Exponential Families

Robert L. Wolpert
Department of Statistical Science
Duke University, Durham, NC, USA

Surprisingly many of the distributions we use in statistics for random variables X taking value in some space \mathcal{X} (often \mathbb{R} or \mathbb{N}_0 but sometimes \mathbb{R}^n , \mathbb{Z} , or some other space), indexed by a parameter θ from some parameter set Θ , can be written in **exponential family** form, with pdf or pmf

$$f(x \mid \theta) = \exp \left[\eta(\theta) t(x) - B(\theta) \right] h(x)$$

for some **statistic** $t: \mathcal{X} \to \mathbb{R}$, **natural parameter** $\eta: \Theta \to \mathbb{R}$, and functions $B: \Theta \to \mathbb{R}$ and $h: \mathcal{X} \to \mathbb{R}_+$. The likelihood function for a random sample of size n from the exponential family is

$$f_n(\mathbf{x} \mid \theta) = \exp \left[\eta(\theta) \sum_{j=1}^n t(x_j) - nB(\theta) \right] \prod h(x_i),$$

which is actually of the same form with the same natural parameter $\eta(\cdot)$, but now with statistic $T_n(\mathbf{x}) = \sum t(x_j)$ and functions $B_n(\theta) = nB(\theta)$ and $h_n(\mathbf{x}) = \Pi h(x_j)$.

Examples

For example, the pmf for the binomial distribution Bi(m, p) can be written as

$$\binom{m}{x} p^x (1-p)^{m-x} = \exp\left[\left(\log\frac{p}{1-p}\right)x + m\log(1-p)\right] \binom{m}{x}$$

¹For students acquainted with measure-theoretic probability: more generally, we can replace the function h(x) with an arbitrary reference measure h(dx) on \mathfrak{X} , leading to the distribution measure $f(dx \mid \theta)$ for X. This lets us treat discrete and continuous distributions together.

of Exponential Family form with natural parameter $\eta(p) = \log \frac{p}{1-p}$ and natural sufficient statistic t(x) = x, and the Poisson

$$\frac{\theta^x}{x!}e^{-\theta} = \exp\left[(\log \theta)x - \theta\right] \frac{1}{x!}$$

with $\eta = \log \theta$ and again t(x) = x. The Beta distribution $Be(\alpha, \beta)$ with either *one* of its two parameters unknown can be written in EF form too:

$$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1} = \exp\left[\alpha\log x - \left(\log\frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)}\right)\right] \frac{(1-x)^{\beta}}{x(1-x)\Gamma(\beta)}$$
$$= \exp\left[\beta\log(1-x) - \left(\log\frac{\Gamma(\beta)}{\Gamma(\alpha+\beta)}\right)\right] \frac{x^{\alpha}}{x(1-x)\Gamma(\alpha)}$$

with $t(x) = \log x$ or $\log(1-x)$ when $\eta = \alpha$ or $\eta = \beta$ is unknown, respectively. With both parameters unknown the beta distribution can be written as a bivariate Exponential Family with parameter $\theta = [\alpha, \beta]' \in \mathbb{R}^2_+$:

$$f(x \mid \theta) = \exp\left[\eta(\theta) \cdot t(x) - B(\theta)\right] h(x) \tag{1}$$

with vector parameter $\eta = [\alpha, \beta]'$ and statistic $t(x) = [\log x, \log(1-x)]'$ and scalar (one-dimensional) functions $B(\theta) = \log \Gamma(\alpha) + \log \Gamma(\beta) - \log \Gamma(\alpha + \beta)$ and h(x) = 1/x(1-x). Since this comes up often, we'll let η and T be q-dimensional below; usually in this course q = 1 or 2.

Natural Exponential Families

It is often convenient to reparameterize exponential families to the natural parameter $\eta = \eta(\theta) \in \mathbb{R}^q$, leading (with $A(\eta(\theta)) \equiv B(\theta)$) to

$$f(x \mid \eta) = e^{\eta \cdot t(x) - A(\eta)} h(x) \tag{2}$$

Since any pdf integrates to unity we have

$$e^{A(\eta)} = \int_{\mathcal{X}} e^{\eta \cdot t(x)} h(x) dx$$

and hence can calculate the moment generating function (MGF) for the **natural sufficient statistic** $t(x) = \{t_1(x), \dots, t_q(x)\}$ as

$$\begin{split} M_t(s) &= \mathsf{E}\left[e^{s \cdot t(X)}\right] \\ &= \int_{\mathcal{X}} e^{s \cdot t(x)} \, e^{\eta \cdot t(x) - A(\eta)} h(x) \, dx \\ &= e^{-A(\eta)} \int_{\mathcal{X}} e^{(\eta + s) \cdot t(x)} h(x) \, dx \\ &= e^{A(\eta + s) - A(\eta)}, \end{split}$$

so $\log M_t(s) = A(\eta + s) - A(\eta)$ and we can find moments for the natural sufficient statistic by

$$\mathsf{E}[t] = \nabla \log M_t(0) = \nabla A(\eta)
\mathsf{V}[t] = \nabla^2 \log M_t(0) = \nabla^2 A(\eta)$$

