two principal
directions which are now skewed. Also now �

1

“ 0.904 and �

2

“ 0.095, the contribution
of the second direction to the variance decomposition has erroneously become enlarged.
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�1 = 0.998

�2 = 0.0018

�1 = 0.904

�2 = 0.095

Fig: 5.1 for a toy example. Here a two dimensional data set with a strong linear
correlation between the two variables is decomposed (left panel). In this case the
two principal directions could be deduced by inspection, the first direction (red)
is responsible for the vast majority of the variation observed in the sample Y. The
right hand panel shows the same data set with the addition of two rather exagger-
ated outliers, plotted as red crosses. These two outlying points strongly skew the
two principal directions and push the variance explained by the second direction
up to almost 10%. This sensitivity makes a blind application of these multivariate
methods somewhat unadvisable.

To make this more precise let’s consider the change in the decomposition in-
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after inserting the series expansions into the definition of the eigendecomposition
and matching terms order by order. The shift in the eigenvalues and vectors is
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Fig: 5.1 for a toy example. Here a two dimensional data set with a strong linear
correlation between the two variables is decomposed (left panel). In this case the
two principal directions could be deduced by inspection, the first direction (red)
is responsible for the vast majority of the variation observed in the sample Y. The
right hand panel shows the same data set with the addition of two rather exagger-
ated outliers, plotted as red crosses. These two outlying points strongly skew the
two principal directions and push the variance explained by the second direction
up to almost 10%. This sensitivity makes a blind application of these multivariate
methods somewhat unadvisable.
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linear in the matrix elements V
↵,�

(as it must be at first order in the expansion). We
can easily see the skewing influence of the outlying points by slightly re-writing
(5.12)
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It’s clear that these matrix elements are directly proportional the di�erence be-
tween the sample mean values of a given output component µ̂

↵

and the associated
component of the additional data point Y ↵

out

. If the point truly is outlying then it
will exert a strong pull on the PCA decomposition that is proportional to the extent
to which it outlies the main trend in the data.
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Fig: 5.1 for a toy example. Here a two dimensional data set with a strong linear
correlation between the two variables is decomposed (left panel). In this case the
two principal directions could be deduced by inspection, the first direction (red)
is responsible for the vast majority of the variation observed in the sample Y. The
right hand panel shows the same data set with the addition of two rather exagger-
ated outliers, plotted as red crosses. These two outlying points strongly skew the
two principal directions and push the variance explained by the second direction
up to almost 10%. This sensitivity makes a blind application of these multivariate
methods somewhat unadvisable.
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Pion Spectra - PCA
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Principle Components - Joint Implausibility

• Emulators are constructed P.C space, independent. 

• Mutual covariance matrix is therefore diagonal. Can predict variance at any 
new location (diagonal matrix). 

• Rotate this cov-matrix back to ‘observable space’. We can predict the full 
covariance matrix at any location in the parameter space. 

• Use this to construct the joint implausibility. 

• This gives a just-smart-enough measure of how  the model deviates from the 
field data

The formation history of stellar haloes through model emulators 17

noisy eigenfunctions and proceeding with the remaining significant r components,

Σ̂ =UΛUt ≈UrΛrUT
r . (A4)

The partial sum V (r) =
∑r

i=1λi/Tr(Λ) can be used to determine which values to keep in this analysis we have selected r such that
V (r)≤ 0.95 typically with t = 7 we found that r = 5 was sufficient to reconstruct the data adequately.
After carrying out the eigen-decomposition and selecting an appropriate r we project our training set Y ′ into the associated

PCA basis Z as
Zr =

1√
λr
UT
r (Y ′ − µ̂), (A5)

where Ur represents the eigenfuction corresponding to the r’th eigenvalue and Zr is the r’th independent and orthogonal com-
ponent of the PCA decomposition. Note that we have standardized Zr by subtracting the sample mean µ̂ and dividing out the
associated eigenvalue λr. We can then construct a set of r independent emulators each trained on a component of Z.
Each orthogonal emulator is constructed as outlined in Section 3 and has a posterior mean mz(x) and variance Σz(x)as given

by (4). The mean and variance are functions of the location in the design space x however it is important to remember that
they are functions which give output in the P.C space. To obtain predictions for the model outputs Y we need to undo the PCA
decomposition by reprojecting back into the natural observable space. Naturally by selecting r < t we have lost some of the
original information however with judicious choice of r this is usually not a serious issue. 4.
The projected mean m(x) in the true Y space is given as

m(x)≈ µ̂+Urλ
1/2
r mz(x), (A6)

wheremz(x) is the length r vector of emulator means in the P.C space. We can compute the emulated covariance of the l’th and
j’th model observables at the location xi as Kl j(xi) by

Kl j(xi) = Cov[yl(xi),y j(xi)]≈
t
∑

α,β,γ=1

UlαΛ
1/2
αβUjγΛ

1/2
γβVar[Zβ(xi)], (A7)

where Var[Zβ(xi)] is the emulated variance of the β’th P.C dimension at the locationxi in the parameter space. This gives a useful
estimate of the covariance between our y observables at as yet untried input locations and is crucial for the joint implausibility
J(x). Finally we can also estimate the covariance between two locations in the parameter space xi,x j and between two different
variables yα,yβ ,

Cov[yα(xi),yβ(x j)]≈UαδΛ
1/2
δγ UβϵΛ

1/2Cov[Zγ(xi),Zχ(x j)],

=UαδΛ
1/2
δγ UβϵΛ

1/2δγχCov[Zγ(xi),Zχ(x j)], (A8)

where repeated indices are summed over and we have used the independence of the P.C space to set Cov[Zγ(xi),Zχ(x j)] =
δγχCov[Zγ(xi),Zχ(x j)].

B. FIVE DIMENSIONAL PARAMETER SPACE EXPLORATION

As discussed in Section 5.1, model emulators can be easily generalized to deal with input parameter spaces of much larger
dimensionality than previously considered. In this appendix we exemplify this by training a suite of model emulator in a five-
dimensional input parameter space. The dimensionality is increased by including in the analysis the star formation efficiency,
ϵ∗, and the Type II SNe yield, mIIFe. The training data set is constructed by running ChemTreeN on a design D = {x1, . . . ,xn},
containing a number n = 240 design points. Note the larger number of design points with respect to previous examples, intended
to better sample the larger volume of this input parameter space. A mock observational data set is generated by considering the
input parameter vector xobs = (zr, fesc, fbary, ϵ∗, mIIFe) = (10, 50, 0.05, 10−10, 0.07). Both, mock observables and training data
set are obtained by coupling ChemTreeN with the merger tree extracted from the DM only N-body simulation MW1. The results
are shown on Figure 12. Each panel shows a different section of the resulting Joint implausibility surface. These 2D sections
are obtained after fixing the remaining three parameters to the values associated with xobs. The black solid line on the color bars
show the 2σ cutoff applied to the joint implausibility. Values above this threshold indicates that it is very implausible to obtain a
good fit to the mock observational data with the corresponding values of the model parameters. As observed in the 3D example
shown in Figure 9, J(xobs) can strongly constrain the full parameter space under study. Even in this larger dimensionality space,
the values of the components of xobs are always located in the most plausible regions of the space, as indicated by the black
dashed lines.

4 It can be shown that PCA is a minimally lossy data reduction method.

J2(x) = (E[Yf ]� m̂(x)) (Kij(x) + V [Yf ])
�1 (E[Yf ]� m̂(x))
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Galaxy Formation
ChemTreeN
With F.Gomez (MSU), B.O’Shea (MSU), 
R.Wolpert
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ChemtreeN

• A galaxy formation model, captures the interplay of gravitational 
(darkmatter) and nuclear physics (star formation life-cycle etc)

• A hybrid code:

• First: darkmatter only simulations model bulk gravitational structure. This 
is an N-body tree code. Very Slow. Supercomputer Slow.

• A discrete set of differential equations models the baryonic evolution. 
Fastish (relative to N-body)

• Goal is to understand the relative importance of the baryonic and 
darkmatter evolutions. 

• Attempt this by exploring the influence of varying the parameters in the 
baryonic sector combined with using a small set of N-body histories. 
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The darkmatter component

Merger trees
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The darkmatter component

Merger trees
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The darkmatter component

Merger trees
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The darkmatter component

Merger trees
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The darkmatter component

Merger trees

Thursday, March 20, 14



The darkmatter component

Merger trees
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The darkmatter component

Merger trees
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The baryonic component
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Astrophysical processes modeled:
               ChemTreeN (Tumlinson 2010)

• Shock heating & radiative cooling
• Photoionization squelching
• Star formation (quiescent & burst)
• SN heating & SN-driven winds
• Chemical evolution 
• Stellar populations4 F. A. Gómez & C.E. Coleman-Smith et al.

TABLE 2
MODEL PARAMETERS.

Parameter Fiducial Value Range Description Explored

zr 10 5 - 19 Epoch of re-ionization Yes
fbary 0.05 0 - 0.2 Baryonic mass fraction Yes
fesc 50 0 - 110 Escape factor of metals Yes
ϵ∗ 1× 10−10 0.2 - 1.8 Star formation efficiency (10−10 yr−1) Yes
mIIFe 0.07 0.04 - 0.2 SN II iron yield (M⊙) Yes
fIa 0.015 · · · SN Ia probability No
ϵSN 0.0015 · · · SNe energy coupling No
mIaFe 0.5 · · · SN Ia iron yield (M⊙) No

Stars are formed in discrete “parcels” with a constant effi-
ciency, ϵ∗, such that the mass formed into starsM∗ = ϵ∗Mgas∆t
in time interval∆t. The star formation efficiency is equivalent
to a timescale, ϵ∗ = 1/t∗, on which baryons are converted into
stars. The fiducial choice for this parameter is t∗ = 10 Gyr, or
ϵ∗ = 10−10 yr−1.

2.2.4. Stellar Initial Mass Function
To simplify the parameter space, we assume an invariant

stellar initial mass function (IMF) at all times and at all metal-
licities. The invariant IMF adopted here is that of Kroupa
(2001), dn/dM ∝ (m/M⊙)α, with slope α = −2.3 from 0.5 -
140 M⊙ and slope α = −1.3 from 0.1 - 0.5 M⊙. The impact
that variations of the IMF may have on the stellar populations
of the resulting stellar halos will be studied in a follow-up
work.

