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Surprisingly many of the distributions we use in statistics for random vari-
ables X taking value in some space X (often R or Ny but sometimes R", Z,
or some other space), indexed by a parameter 6 from some parameter set
O, can be written in exponential family form, with pdf or pmf

f(z|0) = expn(0)t(x) — B(O)] h(x)

for some statistic ¢ : X — R, natural parameter  : © — R, and func-
tions' B:© — R and h : X — R,. The likelihood function for a random
sample of size n from the exponential family is

n

Fux 18) = exp [0(0) 3 te;) — nB(O) | [] i),

j=1

which is actually of the same form with the same natural parameter 7(-),
but now with statistic 7},(x) = > t(«x;) and functions B, (0) = nB(#) and
hn(x) = Hh($j)'

Examples

For example, the pmf for the binomial distribution Bi(m,p) can be written

(Z)p“’(l —p)"" =exp Klog I fp) z +mlog(l — p)] (Z)

!For students acquainted with measure-theoretic probability: more generally, we can
replace the function h(x) with an arbitrary reference measure h(dz) on X, leading to
the distribution measure f(dx | #) for X. This lets us treat discrete and continuous
distributions together.




of Exponential Family form with natural parameter n(p) = logl%p and
natural sufficient statistic ¢(z) = z, and the Poisson

T
0—6_0 = exp [(log 0)z — 0] %

with n = log# and again t(z) = . The Beta distribution Be(«, 5) with
either one of its two parameters unknown can be written in EF form too:
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with ¢(z) = log z or log(1—x) when = « or n = [ is unknown, respectively.
With both parameters unknown the beta distribution can be written as a
bivariate Exponential Family with parameter 6 = [, 8]’ € R?.:

f(@|0) = exp[n(0) - t(x) — B(0)] h(z) (1)
with vector parameter n = [, 8] and statistic ¢(z) = [log z, log(1—z)]" and
scalar (one-dimensional) functions B(0) = log I'(«) 4+ log I'(58) — log I'(a + /)
and h(x) = 1/z(1l — z). Since this comes up often, we’ll let n and 7" be
g-dimensional below; usually in this course ¢ =1 or 2.

Natural Exponential Families

It is often convenient to reparameterize exponential families to the natural
parameter n = n(0) € RY, leading (with A(n(0)) = B(0)) to

f@ | n) = e @O=AW p(z) (2)
Since any pdf integrates to unity we have

A _ / ) () d
X

and hence can calculate the moment generating function (MGF) for the
natural sufficient statistic ¢(z) = {ti(z), - ,t4(z)} as



— Alnts)—A(n)

’

so log My(s) = A(n + s) — A(n) and we can find moments for the natural
sufficient statistic by

E[t] = VlegM(0) = VA(n
V[t] = V?logM(0) = VZ2A(n)

provided that 7 is an interior point of the natural parameter space

E={nelR?:0< / " @ p(z) dr < oo}
X

and that A(-) is twice-differentiable near n. For samples of size n € N the
sufficient statistic

To(x) =) t(z))

is a sum of independent random variables, so by the Central Limit Theorem
we have approximately

~ No(nVA(n), nV2A(17)).

Note that V2A(n) = —V2logf(x | 6) is both the observed and Fisher
(expected) information (matrix) I,,(f) for natural exponential families, and
that the score statistic is Z := Vlog f(x | 0) = [T,,(x) — nVA(n)].

Conjugate Priors

Fix a nonnegative function? m,(#) on © and let &, C RY*! be the collection
of hyper-parameter pairs («, 8) with a € R?, g € R for which

0<cop:= / e"0)-a=BBO) 1 (9) df < oo.
(C]

?Again, an arbitrary positive reference measure m,(df) on © can replace the func-
tion 7. (f) here, leading to prior and posterior distributions that may not have Lebesgue
densities, or that may be supported on a lower-dimensional subset of O.



We can define a (g + 1)-dimensional parametric family of prior densities for
(04, B) € 8* by

(0] «,f) = c;}ﬁe"(a)'afﬁB(a) 7« (0).

With this prior and with data {X;} Y f(x | @) from the exponential family,

the posterior pdf is
7(0 | x)) ox e a=BB0)gn(0)-Tn(x)=nB(0) 7 _(g)
xmw(f| o =a+T,(x), 5 =p0+n).
provided that (a*,3*) € €,. This is within the same conjugate family but
now with “updated” parameters o = a+ 71}, and §* = 8 +n. For example,

in the binomial example above with constant 7, (p) = 1 on the unit interval
this conjugate prior family has density function

7(p | @, B) x exp {alog I P _ Blog(1 —p)} — p¥(1 — p) (@B,

the Beta family, with &, = {a, : a > —1, (o + ) < 1} while for the
Poisson example it is

(0| a, B) xexp{alogh — O} = 90‘6_[301{%0}

for « > —1 and B8 > 0, the Gamma family. Conjugate families for every
exponential family are available in the same way.

