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1 Gamma Distribution

An exponential random variable X ∼ Ex(β) with rate β has mean µ = 1/β, complimentary
CDF

F̄ (t) = P[X > t] = e−βt, t ≥ 0,

and hence density function f(t) = λ exp(−λt)1{t>0} and characteristic function (chf)

ξ1(ω) = E[eiωX ] = (1− iω/β)−1.

It follows that the sum Y =
∑

j≤αXj of α ∈ N iid random variables Xj ∼ Ex(β) has chf

ξα(ω) = E[eiωY ] = (1− iω/β)−α (1)

the αth power of ξ1(ω). A bit of algebra and induction show that the distribution has pdf

f(x | α, β) = βα

(α− 1)!
xα−1e−βx1{x>0}

=
βα

Γ(α)
xα−1e−βx1{x>0}. (2)

It turns out that f(x | α, β) of (2) is a valid pdf with corresponding chf ξα(ω) of (1) for
all α > 0, not only integers. The distribution is called the “gamma distribution with shape
α and rate β,” denoted by Ga(α, β). Other parametrizations are possible, and appear at
times in the literature— the most common alternatives are “shape, scale,” the pair α, s for
scale s = 1/β, and “mean, variance”, the pair µ = α/β = αs and σ2 = α/β2 = αs2. The
choice (α, β) is most convenient for Bayesian modeling and inference.

For integral α, Ga(α, β) is also called the “Erlang distribution,” and can be interpreted as
the length of time until the αth event occurs for a Poisson process with rate β. The special
case α = 1 is just the exponential distribution Ga(1, β) = Ex(β). For half-integers α = ν/2
with β = 1/2, Ga(ν/2, 1/2) = ξ2ν is the “chi squared distribution with ν degrees of freedom.”
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1.1 Properties of Gamma Distributions

Let {Xj ∼ Ga(αj , β)} be independent for 1 ≤ j ≤ n, all with the same rate parameter β > 0
but perhaps with different shape parameters αj > 0. Set X+ :=

∑

j Xj, their sum, and set
Yj := Xj/X+ for 1 ≤ j ≤ n. Then X+ ∼ Ga(α+, β) also has a gamma distribution with
shape α+ =

∑

j αj the sum of the shapes, and the same rate parameter β, while the vector
Y = (Y1, · · · , Yn) has the n-variate Dirichlet distribution Y ∼ Di(α) with parameter vector
α = (α1, · · · , αn) ∈ Rn

+, independent of X+:

X+ :=
∑

j

Xj ∼ Ga(α+, β) ⊥⊥ Y := X/X+ ∼ Di(α). (3)

In particular, each Yj = Xj/X+ ∼ Be(αj, α+ − αj) has a marginal beta distribution. For
n = 2, the result can be written

X ∼ Ga(α, 1) ⊥⊥ Y ∼ Ga(β, 1) ⇔ (X + Y ) ∼ Ga(α + β, 1) ⊥⊥ X

X + Y
∼ Be(α, β) (4)

Using this in reverse one can construct independent X := ZB ∼ Ga(α, 1) and Y := Z(1 −
B) ∼ Ga(β, 1) beginning with independent Z ∼ Ga(α+ β, 1) and B ∼ Be(α, β).

The sum Y =
∑

j≤nXj of iid Xj ∼ Ga(α, β) has exactly the Ga(nα, β) distribution and,

by the Central Limit Theorem, approximately the No(nα/β, nα/β2) distribution if n is large.
It follows that

Y ∼ Ga(α, β) ⇒ βY − α√
α

≈ No(0, 1), for large α.

2 The SII Gamma Process

In this section we construct and study a stochastic process ζt indexed by t ∈ R with the
property that its increments [ζ(ti)− ζ(ti−1)] are independent with gamma Ga(α(ti− ti−1), β)
distributions. Because these distributions depend only on the length of the interval, and
not its location, such process are said to have “stationary independent increments,” or to be
“SII processes” for short.

2.1 First Construction of Gamma Process

First let’s construct ζ(t) for dyadic rational t ∈ [0, 1]. Set ζ0 = 0 and draw ζ1 ∼ Ga(α, β).
For integers 0 ≤ j < ∞ and 0 ≤ i < 2j , set n := 2j + i and draw independent random
variables

Bn ∼ Be
(

2−j, 2−j
)

, n = 2j + i, 0 ≤ i < 2j.