2.2.5. Type Ia SNe
Type Ia SNe are assumed to arise from thermonuclear ex-

plosions triggered by the collapse of a C/O white dwarf pre-
cursor that has slowly accreted mass from a binary compan-
ion until it exceeds the 1.4M⊙ Chandrasekhar limit. For stars
that evolve into white dwarfs as binaries, the SN occurs after a
time delay from formation that is roughly equal to the lifetime
of the least massive companion. In our models, stars with ini-
tial massM = 1.5−8M⊙ are considered eligible to eventually
yield a Type Ia SN. When stars in this mass range are formed,
some fraction of them, fIa, are assigned status as a Type Ia
and given a binary companionwith mass obtained from a suit-
able probability distribution (Greggio & Renzini 1983). The
chemical evolution results are sensitive to the SN Ia probabil-
ity normalization, fIa. This parameter is fixed by normalizing
to the observed relative rates of Type II and Type Ia SNe for
spiral galaxies in the local universe (Tammann et al. 1994).
Thus, a fraction fIa = 0.015 of all stars formed with 1.5− 8
M⊙ eventually experience a Type I SN. This normalization
gives a ratio of SN II to Ia of 6 to 1. Note that this parameter
varies with the IMF slope and with the mass limits assumed to
lead to a Type II SN. The adopted choice of fIa was calculated
for a long, steady star formation history going back 10 Gyr, to
resemble that of quiescent galactic disks, and for the Kroupa
(2001) IMF and 10−40M⊙ for Type II SNe.

2.2.6. Chemical Yields
ChemTreeN tracks the time evolution of galaxies’ bulk

metallicities by considering Fe as the proxy reference ele-
ment. For Type Ia SNe with 1.5 - 8 M⊙ the models adopt
the W7 yields of Nomoto et al. (1997) for Fe, with 0.5 M⊙

of Fe from each Type Ia SN. Type II SNe are assumed to
arise from stars of 10 to 40 M⊙, with mass yields provided
by K. Nomoto (2006, private communication) (*** Jason:

is there’s a reference for this now? ***). They represent
the bulk yields of core-collapse SNe with uniform explosion
energy E = 1051 erg. These models haveM = 0.07 - 0.15 M⊙

Fe per event.

2.2.7. Chemical and Kinematic Feedback

One possible cause of the observed luminosity-metallicity
(L-Z) relation for Local Group dwarf galaxies is SN-driven
mass loss from small DM halos (Dekel & Woo 2003). To
model this physical mechanism ChemTreeN uses a prescrip-
tion similar to that originally presented by Robertson et al.
(2005) and subsequently used by Font et al. (2006a,b, 2008).
The code tracks mass loss due to SN-driven winds in terms
of the number of SNe per time-step in a way that takes into
account the intrinsic time variability in the star formation rate
and rate of SNe from a stochastically sampled IMF. At each
time-step, a mass of gas

Mlost = ϵSN
∑

i

Ni
SNEiSN
2v2circ

(1)

becomes unbound and is removed permanently from the gas
reservoir. Here vcirc is the maximum circular velocity of the
halo and NSN and ESN are the number and energy released by
the SNe in a given time-step, respectively. The only free pa-
rameter, ϵSN, expresses the fraction of the SN energy that is
converted to kinetic energy retained by the wind as it escapes.
The sum over index i sums over all SNe from past time-steps
that are just undergoing an explosion in the current time-step.
This approach is well suited to the stochastic framework of
this method, since it counts individual SNe and allows for
variations in the number and energy of SNe from time-step
to time-step.
The selective loss of metals that should arise when SNe

drive their own ejecta out of the host galaxy is captured by
a new parameter fesc, which expresses the increased metallic-
ity of the ejected winds with respect to the ambient interstel-
lar medium. At each time-step, a total mass in iron MFe

lost is
removed from the gas reservoir of the halo:

MFe
lost = fescMlost

MFe
ISM

Mgas
(2)

where MFe
ISM is the total mass of iron in the ambient inter-

stellar medium, Mgas × 10[Fe/H] . This prescription ensures
that, on average, the ejected winds are fesc times more metal-
enriched than the ambient interstellar medium. Alternatively,
the fraction of metal mass lost from the halo is fesc times
higher than the total fraction of gas mass lost. Following T10,
the fiducial choice of this parameter is fesc = 50.

Particle tagging 
to distribute stars:

e.g. 5% most bound 
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FIG. 5.— Satellite galaxy luminosity functions (left panel) and satellite galaxy luminosity-metallicity relations (right panel) extracted from a set of 200 models
used to train our suite of model emulators. For clarity, only the result of a linear fit to each luminosity-metallicity relation is shown. Note the great diversity
of outputs that can be obtained by varying the different input parameters. The models were obtained after coupling ChemTreeN with the N-body simulation
MW1. The vertical dashed lines on the left panel indicate the five values of Mv chosen to sample the LFs. We sample each L-Z relation by extracting slopes and
intercepts from the corresponding linear fits. A different model emulator was constructed for each of these seven model outputs. The black solid line on both
panels indicate the model considered to be the galaxy’s “true” observational quantities, obtained after running ChemTreeN with the input parameter vector xobs.
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FIG. 6.— Three different sections of each Implausibility surfaces, I(x), obtained from the five model emulators constructed for the LF’s outputs. The output
being emulated is indicated on the top right corner of each panel. Note that columns correspond to different observables. The 3D implausibility surfaces are
sliced with three orthogonal planes as defined by the components of xobs. The top, middle and bottom row panels show the fesc = 50, fbary = 0.05 and zr = 10
sections of the I(x) surfaces, respectively. The black dashed lines indicate the values of the remaining two components of xobs. Model emulators are compared
to the mock observable data obtained after running ChemTreeN with the input parameter vector xobs. Both mock observables and training data set are obtained
by coupling ChemTreeN with the N-body simulation MW1. The different colors show different values of I(x) in logarithmic scale. Note that, given an input
parameter vector xt, the larger the value of the I(xt), the less likely a good fit to the observable data can be obtained. From these model emulators it is possible
to strongly constrain the parameters fbary and zr, but not fesc.
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FIG. 4.— Galaxy formation history as shown by the virial mass of the most
massive progenitor of our Milky Way-like dark matter halos as a function of
the expansion factor. In all cases, the mass is normalized to the z = 0 mass of
the galaxy. Notice the range of merger histories spanned by these halos.

(Ma et al. 2012), have shown indications of flat metallic-
ity profiles outside ∼ 20 kpc, the radius at which accretion
from satellites is expected to become the dominant contribu-
tion (Zolotov et al. 2009, 2010; Font et al. 2011a). On the left
bottom panel we show that this result is robust to variations
of the model’s parameter. The parameter that most strongly
affect this profile is fesc since, as discussed above, this param-
eter controls the mean metallicity of the host halo’s building
blocks. Nevertheless, variations of this parameter result on
final stellar halos with approximately flat metallicity profiles.
Note that the scatter induced by varying the model parameters
is similar to that obtained by sampling different formation his-
tories.

5. EFFECTS OF GALAXY FORMATION HISTORY ON BULK
STELLAR PROPERTIES II: STATISTICAL ANALYSIS

In the previous Section we have qualitatively shown that
observable quantities commonly used to constrain the input
parameter space of our semi-analytic model strongly depends
on the particular merger history of a galaxy. Furthermore, as
was previously shown by B10 in a different context, simul-
taneous variations of certain groups of parameters can yield
similar observables, revealing important correlations among
the underlying physical mechanisms. The present discussion
highlights the need for robust statistical tools to densely ex-
plore the input parameter space, as well as to quantitatively
characterize the effects that different merger histories have on
the present-day distribution of different observable quantities.
In what follows we will show how model emulators are well-
suited to address this kind of problem.

5.1. Parameter space exploration
As discussed in Section 3, the first step in constructing a

model emulator is to train a suite of Gaussian process priors
using a finite set of model outputs. These outputs are obtained
by running ChemTreeN using different sets of input parame-
ters drawn from an experimental designD = {x1, . . . ,xn}. For
simplicity, we will first consider xi as a three-component vec-
tor, i.e., xi = (zir, f iesc, f ibary). Although within this framework
it is trivial to increase the dimensionality of xi, interpretation
and visualization of the final implausibility surfaces become
progressively more complicated. (For examples of this kind of
analysis with larger dimensionality see Appendix B or B10.)

To create the training set a number of n = 200 design
points are obtained using Latin hyper cube sampling (see Sec-

tion 3.1). This number of points proved to be an acceptable
balance between covering the available space and run time.
The input parameters are allowed to vary within the ranges
specified in Table 2. Once the models have been run, the next
step is to choose the set of outputs, Y = {y1, . . . ,yt}, for which
individual emulators will be constructed. Note that the output
selection is purely determined by the set of t observables or
field data, Yf = {y f ,1, . . . ,y f ,t}, chosen to constrain our model.
Motivated by our discussion in Section 4, we chose to em-
ulate five values of the satellite galaxy luminosity function,
each one at a different absolutely magnitude, in addition to
the slope and the intercept of the satellite galaxy luminosity-
metallicity (L-Z) relation. This gives us a total of t = 7 outputs
to be extracted from the models. As we show below, each of
these outputs provides constraints to different model parame-
ters. In Figure 5 we show the luminosity functions and L-Z
relations extracted from the training set models, obtained after
running ChemTreeN on the design points D. For clarity, only
the result of a linear fit to each L-Z relation is shown. Note
the great diversity of outputs that can be obtained by varying
the input parameter of the model for a fixed galaxy formation
history. The black dashed lines on the left panel indicate the
five values of Mv chosen to sample the LFs.

After training the seven model emulators, we compare the
model (via the emulators) to the observable data by calculat-
ing surfaces of implausibility I(x) for each observable. As de-
scribed in Section 3.2, the values of these three-dimensional
surfaces provide an indication of what set of input parameter
vector x are more likely to reproduce the desired observa-
tional data set Yf . In theory, the observable data should be
obtained from the luminosity function and L-Z relation of the
Milky Way satellite galaxies. However, to test the constrain-
ing power of this approach, a particular run of the ChemTreeN
model will be used as a mock observable data set. This type
of controlled experiment can be very helpful in model per-
formance assessment, since we know exactly what values of
the input parameters were used to obtain the artificial “field
data.” The black solid lines in Figure 5 show the luminos-
ity function and L-Z relation of the model used as the mock
observations. The values of the input parameters used are
xobs = (zr, fesc, fbary) = (10, 50, 0.05). It is important to note
that this input parameter vector is not included among our
design points D.