Note not every distribution we consider is from an exponential family. From
(2), for example, it is clear set of points where the pdf or pmf is nonzero,
the possible values a random variable X can take, is just

{reX: f(z|0) >0} ={zeX: h(z) >0},

which does not depend on the parameter 0; thus any family of distributions
where the “support” depends on the parameter (uniform distributions are
important examples, or location-scale families made from Gamma or Pareto
distributions) can’t be from an exponential family.

The table starting on page 6 show several familiar (and some less familiar
ones, like the Inverse Gaussian IG(u, A) and Pareto Pa(«, /3)) distributions in
exponential family form. Some of the formulas involve the log gamma func-
tion 7y(z) := logI'(z) and its first and second derivatives, the “digamma”
P(2) := (d/dz)y(z) and “trigamma” 9'(z) := (d?/dz?)v(z), which are built



into R, Mathematica, Maple, the gsl library in C, and such, but aren’t
on pocket calculators or most spreadsheets. In each case V2A(n) is the
Information matrix in the natural parameterization, I(f) in the usual pa-
rameterization.



1 Exponential Family Examples

Be(a, 8)  flz) = FF(<> w)) a=l(1 —2)f-1 7€ (0,1) T = (logz,logl—z)
B(a,B) = (&) +7(B) —v(a+B) n= (a,pB)
A(n) = ~(n (1);r (() 7(77)1+n2) @) bt )
o (m) =P+ 2 (@) —gpla+
VA [w(;n) w(m+n2>] = g8) - v(a+8)
vam = (Ve ) c= Win+m)
Bi(m, p) f(z) = (Z})pmq(m o)z =0..m T= =z
B(p) = —mlogq n = log(p/q)
A(n) = mlog(l+ e") p= el/(1+¢€")
VA(n) = ﬂfr/ ET = mp
VEA() = ey I(p) = m/pg
Ex()) flz)= Xe ™™, 2>0 T= x
B(A\) = —logX n= —A
A(n) = —log(—n)
VAn) = —1/n ET = 1/A
VZA(m) = n? I = 1/3
Ga(a, \) f(z) = F)Ez)xa leeM >0 T= (logz,x)
B(a,8) = 7v(a) — alog A = (a,—A)
Aln) = 7(77(1)) m 10%(—77§) “
_|%(m) —log(—n2 (@) —log A
o [ ( —)771/772/ ] o [ (O;M /]
_ (P'(m) —1/m (Y@ —1/X
VEAG) = (—1/772 771/7722> T(e,2) = (—m a/A?)
Ge(p) flz)= pqg*, z=0,1,2,.. T= =z
B(p)= —logp n= logqg
A(n) = —log(l —e€") p= 1-—¢"
VA(n) = 1% ET = q/p
V2AM) = I(p) = 1/p*q



Exponential Family Examples (cont’d)

IG(a, b) (z) = ae_(a_bx)z/%/v 2rx3, x>0 T= (1/z,z)7
B(a,b) = —ab—loga n= (—a2/2, —b2/2)T
Aln) = —2ymim — 3log(—2m) = V=2m, b= y=2n
VA(TI) — |:\/ 772/771 - 1/2771] ET = |:b/a+1/a2:|
vV /me a/b
/- HT S 2
2 _ (VT T vam _ (bla+2/a® -1
VZA(n) = 4 L o I(a,b) = ( 1 a/b
NG 723
NB(a, p) fle)= ()" (9%, ==0,1,2,.. T= g
B(p) = —alogp n= logq
A(n) = —alog(l —e") p= 1l-—e¢"
VA() = £ ET = aufp
VZA(m) = % I(p) = «afp’q
No(p,0?)  flz)= e (®=W*/2" /\/amq? T= (z,2°)7
B(u,0%) = p?/20% + §logo? n= (uo2,—02/2)T
A(n) = —m?/4nz — 3 log(—=2n) (1, 0?)T = —(m,1)7 /20
_ —11/2n2 _ Iz
VA(n) = [7712/47722 . 1/2772] ET = [M2 + 02]
2 _ (12 m/2ns (o 0
\4 A(T’) - (n1/2n22 —7712/27723 + 1/27722 I(CI,, b) 0 0_74/2
Po(\) flx) = )\Ie*)‘/ac!, z=0,1,2,.. T= z
B(A) = A n= logA
A(n) = € A= ¢
VAnp) = € ET = M\
V2A(n) = e IN) = 1/A
Pa(a, ) flx)= Ba?/zPT, z>a T= logzx
B(B)= —logB — Bloga n= -0
A(n) = —log(—n) +nloga B= —n
VA(np) = loga—1/y ET = loga+1/p
V2A(n) = n* I\ = p*