provided that η is an interior point of the natural parameter space

$$\mathcal{E} \equiv \{ \eta \in \mathbb{R}^q : 0 < \int_{\Upsilon} e^{\eta \cdot t(x)} h(x) \, dx < \infty \}$$

and that $A(\cdot)$ is twice-differentiable near η . For samples of size $n \in \mathbb{N}$ the sufficient statistic

$$T_n(\mathbf{x}) = \sum t(x_j)$$

is a sum of independent random variables, so by the Central Limit Theorem we have approximately

$$\sim \mathsf{No}\Big(n\nabla A(\eta), \ n\nabla^2 A(\eta)\Big).$$

Note that $\nabla^2 A(\eta) = -\nabla^2 \log f(\mathbf{x} \mid \theta)$ is both the observed and Fisher (expected) information (matrix) $I_n(\theta)$ for natural exponential families, and that the score statistic is $Z := \nabla \log f(\mathbf{x} \mid \theta) = [T_n(\mathbf{x}) - n\nabla A(\eta)]$.

Conjugate Priors

Fix a nonnegative function² $\pi_{\star}(\theta)$ on Θ and let $\mathcal{E}_{\star} \subseteq \mathbb{R}^{q+1}$ be the collection of hyper-parameter pairs (α, β) with $\alpha \in \mathbb{R}^q$, $\beta \in \mathbb{R}$ for which

$$0 < c_{\alpha,\beta} := \int_{\Theta} e^{\eta(\theta) \cdot \alpha - \beta B(\theta)} \, \pi_{\star}(\theta) \, d\theta < \infty.$$

²Again, an arbitrary positive reference measure $\pi_{\star}(d\theta)$ on Θ can replace the function $\pi_{\star}(\theta)$ here, leading to prior and posterior distributions that may not have Lebesgue densities, or that may be supported on a lower-dimensional subset of Θ .

We can define a (q+1)-dimensional parametric family of prior densities for $(\alpha, \beta) \in \mathcal{E}_{\star}$ by

$$\pi(\theta \mid \alpha, \beta) := c_{\alpha, \beta}^{-1} e^{\eta(\theta) \cdot \alpha - \beta B(\theta)} \, \pi_{\star}(\theta).$$

With this prior and with data $\{X_i\} \stackrel{\text{iid}}{\sim} f(x \mid \theta)$ from the exponential family, the posterior pdf is

$$\pi(\theta \mid \mathbf{x})) \propto e^{\eta(\theta) \cdot \alpha - \beta B(\theta)} e^{\eta(\theta) \cdot T_n(\mathbf{x}) - nB(\theta)} \pi_{\star}(\theta)$$
$$\propto \pi(\theta \mid \alpha^* = \alpha + T_n(\mathbf{x}), \ \beta^* = \beta + n).$$

provided that $(\alpha^*, \beta^*) \in \mathcal{E}_{\star}$. This is within the same conjugate family but now with "updated" parameters $\alpha^* = \alpha + T_n$ and $\beta^* = \beta + n$. For example, in the binomial example above with constant $\pi_{\star}(p) \equiv 1$ on the unit interval this conjugate prior family has density function

$$\pi(p \mid \alpha, \beta) \propto \exp\left\{\alpha \log \frac{p}{1-p} - \beta \log(1-p)\right\} = p^{\alpha}(1-p)^{-(\alpha+\beta)},$$

the Beta family, with $\mathcal{E}_{\star} = \{\alpha, \beta : \alpha > -1, (\alpha + \beta) < 1\}$ while for the Poisson example it is

$$\pi(\theta \mid \alpha, \beta) \propto \exp\left\{\alpha \log \theta - \beta \theta\right\} = \theta^{\alpha} e^{-\beta \theta} \mathbf{1}_{\{\theta > 0\}}$$

for $\alpha > -1$ and $\beta > 0$, the Gamma family. Conjugate families for every exponential family are available in the same way.

Note not *every* distribution we consider is from an exponential family. From (2), for example, it is clear set of points where the pdf or pmf is nonzero, the possible values a random variable X can take, is just

$$\{x \in \mathcal{X}: f(x \mid \theta) > 0\} = \{x \in \mathcal{X}: h(x) > 0\},\$$

which does *not* depend on the parameter θ ; thus any family of distributions where the "support" depends on the parameter (uniform distributions are important examples, or location-scale families made from Gamma or Pareto distributions) can't be from an exponential family.

The table starting on page 6 show several familiar (and some less familiar ones, like the Inverse Gaussian $|G(\mu, \lambda)|$ and Pareto $Pa(\alpha, \beta)$) distributions in exponential family form. Some of the formulas involve the log gamma function $\gamma(z) := \log \Gamma(z)$ and its first and second derivatives, the "digamma" $\psi(z) := (d/dz)\gamma(z)$ and "trigamma" $\psi'(z) := (d^2/dz^2)\gamma(z)$, which are built

into R, Mathematica, Maple, the gsl library in C, and such, but aren't on pocket calculators or most spreadsheets. In each case $\nabla^2 A(\eta)$ is the Information matrix in the natural parameterization, $I(\theta)$ in the usual parameterization.

1 Exponential Family Examples

Exponential Family Examples (cont'd)