In Figure 6 we show three different sections of each im-
plausibility surfaces obtained from the five model emulators
constructed for the LF’s outputs. The 3-dimensional implau-
sibility surfaces are sliced with three orthogonal planes as de-
fined by the components of xobs. The top row panels show
the fesc = 50 section of the I(x) surfaces. The black dashed
lines indicate the values of the remaining two components of
xobs. Note that, given an input parameter vector xt, the larger
the value of the I(xt), the less likely a good fit to the ob-
servable data can be obtained. From the left-most panel (i.e.
Mv = −16.5) it becomes clear that the parameter controlling
the amount of available gas to form stars, fbary, is strongly
constrained by the number of satellite galaxies at the bright
end of the satellite galaxy luminosity function. Furthermore,
within the range of values considered here, the number of
satellites at this Mv is completely independent of the redshift
of the epoch re-ionization, zr. As expected, the most plausible
parameter values are near the true value of fbary = 0.05. It is in-
teresting to observe that, as we move towards the faint end of
the luminosity function, the model parameter zr becomes pro-
gressively more constrained, and the total number of satellite

.
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ABSTRACT
We use the semi-analytic model ChemTreeN, coupled to cosmological N-body simulations, to explore how

different galaxy formation histories can affect observational properties of Milky Way-like galaxies’ stellar
haloes and their satellite populations. Gaussian processes are used to generate model emulators that allow
one to statistically estimate a desired set of model outputs at any location of a p-dimensional input parameter
space. This enables one to explore the full input parameter space orders of magnitude faster than could be done
otherwise. Using mock observational data sets generated by ChemTreeN itself, we show that it is possible to
successfully recover the input parameter vectors used to generated the mock observables if the merger history
of the host halo is known. However, our results indicate that the determination of “best fit” parameters is highly
susceptible to the particular merger history of the host. Furthermore, multiple models with different formation
histories can be statistically well-supported by a given observational data set, even though the “best fit” param-
eter vectors may significantly differ from each other. Thus, attempts to characterize the formation history of
the Milky Way using these kind of techniques must be performed statistically, analyzing large samples of high
resolution N-body simulations.
Subject headings: galaxies: formation – galaxies: kinematics and dynamics – methods: analytic – methods:

N-body simulations

1. INTRODUCTION
Understanding the formation and evolution of galaxies is a

central and long-standing problem in astrophysics. Over the
past century, and particularly in the past decade, a tremendous
amount of information has been gleaned about populations of
galaxies and their temporal evolution, and data have been col-
lected on galaxies spanningmore than six orders of magnitude
in stellar mass and over thirteen billion years in the age of the
Universe. These observations show that the galaxies that we
can see have undergone radical changes in size, appearance,
and content over the last thirteen billion years (Rix et al. 2004;
Brinchmann et al. 2004; Papovich et al. 2005; Shapley 2011).
Complementary observations have provided a rich data-set on
the kinematics and elemental abundances of stars in our own
MilkyWay, including large numbers of metal-poor stars in the
halo of our own galaxy and in local dwarf galaxies. In prin-
ciple, this ‘galactic fossil record’ can probe the entire merger
and star formation history of the Milky Way and its satellites,

and complement direct observations at higher redshifts.
The quantity and quality of observational data on galaxy

formation, which is already staggering, is going to increase
exponentially over the next decade. Surveys such as LAM-
OST (Newberg et al. 2009), SkyMapper (Keller et al. 2007),
Gaia (Perryman et al. 2001), and, ultimately, the Large Syn-
optic Survey Telescope (LSST Science Collaborations et al.
2009) will produce petabytes of data on billions of individ-
ual objects, both galactic and extra galactic, that will strongly
inform our understanding of galaxy behavior.
Despite this wealth of observational information, we cur-

rently lack the detailed and self-consistent theoretical models
necessary to adequately interpret such observational data sets.
Purely analytic (i.e., “pencil-and-paper”) theoretical models
are insufficient to address the questions that are currently be-
ing asked about galaxy formation, due in no small part to
the range of physical components that must be simultane-
ously modeled (e.g., gravity, dark matter, gas dynamics, ra-
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FIG. 5.— Luminosity functions (left panel) and luminosity-metallicity relations (right panel) extracted from 200 different models used to train our suite of model
emulators. For clarity, only the result of a linear fit to each L-Z is shown. Note the great diversity of outputs that can be obtained by varying the different input
parameters. The models were obtained after coupling ChemTreeN with the N-body simulation MW1. The vertical dashed lines on the left panel indicate the five
values of Mv chosen to sample the LFs. We sample each L-Z by extracting slopes and intercepts from the corresponding linear fits. A different model emulator
was constructed for each of these seven model outputs. The black solid line on both panels indicate the model considered as Milky Way’s mock observations,
obtained after running ChemTreeN with the input parameter vector xobs.
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FIG. 6.— Three different sections of each Implausibility surfaces, I(x), obtained from the five model emulators constructed for the LF’s outputs. The output
being emulated is indicated on the top right corner of each panel. Note that columns correspond to different observables. The 3D implausibility surfaces are
sliced with three orthogonal planes as defined by the components of xobs. The top, middle and bottom row panels show the fesc = 50, fbary = 0.05 and zr = 10
sections of the I(x) surfaces, respectively. The black dashed lines indicate the values of the remaining two components of xobs. Model emulators are compared
to the mock observable data obtained after running ChemTreeN with the input parameter vector xobs. Both mock observables and training data set are obtained
by coupling ChemTreeN with the N-body simulation MW1. The different colors show different values of I(x) in logarithmic scale. Note that, given an input
parameter vector xt, the larger the value of the I(xt), the less likely a good fit to the observable data can be obtained. From these model emulators it is possible
to strongly constrain the parameters fbary and zr, but not fesc.
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FIG. 9.— Different sections of the Joint implausibility surface, J(x), obtained by combining information provided by the seven model emulators shown in
Figure 6 Figure 7. Model emulators are compared to the mock observable data obtained after running ChemTreeN with the input parameter vector xobs. Both
mock observables and training data set are obtained by coupling ChemTreeN with the N-body simulation MW1. The top, middle and bottom row panels show
different sections of constant fesc, fbary and zr, respectively. The different colors show different values of J(x) in logarithmic scale. On each row, the black dashed
lines indicate the values of two of the components of xobs. If the three components are simultaneously present in a section, the location of xobs is indicated with a
blue star. The horizontal black solid line on the color bars indicate the imposed two-sigma threshold: a value above this threshold shows that it is very implausible
to obtain a good fit to the observed data with the corresponding values of the model parameters. Note that J(x) can strongly constrain the full parameter space
under study. Note as well that the values of the components of xobs are located in the most plausible regions of the space.

rameter vector, xobs, if we use training data obtained from a
merger tree different than that used to obtain the mock observ-
ables? In Figure 10 we show the outcome of this experiment.
Each block of four panels shows joint implausibility surface’s
sections obtained after comparing a given MWi-observables
with the four MWi-emulators. The merger tree used to gener-
ate the MWi-observables in each block is indicated with the
green label, MWi. For example, on the top left corner we
show the result of such comparison using MW1-observables.
As previously shown in Figure 9, when the model emulators
are trained on the same merger tree than that used to generate
the mock observables we can successfully constrain the input
parameter space and recover the components of xobs. How-
ever, when model emulators constructed on different merger
trees are considered, the most plausible regions are located
around values of fbary much larger than those used to obtain
the mock observables. This is not surprising since, as shown
in Figure 3, MW1 is the Milky Way-like halo that contains
the largest number of satellites at all Mv. Thus, to achieve
a good fit to MW1-observables, it is required to inject in the
remaining simulations a larger amount of gas to form stars.
Note as well that the joint implausibility surface obtained with
the MW3-emulators has no values below the chosen thresh-
old. Thus MW1-observables cannot be reproduced using the

merger history extracted from halo MW3. Another interest-
ing example is shown on the lower right panels of Figure
10. Here MW4-observables are considered. Very good fits
to these observables can be obtained for either larger (MW3-
emulators) or smaller (MW2-emulators) values of fbary than
that used to generate the mock observables. A similar situa-
tion is observed for the input parameter zr. Note that we have
only considered the fesc = 50 section of each joint implausibil-
ity surface. As described in Section 4, the L-Z relation is not
sensitive to the merger history of the host halo. The parame-
ter fesc is therefore well constraint in all cases. This forces the
J(x) surfaces to have the most plausible regions in the in the
vicinity of the aforementioned section of J(x).
The previous analysis clearly exemplify how a particular

merger history can influence the model parameter selection:
similarly good fits to a given set of observables can be ob-
tained with different parameter’s values simply by modifying
the host’s merger history. In our experiments these values
may significantly differ from those used to generate the mock
observables. When comparing with real observational data,
a given set of best fitting parameter’s values may be signifi-
cantly off from the values that could best parametrize the de-
sired underlying physical processes. This in turn may have
important implications on other observable quantities which
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Inference about calibration parameters

• Combine field observations Yf and model observations Ym to infer something 
about the calibration parameters

• Field observations 

• Model observations

• Do not have to be made at the same design points

Theoretical
PhysicsReality Computer

Model Emulator

Experiment Calibration
Parameters

F����� �.�: A schematic representation of the connections between reality, theory, experi-
ment, our computer model or simulator, and the statistical emulator or surrogate we will
create of it.

observations as Y
f

px, u‹q then

Y
f

px, u‹q “ Y
r

px, u‹q ` ✏
f

pxq (1.2)
Y

r

px, u‹q “ Y
m

px, u‹q ` bpx, u‹q,

where ✏
f

pxq represents the error in the experimental observations and bpx, uq is
some unknown function representing the discrepancy between our model and re-
ality. This is all well and fine however we generally have no idea what u‹ should be
and so we have to evaluate Y

m

over a range of values of u. Furthermore the func-
tional form of b is strongly confounded with u, for di�ering values of u the model
will produce varying output changing the form of b. The form given in (1.2) was
first promulgated by Kennedy and O’Hagan [5]. Though this is by no means the
only possible formulation it is a reasonable place to begin for most simulators.

With the information we have it is impossible to uniquely determine both u‹
and the correct form of b. Imagine two people with weights ✓

1

, ✓
2

standing on a
scales at the same time, the measured weight would be

y “ ✓
1

` ✓
2

.

No matter how we repeat the process or the values of the two weights we will not
be able to make a sensible estimate of either one with only observations of y. In
this case the quantities ✓

1

, ✓
2

are not statistically identifiable. Of course if were to
able to hold one weight fixed (✓

1

say ) while systematically varying the other we
would be able estimate ✓

1

. However this is a rather di�erent situation since the
systematic variation of ✓

2

promotes it from a random quantity to a certain one.
Returning to the (1.2) we can make certain choices of prior distribution for the

discrepancy which attempt to balance the functional form of b so that its influence
is “small” relative to that of the computer model Y

m

. This is reasonable since we
typically have a fairly large number of observations of the computer model output
across the x, u space, although this is typically biased towards the u side of things,
and a far smaller number of experimental observations since these are typically
drastically more expensive to obtain than most computer models.