For odd i, define ζ(t) for dyadic rational t = i/2j by

ζ
( i

2j

)

= (1−Bn) ζ
(i− 1

2j

)

+ (Bn) ζ
(i+ 1

2j

)
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(note that for odd i, ζ(t) for t = (i ± 1)/2 will have been constructed at stage (j − 1) or

earlier). By induction, and (4) with X = ζ
(

i
2j

)

− ζ
(

i−1
2j

)

and Y = ζ
(

i+1
2j

)

− ζ
(

i
2j

)

, all

increments of ζ(t) are independent and gamma-distributed with rate β and shape α times
the length of the time intervals.

By construction the function t ζ(t) is non-decreasing on the dyadic rationals Q, so we
may define

ζ(t) = inf{ζ(q) : q ∈ Q, q ≥ t}
to complete the definition of ζ(t) for all real 0 ≤ t ≤ 1. Repeating this construction
independently for each interval [n, n + 1] for integers n ∈ Z and patching the processes
together results in a construction of ζ(t) with the desired properties for all t ∈ R.

From this construction it is clear that the paths of ζ(t) are right continuous, but it isn’t
obvious whether or not they are in fact continuous. The similar construction of Brownian
motion leads to a path-continuous process; the similar construction of a Poisson process does
not. The second construction presented in Section (2.2) shows that almost-surely the paths
of ζ(t) are discontinuous (on the left) at every point t.

2.2 Poisson Construction of Gamma Process

In this section we construct the SII gamma process as a stochastic integral of a Poisson
random measure. First, a few preliminaries about such random measures.

2.2.1 Poisson Random Measures

For any σ-finite Borel measure ν(dx) on a complete separable metric space X , there exists a
Poisson random measure N ∼ Po

(

ν(dx)
)

that assigns independent Poisson random variables
N (Aj) ∼ Po(λj) to disjoint Borel sets Aj ⊂ X of finite measure λj = ν(Aj) < ∞. For any
simple function

φ(x) =
∑

j

aj1Aj
(x)

in L1 one can define the stochastic integral

N [φ] =

∫

X

φ(x)N (dx) :=
∑

j

ajN (Aj),
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a random variable with characteristic function, mean, and variance

E exp
(

iωN [φ]
)

=
∏

j

exp
{

(eiωaj − 1)ν(Aj)
}

= exp
{

∫

X

(eiωφ(x) − 1)ν(dx)
}

(5a)

EN [φ] =

∫

X

φ(x)ν(dx) (5b)

VN [φ] =

∫

X

φ2(x)ν(dx) (5c)

The continuous linear mapping φ 7→ N [φ] can be extended from the simple functions to
all of L1

(

X , ν(dx)
)

by (5b). In fact the mapping can be extended further than this, to the
Musielak-Orlicz (M-O) space (Musielak, 1983),

M :=
{

φ :

∫

(

1 ∧ |φ(x)|
)

ν(dx) <∞
}

, (6)

still with chf given by (5a) since |eiωφ(x) − 1| ≤ (|ω| ∨ 2)(1∧ |φ(x)|) for all x ∈ X and ω ∈ R.

2.2.2 Constructing the SII gamma process

Denote a σ-finite measure on the on the complete separable metric space X = R+ × R by

ν(du ds) = αu−1e−βu du ds (7)

In this context, ν(du ds) is called the “Lévy measure” for the process ζ(t) defined below. Let
N (du ds) ∼ Po

(

ν(du ds)
)

be a Poisson random measure on X with mean ν. For t ∈ R, set

φt(u, s) =

{

u1{(0,t]}(s) t > 0

u1{(t,0]}(s) t ≤ 0

and define a random process by

ζ(t) = N [φt] =

∫∫

R+×(0,t]

uN (du ds) (8)

for t > 0, with a similar expression for t ≤ 0. By (5a) the chf for an increment [ζ(t)− ζ(s)]
for −∞ < s < t <∞ is

E exp
(

iω
(

N [φt − φs]
)

)

= exp
{

∫

R+×R

(eiωu1{(s,t]}(z) − 1)αu−1e−βudu dz
}

= exp
{

α(t− s)

∫

R

(eiωu − 1)u−1e−βudu
}

=
(

1− iω/β)−α(t−s),
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so increments [ζt−ζs] have Ga
(

α(t−s), β
)

distributions. Increments over disjoint intervals are
independent because N (Aj) are independent for sets Aj ⊂ R+ × (tj−1, tj] for any increasing
sequence tj .

From (8) we get a very clear picture of the sample paths for the process ζ(t). If we
enumerate all the (random) mass points (ui, si) ofN (du ds), then ζ(t) increases by an amount
ui as t increases past each si. The {si} are dense in R, so ζ(t) is never constant and in fact
has infinitely-many jump increases in every nonempty time interval (s, t], but the increases
are summable in any bounded time interval. The number of jumps of magnitude exceeding
any threshold ǫ > 0 in a time interval (s, t] has distribution

J := N
(

(ǫ,∞)× (s, t]
)

∼ Po
(

(t− s)αE1(βǫ)
)

,

where E1(z) is Gauss’ exponential integral function (Abramowitz and Stegun, 1964, §5.1)

E1(z) =

∫ ∞

z

u−1e−u du, z > 0.