4
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Fast Faithful Model 

• Model can be evaluated for no cost & accurately reproduces reality

• Likelihood for field observations

• Picking some sensible prior 

9.1 Fast Faithful Model

The simplest calibration case we can address is one where the computer model Y
m

is su�ciently fast that we can e�ectively make an unlimited number of observa-
tions of the model at any location in the x, u parameter space that we wish.

Furthermore lets suppose that the simulator Y
m

px, uq faithfully simulates the
true physical Y

r

px, u‹
q system when evaluated at the true, but currently unknown,

values u “ u‹. Under this assumption we can simplify our model (9.1) to

Y
f

px
i

q “ Y
m

px
i

, u‹q ` ✏px
i

q, i “ 1 . . . n, (9.2)

where the n values x
i

P D
f

are the settings where the field observations are made.
It’s important to note that at this point we don’t actually know the values u‹, we will
model these as a random variable and use the field data and the model to make
inference about their values. Taking the field observation errors as independent
normal with some known standard deviation �

f

, we can write the likelihood of
the vector of n observations y

f

“ pY
f

px
1

q, . . . , Y
f

px
n

qq

| as

L py
f

| Y
m

pu‹qq 9 exp

"
´

1

2

py
f

´ Y
m

pu‹qq

|
⌃

´1

f

py
f

´ Y
m

pu‹qq

*
, (9.3)

where the n element vector Y
m

pu‹q “ pY
m

px
1

, u‹q, . . . , Y
m

px
n

, u‹qq

| and ⌃

f

“ �2

f

I
n

.
This is to be interpreted as the probability for observing the field data y

f

given the
set of model outputs Y

m

pu‹q. Treating u‹ as a random variable we introduce a prior
distribution ⇡pu‹q which captures our prior uncertainty about the true calibration
values. Note that we are only sampling our model at the x parameter values that
we have field data for, this is reasonable since we believe the model is faithful at
this stage. The posterior distribution for u‹ given our prior and the observations
y

f

is then
⇡ pu‹ | y

f

q 9 L
`
y

f

| Y
m

pu‹q

˘
⇡pu‹q. (9.4)

Typically the full form of this posterior is intractable, unless our model is a very
simple function we will not be able to proceed much further algebraically. How-
ever we can use Markov Chain Monte Carlo (MCMC) [170, 168, 169] to generate
a series of samples u1

‹, . . . , usN

MC , if we generate enough samples then their em-
pirical distribution will (eventually) converge to the distribution of the posterior
⇡ pu‹ | y

f

q.

9.1.1 Metropolis MCMC Algorithm

The Metropolis algorithm [211] is a simple but e�ective implementation of MCMC,
it may be may well be familiar as it is the typical process introduced to numeri-
cally explore the Ising ferromagnetic model [212]. A common feature of MCMC
algorithms is that they typically scale very well with the dimensionality of the dis-
tribution being sampled.
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HPD lower p95%q mean HPD upper p95%q

prior 0.089 0.5 0.911
posterior 0.556 0.629 0.707

Table 9.1: A comparison of the prior ⇡pu‹q and MCMC posterior ⇡pu‹ | y

f

q, the prior
ranges are simply the appropriate normal quantiles.

given n “ 4 observations equally spaced in x can we infer the true calibration
parameter u

star

? Taking the observation errors as i.i.d normal with standard de-
viation �

f

“ 0.025 and a normal prior distribution ⇡pu‹q „ Np0.5, 0.25

2

q. Results
of using Metropolis MCMC procedure to sample (9.4) are shown in Fig: 9.1 and
summarized in Table: 9.1. Here 10000 Metropolis steps were used with a normal
proposal distribution centered on the current value u1

‹ | ut

‹ „ Nput

‹, 0.3
2

q. Given
the uncertainty in the field observations we should be rather satisfied with the
results of this procedure, we have strongly reduced the variability in our model
function so that posterior draws typically fall within the 95% confidence intervals
associated with our field data.
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F����� �.�: Left: the four field observations making up y

F

are plotted as open circle with
95% confidence intervals, samples of Y

m

px, u‹q with u‹ drawn from the prior ⇡pu‹) are
shown in light red. The inset figure shows the prior density, the true value is shown as
the dashed blue line. Right: the light red curves are plots of Y

m

px, u‹q with u‹ drawn from
the MCMC posterior which approximates (9.4). The inset figure shows the prior density
⇡pu‹q (dashed) and the MCMC posterior density 9 ⇡ pu‹ | y

f

q.

9.2 Slow Faithful Model

Now lets consider the slightly more realistic situation where our simulator is su�-
ciently complex that we can only obtain a finite number d of runsY “ tY

m

px
1

, u
1

q, . . . , Y
m

px
d

, u
d

qu
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Slow Faithful Model

• Simulator is too slow, we can only observe it at some finite set of locations

• Introduce augmented field and model vector

• observation likelihood is now

• We have placed a GP prior on the simulator output

z = (y|f ,Y|)|
Y = (Ym(x1, u1), . . . , Yf (xm, um)) , xi 2 D

generated from running the simulator at some design D “ tpx
1

, u
1

q, . . . , px
d

, u
d

qu.
Now we have to treat the simulator output Y

m

px, uq as being unknown when eval-
uated at locations not in the design D. Let’s take the total dimension of the param-
eter space as p “ p

x

`p
u

where p
u

is the number of calibration parameters and p
x

is
the number of observation parameters. Placing a GP prior on the simulator with
a constant mean µ and a power exponential prior covariance function

Cppx, uq, px1, u1
qq “

1

�
m

exp

#
´

p

xÿ

k“1

px
k

´ x1
k

q

↵

p�m

k

q

↵

´

p

uÿ

k“1

pu
k

´ u1
k

q

↵

p�m

p

x

`k

q

↵

+
(9.7)

where the p
x

quantities �m

k

are the length scales for the observation and calibration
parameters and �

m

is the marginal precision.
The model (9.2) is again appropriate here. We have n field observations y

f

with
x

i

P D
f

and a set of d observations of our simulator Y with px
i

, u
i

q P D. We can
introduce the n`d length vector z “ py|

f

,Y|
q

| which corresponds to input settings
D

z

“ tpx
1

, u‹q, . . . , px
n

, u‹q, px
1

, u
1

q, . . . px
d

, u
d

qu. The first n observation parameter
settings in z are from D

f

with the calibration parameters set to their unknown true
values. The remaining d sets of observation and calibration parameters are set by
the simulator design D.

Taking the same model for the field observations as above, we can write the
likelihood of our vector of samples and observations z given a value of the ’true’
parameters u‹ along with values of �

m

, ⌘ which specify the length scales in our GP,

Lpz | u‹, µ, �
m

, �m, ⌃
f

q 9|⌃

z

|

´1{2
exp

"
´

1

2

pz ´ µI
n`d

q

|
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´1

z

pz ´ µI
n`d

q

*
, (9.8)

where

⌃
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“ ⌃

m

`

ˆ
⌃

f

0

0 0

˙
, ⌃

m

“

ˆ
⌃

yy

⌃

yY

⌃

|
yY ⌃YY

˙

and ⌃

m

is the pn`dˆn`dq matrix obtained by applying (9.7) to every pair of inputs
in the augmented set D

z

. When we sample the posterior associated with this like-
lihood and appropriate priors for the GP parameters and u‹ we will be e�ectively
estimating the distribution for u‹ as well as the distribution for the parameters con-
trolling GP covariance structure . While this is elegant one could always insert the
maximum likelihood estimates for the GP parameters �

m

, µ and � obtained using
the methods outlined in § 3.8 treating them as fixed quantities and then carry out
MCMC sampling for the unknown calibration parameters u‹.

Scaling the input parameter space onto the unit hyper cube r0, 1s

p

x

`p

u and cen-
tering and scaling the model output data so thatY has unit sample variance simpli-
fies the prior specification process. With the parameter space mapped onto the unit
cube we can identify unimportant parameters as those whose estimated length

112

generated from running the simulator at some design D “ tpx
1

, u
1

q, . . . , px
d

, u
d

qu.
Now we have to treat the simulator output Y

m

px, uq as being unknown when eval-
uated at locations not in the design D. Let’s take the total dimension of the param-
eter space as p “ p

x

`p
u

where p
u

is the number of calibration parameters and p
x

is
the number of observation parameters. Placing a GP prior on the simulator with
a constant mean µ and a power exponential prior covariance function

Cppx, uq, px1, u1
qq “

1

�
m

exp

#
´

p

xÿ

k“1

px
k

´ x1
k

q

↵

p�m

k

q

↵

´

p

uÿ

k“1

pu
k

´ u1
k

q

↵

p�m

p

x

`k

q

↵

+
(9.7)

where the p
x

quantities �m

k

are the length scales for the observation and calibration
parameters and �

m

is the marginal precision.
The model (9.2) is again appropriate here. We have n field observations y

f

with
x

i

P D
f

and a set of d observations of our simulator Y with px
i

, u
i

q P D. We can
introduce the n`d length vector z “ py|

f

,Y|
q

| which corresponds to input settings
D

z

“ tpx
1

, u‹q, . . . , px
n

, u‹q, px
1

, u
1

q, . . . px
d

, u
d

qu. The first n observation parameter
settings in z are from D

f

with the calibration parameters set to their unknown true
values. The remaining d sets of observation and calibration parameters are set by
the simulator design D.

Taking the same model for the field observations as above, we can write the
likelihood of our vector of samples and observations z given a value of the ’true’
parameters u‹ along with values of �

m

, ⌘ which specify the length scales in our GP,

Lpz | u‹, µ, �
m

, �m, ⌃
f

q 9|⌃

z

|

´1{2
exp

"
´

1

2

pz ´ µI
n`d

q

|
⌃

´1

z

pz ´ µI
n`d

q

*
, (9.8)

where

⌃

z

“ ⌃

m

`

ˆ
⌃

f

0

0 0

˙
, ⌃

m

“

ˆ
⌃

y

f

y

f

⌃

y

f

Y

⌃

|
y

f

Y ⌃YY

˙

and ⌃

m

is the pn`dˆn`dq matrix obtained by applying (9.7) to every pair of inputs
in the augmented set D

z

. When we sample the posterior associated with this like-
lihood and appropriate priors for the GP parameters and u‹ we will be e�ectively
estimating the distribution for u‹ as well as the distribution for the parameters con-
trolling GP covariance structure . While this is elegant one could always insert the
maximum likelihood estimates for the GP parameters �

m

, µ and � obtained using
the methods outlined in § 3.8 treating them as fixed quantities and then carry out
MCMC sampling for the unknown calibration parameters u‹.

Scaling the input parameter space onto the unit hyper cube r0, 1s

p

x

`p

u and cen-
tering and scaling the model output data so thatY has unit sample variance simpli-
fies the prior specification process. With the parameter space mapped onto the unit
cube we can identify unimportant parameters as those whose estimated length

112

scale is approximately 1. Taking a gamma prior for the marginal precision �
m

and
beta priors on the length scales

⇡p�
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q9 �a
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q9 p�m
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q
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´1

p1 ´ ⇢
k

q

b

�

´1, k “ 1, . . . , p
x

` p
u

.

we can take a
m

“ b
m

“ 5 which pushes �
m

towards 1. For the correlation lengths
we take a

�

“ 1 and b
�

“ 0.1, this makes the prior probability of a length scale being
somewhat significant P p�m

k

† 0.98q «

1

3

. Centering the observations z allows us
to simplify things by taking µ “ 0, if this is somehow not appropriate we can of
course specify some prior form for the GP mean.

After conditioning on our vector of observations z “ py|
f

,Y|
q

| we obtain the
posterior

⇡pu‹, µ, �
m

, �m

| zq 9 Lpz | u‹, µ, �
m

, �m, ⌃
f

q⇡pu‹q⇡pµq⇡p�
m

q⇡p�m

q, (9.9)

which we can again sample using MCMC methods. Given one such sample pu‹, µ, �
m

, �m

q

we can sample our GP emulator at any given point in the parameter space Y
m

px1, u1
q

just as we would using the drop-in emulators discussed in previous chapters. Es-
sentially we obtain the conditional distribution of the emulator at the new location
given the simulator observations from their joint distribution using (A.10).

9.2.1 A toy model

Lets consider the previous toy model,

Y
m

px, uq “ 5x2

expp´3x2

q sinpx ´ uq ` 2, x P r0, 2s (9.10)

given n “ 4 observations equally spaced in x and a set of d “ 32 observations of the
simulator distributed in the p “ 2 dimensional parameter space with a LHS design.
Again we will take the observation errors as i.i.d normal with standard deviation
�

f

“ 0.25 and a normal prior distribution ⇡pu‹q „ Np0.5, 0.25

2

q. The posterior
mean of the resulting GP emulator m̄

1

px, uq is shown in Fig: 9.2, the values of �m

“

p0.0787, 0.142q and �
m

“ 1.138 were randomly drawn from the N
MC

“ 30, 000

MCMC samples.

HPD lower p95%q mean HPD upper p95%q

prior 0.089 0.5 0.911
posterior 0.462 0.629 0.868

Table 9.2: A comparison of the prior ⇡pu‹q and MCMC posterior ⇡pu‹ | zq, the prior ranges
are simply the appropriate normal quantiles.

As in the previous example the left panel of Fig: 9.3 shows draws from the prior
distribution for u‹ as fine red lines. In addition the training data of 32 sample points
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generated from running the simulator at some design D “ tpx
1

, u
1

q, . . . , px
d

, u
d

qu.
Now we have to treat the simulator output Y

m

px, uq as being unknown when eval-
uated at locations not in the design D. Let’s take the total dimension of the param-
eter space as p “ p

x

`p
u

where p
u

is the number of calibration parameters and p
x

is
the number of observation parameters. Placing a GP prior on the simulator with
a constant mean µ and a power exponential prior covariance function

Cppx, uq, px1, u1
qq “

1

�
m

exp

#
´

p

xÿ

k“1

px
k

´ x1
k

q

↵

p�m

k

q

↵

´

p

uÿ

k“1

pu
k

´ u1
k

q

↵

p�m

p

x

`k

q

↵

+
(9.7)

where the p
x

quantities �m

k

are the length scales for the observation and calibration
parameters and �

m

is the marginal precision.
The model (9.2) is again appropriate here. We have n field observations y

f

with
x

i

P D
f

and a set of d observations of our simulator Y with px
i

, u
i

q P D. We can
introduce the n`d length vector z “ py|

f

,Y|
q

| which corresponds to input settings
D

z

“ tpx
1

, u‹q, . . . , px
n

, u‹q, px
1

, u
1

q, . . . px
d

, u
d

qu. The first n observation parameter
settings in z are from D

f

with the calibration parameters set to their unknown true
values. The remaining d sets of observation and calibration parameters are set by
the simulator design D.

Taking the same model for the field observations as above, we can write the
likelihood of our vector of samples and observations z given a value of the ’true’
parameters u‹ along with values of �

m

, ⌘ which specify the length scales in our GP,

Lpz | u‹, µ, �
m

, �m, ⌃
f

q 9|⌃

z

|

´1{2
exp

"
´

1

2

pz ´ µI
n`d

q

|
⌃

´1

z

pz ´ µI
n`d

q

*
, (9.8)

where

⌃

z

“ ⌃

m

`

ˆ
⌃

f

0

0 0

˙
, ⌃

m

“

ˆ
⌃

y

f

y

f

⌃

y

f

Y

⌃

|
y

f

Y ⌃YY

˙

and ⌃

m

is the pn`dˆn`dq matrix obtained by applying (9.7) to every pair of inputs
in the augmented set D

z

. When we sample the posterior associated with this like-
lihood and appropriate priors for the GP parameters and u‹ we will be e�ectively
estimating the distribution for u‹ as well as the distribution for the parameters con-
trolling GP covariance structure . While this is elegant one could always insert the
maximum likelihood estimates for the GP parameters �

m

, µ and � obtained using
the methods outlined in § 3.8 treating them as fixed quantities and then carry out
MCMC sampling for the unknown calibration parameters u‹.

Scaling the input parameter space onto the unit hyper cube r0, 1s

p

x

`p

u and cen-
tering and scaling the model output data so thatY has unit sample variance simpli-
fies the prior specification process. With the parameter space mapped onto the unit
cube we can identify unimportant parameters as those whose estimated length
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F����� �.�: Several views of the posterior mean m̄

1

px, uq of a GP emulator developed from
the 32 observations Y of (9.6). The red points are the training data set Y, the blue points
and line show the field observations. The emulator parameters, �

m

, �

m

were drawn at
random from the MCMC chain.

(projected into the x dimension) are plotted as the solid points, these correspond
with solid red points shown in Fig: 9.2. The right hand panel shows draws from
the posterior density ⇡pu‹ | zq, although somewhat noisy these are mostly well
grouped around the true value of the model function (plotted as the blue solid
line). The inset panel shows the posterior distribution for u‹ as the histogram with
solid bins, the prior density is drawn as the dashed line and the true value is drawn
as the vertical dashed blue line.

Admittedly the performance is not quite so beautiful as in the case with the
fast model in terms of the posterior draws. This is still a very good result given
the relatively small number of training points. The posterior distribution for u‹ is
significantly constrained as shown in Table: 9.2. The performance could likely be
improved, in the sense of posterior draws more perfectly approximating the true
output, by increasing the number of MCMC samples and optimizing the proposal
distributions and perhaps by considering alternative forms for the prior.

9.3 Slow Unfaithful Model

If we have reason to believe that there is a systematic di�erence between the output
of our simulator and the observational data, i.e. that our model is no longer a
faithful representation of reality, we may still be able to obtain some interesting
information about the true values of the calibration parameters u‹. Typically the
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F����� �.�: Left: the field observations y

f

are plotted as blue open circles of (9.10), the
training data Y projected into the x direction are plotted as red closed circles, the curves
are draws from Y

m

px, u‹q with u‹ drawn from the prior density. Right: the light red curves
are plots of Y

m

px, u‹q with u‹ drawn from the MCMC posterior which approximates (9.9).
The inset figure shows the prior density ⇡pu‹q (dashed) and the MCMC posterior density
⇡pu‹, | zq

“smaller” the discrepancy is the more we can learn about u‹. We now adopt the
model

Y
f

px
i

q “ Y
m

px
i

, u‹q ` �px
i

q ` ✏px
i

q, i “ 1 . . . n, (9.11)
where �px

i

q is a function which represents the systematic deviation between our
simulator and reality. We model the discrepancy with a mean zero Gaussian Pro-
cess with covariance function

C
�

px, x1
q “

1

�
�

exp

#
´

1

2

p

xÿ

k“1

px
k

´ x1
k

q

↵

p��

k

q

↵

+
, (9.12)

and take similar priors to those used above for the model GP

⇡p�
�

q9 �a

�

´1

�

e´b

�

�

m , (9.13)
⇡p��

k

q9 p��

k

q

a

�

�

´1

p1 ´ ⇢
k

q

b

�

�

´1, k “ 1, . . . , p
x

. (9.14)

Suggested values are given by Higdon et al as a
�

“ 1 , b
�

“ 0.11 and a�

�

“ 1, b�

�

“ 0.1
in [16]. The likelihood for our augmented vector z is structurally the same as (9.8)
with the modified covariance matrix

⌃

z

“ ⌃

m

`

ˆ
⌃

f

` ⌃

�

0

0 0

˙

where ⌃

m

is the pn ` d ˆ n ` dq matrix obtained by applying (9.7) to every pair of
inputs in the augmented setD

z

, ⌃
f

is the pnˆnq covariance matrix of the field data,
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scale is approximately 1. Taking a gamma prior for the marginal precision �
m

and
beta priors on the length scales

⇡p�
m

q9 �a

m

´1

m

e´b

m

�

m

⇡p�m

k

q9 p�m

k

q

a

�

´1

p1 ´ ⇢
k

q

b

�

´1, k “ 1, . . . , p
x

` p
u

.

we can take a
m

“ b
m

“ 5 which pushes �
m

towards 1. For the correlation lengths
we take a

�

“ 1 and b
�

“ 0.1, this makes the prior probability of a length scale being
somewhat significant P p�m

k

† 0.98q «

1

3

. Centering the observations z allows us
to simplify things by taking µ “ 0, if this is somehow not appropriate we can of
course specify some prior form for the GP mean.

After conditioning on our vector of observations z “ py|
f

,Y|
q

| we obtain the
posterior

⇡pu‹, µ, �
m

, �m

| zq 9 Lpz | u‹, µ, �
m

, �m, ⌃
f

q⇡pu‹q⇡pµq⇡p�
m

q⇡p�m

q, (9.9)

which we can again sample using MCMC methods. Given one such sample pu‹, µ, �
m

, �m

q

we can sample our GP emulator at any given point in the parameter space Y
m

px1, u1
q

just as we would using the drop-in emulators discussed in previous chapters. Es-
sentially we obtain the conditional distribution of the emulator at the new location
given the simulator observations from their joint distribution using (A.10).