This is finite for ǫ > 0, so only finitely-many jumps will exceed any ǫ > 0 in a finite time
interval. The probability that the maximum jump in that interval U[1] will be smaller than
some number u > 0 is identical to the probability that N (du ds) puts zero points in the set
(u,∞)× (s, t], an easy Poisson calculation:

P[U[1] ≤ u] = P

(

N
(

(u,∞)× (s, t]
)

= 0
)

= exp
(

− (t− s)αE1(βu)
)

,

from which the pdf for U[1] is easily available. A similar approach will give the joint pdf for
the largest k jumps U[1], · · · , U[k] for any k ∈ N.

2.3 Stochastic Integrals

One can construct stochastic integrals of L1 simple functions ψ(t) =
∑

aj1(tj−1,tj ](t) on R

with respect to the SII gamma process, just as we did for Poisson random measures earlier:

ζ [ψ] =

∫

ψ(t)ζ(dt) =
∑

j

aj[ζ(tj)− ζ(tj−1)]

then extend by continuity to L1 or beyond that to the M-O space

M :=
{

ψ :

∫

R

(

1 ∧ |uψ(s)|
)

ν(du ds) <∞
}

=
{

ψ :

∫

R

(

1− e−1/|ψ(s)|
)

ψ(s) ds+

∫

R

E1

(

1/|ψ(s)|
)

ds <∞
}

.

Any ψ ∈ L1(ds) is also in M, but so is (for example) ψ(s) = |s|−γ for any γ > 1, although
such a function is not integrable in any neighborhood of zero and so is not in L1 ( M.
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From this stochastic integral, or from the Poisson representation (8), we can construct a
gamma random measure ζ(dt) assigning to disjoint Borel sets Bj ⊂ R independent gamma-
distributed random variables ζ(Bj) ∼ Ga

(

α|Bj|, β
)

with shape proportional to the Lebesgue
measure |Bj| of Bj :

ζ(B) = ζ [1B] =

∫

R

1B(t) ζ(dt)

= N [u1B] =

∫

R+×R

u1B(s)N (du ds).

2.4 SII Gamma Random Fields

The construction of a gamma random measure in Section (2.3) can be done in Rd just as
easily as R1, or on manifolds or graphs or other objects. For Rd, for example, begin with a
Poisson random measure N (du dx) ∼ Po

(

ν(du dx)
)

on R+ × Rd with mean

ν(du dx) = αu−1e−βu du dx,

where now x ∈ Rd is a vector, and set

ζ(B) = N [u1B] =

∫

R+×Rd

u1B(s)N (du dx)

to again have a random measure, now on Rd, assigning to disjoint Borel sets Bj independent
gamma-distributed random variables ζ(Bj) ∼ Ga

(

α|Bj|, β
)

. Using such a random measure
one can build LARK semiparametric regression models (Wolpert et al., 2011; Wolpert and
Ickstadt, 1998a) of the form

f(x) =

∫

k(x, y)ζ(dy)

for kernel functions k(x, y). Gamma random measures on a graphical representation of a road
network were by Best et al. (2000) to model the uncertain amount of combustion biproducts
generated by automobile, coach, and lorry traffic in a Bayesian epidemiological analysis of
the effects of road pollution on respiratory disease rates in a midlands English town.

3 Approximations & Implementation

The mathematical construction of (8) can’t be implemented precisely, because ζ(t) is repre-
sented as the sum of infinitely-many non-zero terms. Here we present two efficient approaches
to approximating ζ(t) with finite sums
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3.1 Truncation

One approach is to select a small threshold ǫ > 0 and include in (8) only those finitely-many
mass points (u, s) with u ≥ ǫ:

ζǫ(t) = N ǫ[φt] =

∫∫

(ǫ,∞)×(0,t]

uN (du ds) (9)

where

N ǫ(du ds) ∼ Po
(

αu−1e−βu1{u>ǫ} du ds
)

.