9.2.1 A toy model

Lets consider the previous toy model,

Y
m

px, uq “ 5x2

expp´3x2

q sinpx ´ uq ` 2, x P r0, 2s (9.10)

given n “ 4 observations equally spaced in x and a set of d “ 32 observations of the
simulator distributed in the p “ 2 dimensional parameter space with a LHS design.
Again we will take the observation errors as i.i.d normal with standard deviation
�

f

“ 0.25 and a normal prior distribution ⇡pu‹q „ Np0.5, 0.25

2

q. The posterior
mean of the resulting GP emulator m̄

1

px, uq is shown in Fig: 9.2, the values of �m

“

p0.0787, 0.142q and �
m

“ 1.138 were randomly drawn from the N
MC

“ 30, 000

MCMC samples.

HPD lower p95%q mean HPD upper p95%q

prior 0.089 0.5 0.911
posterior 0.462 0.629 0.868

Table 9.2: A comparison of the prior ⇡pu‹q and MCMC posterior ⇡pu‹ | zq, the prior ranges
are simply the appropriate normal quantiles.

As in the previous example the left panel of Fig: 9.3 shows draws from the prior
distribution for u‹ as fine red lines. In addition the training data of 32 sample points
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. Centering the observations z allows us
to simplify things by taking µ “ 0, if this is somehow not appropriate we can of
course specify some prior form for the GP mean.

After conditioning on our vector of observations z “ py|
f

,Y|
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| we obtain the
posterior
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which we can again sample using MCMC methods. Given one such sample pu‹, µ, �
m

, �m

q

we can sample our GP emulator at any given point in the parameter space Y
m

px1, u1
q

just as we would using the drop-in emulators discussed in previous chapters. Es-
sentially we obtain the conditional distribution of the emulator at the new location
given the simulator observations from their joint distribution using (A.10).

9.2.1 A toy model

Lets consider the previous toy model,

Y
m

px, uq “ 5x2

expp´3x2

q sinpx ´ uq ` 2, x P r0, 2s (9.10)

given n “ 4 observations equally spaced in x and a set of d “ 32 observations of the
simulator distributed in the p “ 2 dimensional parameter space with a LHS design.
Again we will take the observation errors as i.i.d normal with standard deviation
�

f

“ 0.25 and a normal prior distribution ⇡pu‹q „ Np0.5, 0.25

2

q. The posterior
mean of the resulting GP emulator m̄

1

px, uq is shown in Fig: 9.2, the values of �m

“

p0.0787, 0.142q and �
m

“ 1.138 were randomly drawn from the N
MC

“ 30, 000

MCMC samples.

HPD lower p95%q mean HPD upper p95%q

prior 0.089 0.5 0.911
posterior 0.462 0.629 0.868

Table 9.2: A comparison of the prior ⇡pu‹q and MCMC posterior ⇡pu‹ | zq, the prior ranges
are simply the appropriate normal quantiles.

As in the previous example the left panel of Fig: 9.3 shows draws from the prior
distribution for u‹ as fine red lines. In addition the training data of 32 sample points
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Calibration of MSU 3+1d viscous hydro

• A 3+1d event averaged viscous hydrodynamics code with a hadronic 
afterburner. 

• Design includes parameters which control the initial state energy and flow 
distributions and the viscosity during the hydro evolution.

• Extensive RHIC experimental data set was collected, these data were 
empirically reduced to a set of 15 summary variables.

• GP emulator trained on a PCA decomposition of the 15 model output 
summary variables

• Calibration was carried out using MCMC with a very simple likelihood model

13

net error tended to be less than a half unit, even though
it was summed over multiple degrees of freedom. Since
the error associated with the accuracy of the emulator
was so small, the emulator error was incorporated into
the calculation of the likelihood in a simplified manner.
The uncertainty inherent to the data and models for a
specific principal component was unity due to the choice
in how to scale the z

i

values. By adding in the emulator
error, the total uncertainty should be �

2 = 1 + �

2

e

for
each component. The likelihood used by the MCMC is
then,

L(x) / exp

(

�1

2

X

i

(z(emu)

i

(x)� z

(exp)

i

)2

1 + �

2

e

)

. (29)

For our MCMC calculations, �
e

was set to 0.1 according
to an estimate of the error per degree of freedom from
Fig. 4. This increased the width of the posterior region
of parameter space by only a few percent.

VI. MCMC RESULTS

As shown in the previous section, the emulator ac-
curately reproduces the log-likelihood. For the MCMC
search the Gaussian process emulator was run sampling
many millions of points in parameter space. The trace
provides an ergodic sample of the allowed regions in
parameter space, i.e., the posterior distribution. The
MCMC procedure applied here is a Metropolis algorithm.
First, the parameter space was scaled and translated so
that it was centered around zero, and that the flat prior
had unit variance, i.e., it varied from �

p
3 to +

p
3. First,

a random point was chosen in the six-dimensional pa-
rameter space x

1

, from which one takes a random step
to x

2

= x
1

+ �x. The random steps �x were chosen ac-
cording to a six-dimensional Gaussian with the step size
in each dimension being 0.1. The likelihoods were calcu-
lated for each point. If the likelihood L(x

2

) was higher
than L(x

1

), the step was accepted, and if the likelihood
was smaller, the step was accepted with the probability of
the ratios of the two likelihoods. After the 100,000-step
burn-in phase, the trace was stored by writing down every
tenth point. The resulting distribution is proportional to
the likelihood [61] and represents an ergodic sampling of
the posterior distribution for a uniform prior. The trace
finished when 106 points were written to disk.

To evaluate the success of the emulation, 20 points
were randomly chosen from the MCMC trace and were
then evaluated with the full model. The observables
used for the original analysis were then plotted for each
of the 20 points in parameter space. Another twenty
points were chosen randomly from the original parameter
space, i.e. they are consistent with the flat prior distri-
bution. Again, the observables were calculated with the
full model for each of these points in parameter space.
One expects the observables for each of the 20 points
representing the MCMC trace to reasonably well match

the experimental data, while the points chosen randomly
from the prior distribution should lead to a wider range
of observables, some of which should be inconsistent with
the data.

Comparisons of the spectra from the model runs char-
acterizing the prior and posterior distributions are shown
in Figure. 5. Parameters from the posterior distributions
lead to far superior fits, to both the yields and shape
of the spectra. From the figure, one can see that the
spectra for heavier particles provide more discriminating
power. This comes from the greater sensitivity to collec-
tive flow, and emphasizes the importance of having reli-
able measurements of proton spectra. At RHIC, STAR’s
proton spectra are warmer than those of PHENIX, and
their estimate of the mean p

t

for protons is 7% higher.
Whereas PHENIX shows the mean p

t

of protons staying
steady or perhaps slightly falling with increasing central-
ity, STAR’s analysis show a rising mean p

t

. If the mean
p

t

were indeed higher than what PHENIX reports, the
extracted parameters should change, e.g., the initial col-
lective flow might come out higher.

Figure 6 shows v
2

and the femtoscopic source sizes cal-
culated from the same representative points in parame-
ter space for both the prior and posterior distributions.
The MCMC is clearly successful in identifying points in
parameter space that when run through the full model
matched the experimental measurement. Further, given
that the systematic uncertainty of specifying the p

t

av-
eraged v

2

was assumed to be 12%, the spread of v
2

vs.
p

t

plots appears consistent with expectations. Although
the overall trend of the source radii were matched by
the model, a consistent discrepancy between the data
and model calculations using parameters from the pos-
terior distribution is evident. At low p

t

, the sideward
and longitudinal source sizes are over-predicted by more
than 10%, which is about double the expected system-
atic error. Over-predicting the sizes might be due to the
assumption of boost invariance, or perhaps the approxi-
mations used to account for the Coulomb interaction, or
in justifying the Koonin formula. From analyticity, one
expects that the R

out

and R

side

sizes to approach one
another as p

t

! 0. As can be seen in the upper panel
of Figure. 6, this does not appear to be holding true in
the data. Either the lower range of p

t

(200 MeV/c) is
not su�ciently small, or an acceptance/e�ciency e↵ect
in the detector is a↵ecting the result. This issue should
be resolved if femtoscopic analyses are to be applied with
confidence at better than the 10% level.

From the MCMC traces, the distribution of the various
parameters and the correlations between pairs of param-
eters are shown for the Gaussian-process emulator in Fig-
ure. 7. The plots along the diagonal display the range of
acceptable values for individual parameters, integrated
over all values of the other five parameters. Although
over 90% of the six-dimensional parameter space is elim-
inated at the one-sigma level, the individual parameters
are rarely constrained to less than half their initial range
when other parameters are allowed to vary.
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6 dimensional design

6

parameter description range
(dE/dy)pp The initial energy per rapidity in the di↵use limit compared to measured value in pp collision 0.85–1.2

�
sat

This controls how saturation sets in as function of areal density of the target or projectile. In
the wounded nucleon model it is assumed to be the free nucleon-nucleon cross section of 42 mb

30 mb–50 mb

fwn Determines the relative weight of the wounded-nucleon and saturation formulas for the initial
energy density described in (3, 4)

0–1

F
flow

Describes the strength of the initial flow as a fraction of the amount described in (7) 0.25–1.25
⌘/s|Tc Viscosity to entropy ratio for T = 170 MeV 0 – 0.5

↵ Temperature dependence of ⌘/s for temperatures above 170 MeV/c, i.e.,
⌘/s = ⌘/s|Tc + ↵ ln(T/Tc)

0 - 5

TABLE I. Summary of model parameters. Six model parameters were varied. The first four describe the initial state being
fed into the hydrodynamic module, and the last two describe the viscosity and its energy dependence.

model calculations correlation functions were calculated
by first sampling S(K, r) then combining pairs of pions
with similar momentum. Pions were divided into bins
of 20 MeV/c width in transverse momentum and in 15�

bins in azimuthal angle, before pairing. Utilizing boost
invariance, all the pions could be longitudinally boosted
to a frame where the rapidity was zero. The space-time
points at which particle’s had their last interaction had
been recorded along with their asymptotic momentum
during the running of the B3D module. This allowed a
list of r = r

1

� r
2

to be constructed for each momen-
tum bin. Correlation functions for each momentum bin
were calculated by assuming a simplified wave function,
|�q(r)|2 = 1+cos(2k·r). Gaussian source radii were then
found by searching for radii that best reproduce the cor-
relation functions calculated by the model. Thus, rather
than matching experimental and theoretical correlation
functions, Gaussian radii were compared. The calcula-
tion of correlation functions and fitting was performed
with the code base in CorAL [42].