The number Jǫ = N
(

(ǫ,∞)× (0, t]
)

of terms included is Poisson distributed with mean

EJǫ = tαE1(βǫ) ≤ tα log(1 + 1/βǫ). (10)

This leads to truncation approximations for the SII gamma process, stochastic integral, and
random measure:

ζǫ(t) =

∫

(ǫ,∞)×(0,t]

uN (du ds) ζǫ[ψ] =

∫

(ǫ,∞)×R

uψ(s)N (du ds) ζǫ(B) =

∫

(ǫ,∞)×B

uN (du ds). (11)

3.1.1 Truncation Error

The truncation error ∆ǫ(t) = [ζ(t)− ζǫ(t)] also has a stochastic integral representation,

∆ǫ(t) =

∫∫

(0,ǫ]×(0,t]

uN (du ds),

nonnegative with mean and variance

E∆ǫ(t) =

∫∫

(0,ǫ]×(0,t]

u ν(du ds) = µǫt, µǫ := (α/β)[1− e−βǫ] (12a)

V∆ǫ(t) =

∫∫

(0,ǫ]×(0,t]

u2 ν(du ds) = σ2
ǫ t, σ2

ǫ := (α/β2)[1− (1 + βǫ)e−βǫ], (12b)

each of which converges to zero at rate ≍ |ǫ| as ǫ→ 0. These give the pointwise bounds

E|∆ǫ(t)|2 ≤ (t2µ2
ǫ + tσ2

ǫ ) ≤ ǫ2αt(1 + αt)

P
[

|∆ǫ(t)| > c
]

≤ (t2µ2
ǫ + tσ2

ǫ )/c
2 ≤ ǫ2αt(1 + αt)/c2

for each t and c > 0, but we can do something better than this by using a little martingale
theory. The SII process Mt := ∆ǫ(t) − tµǫ is an L2 martingale with previsible quadratic
variation (Protter, 1990, §III.5)

〈M〉t = tσ2
ǫ ,
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so for each c, T > 0 Doob’s martingale maximal inequality (Doob, 1990, §VII.3) gives

P

[

sup
0≤t≤T

|∆ǫ(t)− tµǫ| > c
]

≤ Tσ2
ǫ/c

2 ≤ Tαǫ2/c2. (13)

Together, Equations (10) and (12) or (13) can guide the selection of ǫ to attain a balance
between a uniform stochastic bound on the truncation error ∆ǫ(t) and a stochastic bound
on the computational expense Jǫ.

3.2 Inverse Lévy Measure Algorithm

Wolpert and Ickstadt (1998a,b) introduced an efficient method of generating mass points for
processes like these in monotone decreasing order, making it possible to choose the threshold
dynamically or to ensure a non-stochastic bound for J .

View the number of Ju of jumps of magnitude exceeding u > 0 on a bounded interval
[0, T ], for an SII Gamma process ζt, as a random function of a decreasing u. This process has
independent Poisson-distributed increments, with (by (10)) mean E[Ju − Jv] = tα[E1(βu)−
E1(βv)]. By a monotone decreasing time change s 7→ u(s) := E1

−1(s/αT )/β, the inverse
function to the Lévy measure ν

(

(u,∞)
)

7→ s, we can construct a standard unit-rate Poisson
process

Ns = Ju(s) ∼ Po(s)

indexed by s ≥ 0. If we denote by τn the event times of that process, the nth-largest jump
of the gamma process is u(τn), or

un = E1
−1(τn/αT )/β, n ∈ N. (14a)

The jump times sn are independent of these, distributed

sn
iid∼ Un(0, T ). (14b)

This leads to the ILM approximations for the SII gamma process, stochastic integral, and
random measure of

ζn(t) =

n
∑

i=1

uj1{sj≤t} ζn[ψ] =

n
∑

i=1

ujψ(sj) ζn(B) =

n
∑

i=1

uj1B(sj). (15)

4 Extension: Gamma-Stable

The Lévy measure ν(du ds) of (7) is the special case γ = 0 of a larger family of measures,

ν(du ds) = αuγ−1e−βu du ds

which includes both the gamma (with γ = 0) and the skewed α-Stable (with β = 0), as well
as something new (when both β > 0 and γ > 0). Some of its properties are explored in class
notes (Wolpert, 2012) from a Duke stochastic processes course.
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5 Stationary Gamma Processes

In some applications one wants a process Xt with Ga(α, β) marginal distribution at each
time t, with (Xt − Xs) rather small for small |t − s| and Xs, Xt nearly independent for
large |t− s|. The SII process of Section (2) doesn’t serve that need. There exists essentially
just one stationary Gaussian process Xt with autocorrelation Cov(Xs, Xt) = e−λ|t−s|, the
Ornstein-Uhlenbeck Velocity process. There exists essentially just one stationary Poisson
process Xt with autocorrelation Cov(Xs, Xt) = e−λ|t−s|, as well. However, there exist many
different stationary processes with marginal Xt ∼ Ga(α, β) distribution and autocorrelation
Cov(Xs, Xt) = e−λ|t−s|. Six of them are constructed and compared in class notes (Wolpert,
2014) from another Duke stochastic processes course. Code in R to generate all of them is
available from the author.
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