III. REDUCTION OF EXPERIMENTAL DATA
FOR STATISTICAL ANALYSIS

The heavy ion data sets from RHIC and from the
Pb+Pb experiments at the LHC represent some of the
largest scientific data sets in existence. A principal moti-
vation of this work is to develop a statistical analysis that
can be extended to large heterogenous data sets. This
would include data taken at multiple beam energies, with
di↵erent target-projectile combinations and with di↵er-
ent detectors. The recent beam-energy scan at RHIC and
the inauguration of the LHC have increased the available
data by more than an order of magnitude as compared to
the Au+Au collisions at 100A GeV beams measured at
RHIC. Additionally, analyzed measurements of Cu+Cu,
Cu+Au and U+U from RHIC will soon be available. The
data set from the one beam energy contains petabytes of
information. For this first study, we confine our analysis
to this one data set, Au+Au at 100A GeV + 100A GeV.
We further confine the analysis to a subset of soft physics
observables: spectra, elliptic anisotropy, and femtoscopic
correlations. Only mid-rapidity observables were consid-

ered. These are the observables most connected to the
bulk dynamics and to the bulk properties of matter, and
are often referred to as “soft physics”. Several classes of
observables are being ignored, e.g., jet quenching, long-
range fluctuations and correlations, dilepton and direct-
photon measurements, and heavy flavor. These observ-
ables are often labeled “rare probes” and their interpre-
tation largely factorizes out of the analysis of the soft ob-
servables being considered here. For instance, although
jet quenching depends on the energy density and bulk
properties of the quark gluon plasma, the soft physics
observables being considered here are not significantly af-
fected by the mechanism for jet production. Further, the
theory and phenomenology governing these other classes
of observables often carry large uncertainties, not only
in additional unknown parameters, but also in that they
carry questions concerning the choice of approach. Given
the way that the physics from these other classes of anal-
yses factorize from the soft physics, and the lack of the-
oretical consensus, the prudent course of action seems
to be to determine the bulk dynamics of the system us-
ing the soft physics observables. Once the evolution of
the system is determined, with quantified uncertainties,
one would have a validated basis from which to calculate
other classes of observables, such as rare probes.
Within the set of soft-physics observables, this first

analysis is restricted to a subset of the overall data.
For spectra, we consider only pions, kaons and protons.
It would be straight-forward to consider strange baryon
spectra, but due to large systematic and statistical errors,
they are unlikely to greatly a↵ect the answer at the cur-
rent time. Additionally, because theoretical treatments
away from mid-rapidity remain in an immature stage, our
analysis concerns only mid-rapidity observables. For an-
gular anisotropies, we consider only v

2

and ignore higher
order anisotropies for n > 2,

v

n

⌘ hcos(n�)i, (13)

where � is the angle of a particle relative to the reac-
tion plane. Recent analyses of v

n>2

suggest that the
observables may even be more sensitive to the viscosity
than v

2

[43, 44]. However, theoretical questions remain
about how to instantiate the event-by-event fluctuations
which drive these higher-order harmonics. This analysis

Analyzed 0-5% and 
20-30% centrality 

classes
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8

observable pt weighting centrality collaboration uncertainty
v
2,⇡+⇡� ave. over 11 pt bins from 160 MeV/c to 1 GeV/c 20-30% STAR⇤ [45] 12%
R

out

ave. over 4 pt bins from 150-500 MeV/c 0-5% STAR [46] 6%
R

side

ave. over 4 pt bins from 150-500 MeV/c 0-5% STAR [46] 6%
R

long

ave. over 4 pt bins from 150-500 MeV/c 0-5% STAR [46] 6%
R

out

ave. over 4 pt bins from 150-500 MeV/c 20-30% STAR [46] 6%
R

side

ave. over 4 pt bins from 150-500 MeV/c 20-30% STAR [46] 6%
R

long

ave. over 4 pt bins from 150-500 MeV/c 20-30% STAR [46] 6%
hpti⇡+⇡� 200 MeV/c < pt < 1.0 GeV/c 0-5% PHENIX [47] 3%
hptiK+K� 400 MeV/c < pt < 1.3 GeV/c 0-5% PHENIX [47] 3%
hptipp̄ 600 MeV/c < pt < 1.6 GeV/c 0-5% PHENIX [47] 3%

hpti⇡+⇡� 200 MeV/c < pt < 1.0 GeV/c 20-30% PHENIX [47] 3%
hptiK+K� 400 MeV/c < pt < 1.3 GeV/c 20-30% PHENIX [47] 3%
hptipp̄ 600 MeV/c < pt < 1.6 GeV/c 20-30% PHENIX [47] 3%

⇡+⇡� yield 200 MeV/c < pt < 1.0 GeV/c 0-5% PHENIX [47] 6%
⇡+⇡� yield 200 MeV/c < pt < 1.0 GeV/c 20-30% PHENIX [47] 6%

TABLE II. Observables used to compare models to data. ⇤To account for non-flow correlations, the value of v
2

was reduced
by 10% from the value reported in [45].

for the i = 1 through N data points listed in Table. II.
One then considers the corresponding quantities from the
model run m, y

m,i

where m runs from 1 to the number
of full model runs M . A useful first step is to scale the
quantities by their net uncertainty,

ỹ

exp,i

=
y

exp,i

� hy
i

i
�

i

, (14)

ỹ

m,i

=
y

m,i

� hy
i

i
�

i

,

hy
i

i = 1

M

M

X

m=1

y

m,i

.

The net uncertainties, �
i

are operationally defined as the
uncertainty involved in comparing a model value to an
experimental measurement. The measurements consid-
ered in this paper are limited by systematic rather than
aleatoric errors, and we assume that errors are described
by a normal distribution,

L(x) ⇠ exp

8

>

<

>

:

�
X

i

⇣

y

(exp)

i

� y

(mod)

i

(x)
⌘

2

2�2

i

9

>

=

>

;

, (15)

where y(exp) and y

(mod) are the experimentally measured
and model values respectively. Even if the model param-
eters are exact, the models also have limited accuracy
due to shortcomings in the physics. Thus, the net un-
certainty encapsulates both theoretical and experimental
uncertainties, i.e., they can be considered to describe the
inability of the model not only to describe the physics of
the collision, but to also account for the inadequacy of
the model to describe uncertainties in the experimental
measurement and analysis.

One then studies the sample covariance of the model
values amongst the M model runs.

S

ij

=
1

M

M

X

m=1

ỹ

m,i

ỹ

m,j

(16)

The N eigenvalues of S are �
i

, and the normalized eigen-
vectors are ✏̂

i,j

. One can then consider new variables, z
m,i

which are linear projections of the original ỹ
m,i

along the
various directions defined by the eigenvectors,

z

m,i

=
X

j

✏̂

i,j

ỹ

m,j

. (17)

With this procedure, the model values, ỹ
m,i

, are rotated
into a basis where the values z

m,i

have a diagonalized
variance over the model runs,

1

M

M

X

m=1

z

m,i

z

m,j

= �

i

�

ij

. (18)

The values z

m,i

are known as principal components.
Since the values ỹ were scaled by the uncertainties, the
components ỹ

i

have uncertainties of unity, and after rota-
tion the values z

i

also have uncertainties of unity. Since
the variance of z within the model runs is diagonal, one
can state that those components for which �

i

⌧ 1 can
be ignored because they do not assist in discriminating
parameters. Further, the discriminating power is often
dominated by the first few principle components, i.e.,
those with the largest �

i

.
To further justify our selection of principle components

we show a plot of the normalized cumulative variance
explained by the largest r components in Figure. 1, i.e

F (r) =

P

r

i=1

�

i

P

N

i=1

�

i

, (19)

where we have sorted the eigenvalues into descending or-
der. Examination of this figure clearly shows that the
first four principle components are su�cient to explain
almost all of the sampled variance.
Once the principal components, z

i

, have been deter-
mined, one can invert the transformations to find y

i

in
terms of the z

i

. The components which do not contribute

Model was actually calibrated 
against flow, yields and pt spectra.
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FIG. 5. (color online) Left-side panels: Pion, kaon and proton spectra from 20 model calculations where parameters are
randomly chosen from the prior distribution. Model calculations are blue lines, and experimental data from PHENIX is shown
as red/green circles for positive/negative charges. Results are shown for both 5% most central, and for the 20-30% centrality
bin. Due to lack of some chemical reactions, normalizations for kaons and pions in the model were scaled by factors of 0.85
and 0.6 respectively. Right panels: Same as left-side but with 20 model calculations where parameters were chosen randomly
from posterior distribution as sampled by MCMC trace.

The first four parameters (“I.C. PP NORM”, “I.C.
SAT �”, “I.C. W.N. FRAC” and “I.C. FLOW”) deter-
mine the initial state fed into the hydro. The first pa-
rameter “I.C. PP NORM” sets the constant of propor-
tionality between the product of the areal densities of
the incoming nuclei, and the initial energy density fed
into the hydro. In the limit of low aerial densities this
should be consistent with pp collisions. Thus, the range of
the prior distribution was quite small, and the statistical
analysis did little to further constrain it. The parameter
“I.C. SAT �” refers to �

sat

in (3) and parameterizes the
saturation of the energy density with multiple collisions.
The preferred value appears rather close to the value of 42
mb typically used in the wounded nucleon model, though
there is a fairly wide range of accepted values. The pa-
rameter “I.C. W.N. FRAC” sets the weights between the
wounded nucleon and the saturation parameterizations
in (1). This shows a preference for the wounded nu-
cleon prescription which gives a smaller initial anisotropy

than the saturation parameterization. The final initial-
condition parameterization, “I.C. FLOW” sets the initial
transverse flow set in the hydrodynamic calculation. The
parameter sets the initial flow as a fraction of the amount
described by (7), which should be expected in the limit of
high-energy. The MCMC trace points to a rather small
fraction of this flow, though like all of the initial-condition
parameters has a fairly broad range of possible values.
The last two parameters refer to the viscosity. The

viscosity at T = 170 MeV is referred to as “⌘/s” in Fig-
ure. 7, and the temperature dependence is labelled by “T
DEP. of ⌘”, and refers to the parameter ↵ in (11). Both
are significantly constrained as a fraction of the original
parameter space. The range of ⌘/s is consistent with
similar, but less complete, searches through parameter
space using similar models [2, 3]. In [62], the authors
found little sensitivity to the viscosity at higher temper-
atures, but considered a smaller variation of the viscosity
with temperature than was considered here.
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FIG. 6. (color online) Upper left panel: For 20 points in parameter space randomly chosen from the prior distribution, v
2

for pions is plotted as a function of pt for full model runs. Blue lines represent model calculations whereas are squares are
experimental data. Lower left panel: Same as upper panel, except 20 points are randomly taken from posterior distribution as
sampled by the MCMC trace.
Right-side panels: Femtoscopic radii are shown for calculations from the prior distribution (left half) and from the posterior
(right half) calculations. The posterior calculations well reproduce the data except for the sideward and longitudinal radii at
low pt.

Open symbols are data

Blue curves are draws from the 
posterior distribution
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FIG. 7. (color online) The distribution of acceptable values for each of the six model parameters are shown along the diagonal.
The o↵-diagonal plots display the correlation between all pairs of observables. Four of the six parameters refer to the initial
state (hence the “I.C.” in their name) and the last two describe the shear viscosity.

Diagonals show posterior 
distribution for each of the 

parameters

off-diagonals show joint-posterior 
distribution for each pair of 

parameters
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Sensitivity Analysis 
With F.Gomez (MSU)
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Sensitivity Analysis with Emulators

Di⇥cult to visualize output for models in > 2 dimensions.

Calculate how sensitive model output is to varying input.

Decompose model output y = �(x) into main e�ects and interactions

y = �(x) = E(Y ) +
d�

i=1

zi (xi ) +
�

i<j

zi,j(xi,j) +
�

i<j<k

zi,j,k(xi,j,k) + . . .+ z1,2,...,d(x),

where we have

zi (xi ) = E(Y | xi )� E(Y ),

zi,j(xi,j) = E(Y | xi,j)� zi (xi )� zj(xj)� E(Y ),

zi,j,k(xi,j,k) = E(Y | xi,j,k)� zi,k(xi,k)� zj,k(xj,k)� zi (xi )� zj(xj)� zk(xk)� E(Y ),

and

E(Y | xp) =
⇥

��p

�(x)dG�p|p(x�p | xp).

With a general model this is not easy, with an emulator it is!

“Probabilistic sensitivity analysis of complex models: a Bayesian approach.”, Oakley, O’Hagan,

J.R.Statist Soc.B 66 (2002)

cec24@phy.duke.edu (Duke Physics) Emulator September 9, 2010 15 / 19
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This is relatively hard to compute with an 
arbitrary model. Easier for emulator.

• A similar decomposition of  
the model variance is also 
possible
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Main Effects
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Main Effects Across Observables
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LF1 LF2 LF3 LF4 slope intercept
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Variance decomposition
Columns are normalized

Cells are colored by variance contributions 
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Summary

• Cutting edge science requires expensive computer experiments

• Computer models should be calibrated to experimental data

• GP Emulators are a good way to interpolate sparse (smoothish) data with 
input in high dimensions

• Sensitivity Analysis is a useful tool for examining your model

• High dimensional (non convex) joint distributions are difficult to analyze and 
should be treated with caution.

• This inherently probabilistic approach to interpolation makes inserting an 
emulator into a larger workflow (calibration, sensitivity analysis, validation) 
relatively easy
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Thanks
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Estimating HPD Regions

• Post model calibration we have a posterior distribution for the model output 
over the parameters of interest

• This joint distribution embodies all we have learnt about the model

• can be hard to interpret, may be high dimensional with non trivial 
relationships between the parameters

• Simplest question we might ask, what is the shape of the “most 
probable” (Highest Posterior Density) region. 

• A (1-α)100% HPD region is the minimal volume set with posterior 
probability (1-α) 

• Is it convex? Simply Connected?

• In >1d these are not trivial to find
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HPD Estimation with polyhedra

• Polyhedra are a natural way to discretize 
bounded sets

• Develop a stochastic process of polyhedra 
to estimate HPD regions in a complex data 
set

• Respects discrete nature of the data, 
posterior distribution of HPD regions is given 
in terms of closed sets

• Easily extended to multi-modal data

• Build a stochastic process of polyhedra and 
use MHMC to develop this into a process of 
HPD regions

-2 -1 0 1 2

-2

-1

0

1

2

3
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Preliminary Results
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Multiple Polygons
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Multiple Polygons
step:  555 step:  1111 step:  1667

step:  2222 step:  2778 step:  3334

step:  3889 step:  4445 step:  5001

An R package is in 
preparation

Works as intended 
on non-convex sets
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Flow Coefficient Experiment (in progress)
With R.Wolpert (Duke), S.Bass (Duke), U.Heinz (OSU)
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Collision Geometry - Elliptic Flow
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Anisotropic/Elliptic flow
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region in coordinate space
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Flow is driven by
 pressure gradients
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Flow Coefficients
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1 Introduction

Heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron

Collider (LHC) create hot, dense matter that is thought to be composed of strongly in-

teracting quarks and gluons. A useful tool to study the properties of this matter is the

azimuthal anisotropy of particle emission in the transverse plane [1, 2]. This anisotropy

is believed to result from pressure-driven anisotropic expansion (referred to as “flow”) of

the created matter, and is described by a Fourier expansion of the particle distribution in

azimuthal angle φ, around the beam direction:

dN

dφ
∝ 1 + 2

∞
∑

n=1

vn cosn(φ− Φn) , (1.1)

where vn and Φn represent the magnitude and phase of the nth-order anisotropy. These

quantities can also be conveniently represented by the per-particle “flow vector” [2]:
⇀vn = (vn cosnΦn, vn sinnΦn). The angles Φn are commonly referred to as the event plane

(EP) angles.

In typical non-central [2] heavy ion collisions, the large and dominating v2 coefficient

is associated mainly with the “elliptic” shape of the nuclear overlap. However, v2 in

– 1 –

Final-State particle distributions 
may be correlated with initial state 
energy distributions 

Measuring Flow Coefficients gives 
insight into collision geometry
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Flow Analysis Computer Experiment

• Experimental data now available for Vn distributions, measured
 on a per event basis, used to be averaged over many collisions)

• Data available for many centrality classes. Try to model the centrality 
dependence along with the rest of the physics. 

• VISHNew fluid dynamics + particle transport state of the art model. End to 
end simulation, collision -> hydro -> final state particle production

• A large set of calibration parameters, including fundamental properties of the 
QGP: shear-viscosity to entropy ratio. 

• Use this new data set to calibrate the model and infer distributions on the 
shear-viscosity to entropy ratio. Never been rigorously done before

• Model-Data based Inference is the only way we can learn about this. 
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Transport Model Parameters

Initial Condition & 
Collision Model 

Details

Fluid 
Transport 

model
9 Important Parameters

2 Discrete

6 Experiment design

6.1 Input parameters

A number input parameters must be set for the various event-by-event com-
ponents. Ideally, all of them would be varied in order to determine the best
possible fit. In practice, this will be limited or the parameter space will become
impossibly large, even with an emulator. Therefore we must choose judiciously.

Table 1 presents the most interesting input parameters. Since the choice of

Parameter Values

superMC

model Glauber or KLN
normalization factor 20–60 [Glb], 5-11 [KLN]
wounded nucleon / binary collision 0–1 [Glb]
Qs exponent � ⇠ 0.28 [KLN]

VISHNew

equation of state discrete choices
shear viscosity ⌘/S ⇠ 0.08 [Glb], 0.16–0.20 [KLN]
thermalization time ⌧0 0.2–1.0 fm
switching energy density Edec ⇠ 0.502 GeV/fm3

relaxation time VisBeta 0.3–1.0

Table 1: Input parameters for the initialization and hydro models.

initialization model is discrete, each is e↵ectively a separate experiment.
There are several parameters related to centrality—number of participants

Npart, impart parameter b, and total initial entropy dS/dy—which must be
varied together and are determined by the choice of centrality bin.

Of the parameters in Table 1, the choice of initialization model is certainly of
primary interest, and the corresponding variables should also be explored. Most
of the hydro parameters are also of primary interest, except for the equation
of state which can likely be fixed at its default value. This gives two discrete
parameters (initialization model and centrality) and six continuous parameters.

6.2 Specific design elements

The nature of this experiment introduces several issues which must be treated
with care.

• Measurement error is inevitable. This suggests multiple measurements at
nearby points in parameter space. Since the true value may be assumed
to vary slowly on this scale, the error can be estimated.

12
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Experimental Data
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Figure 10. The probability density distributions of the EbyE vn in several centrality intervals for
n = 2 (left panel), n = 3 (middle panel) and n = 4 (right panel). The error bars are statistical
uncertainties, and the shaded bands are uncertainties on the vn-shape. The solid curves are distri-
butions calculated from the measured ⟨vn⟩ according to eq. (1.6). The solid curve is shown only for
0–1% centrality interval for v2, but for all centrality intervals in case of v3 and v4.
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Figure 11. Top panels: The unfolded distributions for vn in the 20–25% centrality interval for
charged particles in the pT > 0.5 GeV, 0.5 < pT < 1 GeV and pT > 1 GeV ranges. Bottom panels:
same distributions but rescaled horizontally so the ⟨vn⟩ values match that for the pT > 0.5 GeV
range. The shaded bands represent the systematic uncertainties on the vn-shape.

⟨Npart⟩ ∼ 200, corresponding to the 20–30% centrality interval. For v3 and v4, the values

of σvn/⟨vn⟩ are almost independent of ⟨Npart⟩, and are consistent with the value expected

from the fluctuation-only scenario (
√

4/π − 1 via eq. (1.8) as indicated by the dotted lines),

except for a small deviation for v3 in mid-central collisions. This limit is also reached for

v2 in the most central collisions as shown by the top-right panel of figure 12.

Figure 13 compares the ⟨vn⟩ and
√

⟨v2n⟩ with the vEPn measured using the FCal event
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• ATLAS suggests Bessel-Gaussian for Vn distributions (not a very good fit)

• use GRW distribution, fit experimental distributions of flow coefficients

• gives a better handle on expt-model comparison

• fit model output with same process

• build a likelihood for the model fit-parameters

• Now we can compare estimates of a few

numbers instead of entire functional forms

Modeling the experimental data	

Fitting the data to GRW distributions

Fit to a GRW distribution
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Fitting the data to GRW distributions

For fitting the experimental data,

existing attempts include “Gaussian” and “Bessel-Gaussian”
distributions

... work ok

we propose the Generalized Reverse Weibull (GRW) distribution

... works surprisingly well

X ⇠ GRW (x ; m, s,↵, �)

, X = m + s · Gamma(�, 1)1/↵

fX (x ; m, s,↵, �) =
↵

|s|�(�)

✓
x �m

s

◆↵��1

exp

⇢
�
✓
x �m

s

◆↵�

for
x �m

s

,↵, � � 0
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