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1 Gamma Distribution

An exponential random variable X ~ Ex(f) with rate 8 has mean p = 1/, complimentary
CDF B

F(t)=P[X >t]=¢e"  t>0,

(

and hence density function f(t) = Aexp(—At)1gs0y and characteristic function (chf)
§i(w) = E[e™] = (1 —iw/B) 7"

It follows that the sum Y =) "._ X, of a € N iid random variables X; ~ Ex(3) has chf

j<a
€alw) = E[e™] = (1 —iw/B)™ (1)

the ath power of £ (w). A bit of algebra and induction show that the distribution has pdf

ﬁa a—1_—pBz
f(z|a?ﬁ):(a_1)'x 1651{IE>0}
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F(O{) xz € {Z‘>0} ( )

It turns out that f(x | o, ) of (2) is a valid pdf with corresponding chf &, (w) of (1) for
all o > 0, not only integers. The distribution is called the “gamma distribution with shape
a and rate 3,” denoted by Ga(a,5). Other parametrizations are possible, and appear at
times in the literature— the most common alternatives are “shape, scale,” the pair «, s for
scale s = 1/, and “mean, variance”, the pair p = /8 = as and 0? = a/3? = as®>. The
choice (a, () is most convenient for Bayesian modeling and inference.

For integral o, Ga(a, 3) is also called the “Erlang distribution,” and can be interpreted as
the length of time until the ath event occurs for a Poisson process with rate 5. The special
case o = 1 is just the exponential distribution Ga(1, 3) = Ex(5). For half-integers o = v//2
with 3 =1/2, Ga(v/2,1/2) = £2 is the “chi squared distribution with v degrees of freedom.”



1.1 Properties of Gamma Distributions

Let {X; ~ Ga(ay, 5)} be independent for 1 < j < n, all with the same rate parameter 5 > 0
but perhaps with different shape parameters o; > 0. Set X, = > ; X, their sum, and set
Y, = X;/X; for 1 <j <n. Then X; ~ Ga(as,f) also has a gamma distribution with
shape ay = >° i the sum of the shapes, and the same rate parameter [, while the vector
Y = (Y3,---,Y,) has the n-variate Dirichlet distribution Y ~ Di(a) with parameter vector
a= (o, - ,a,) € RY, independent of X :

X =) X; ~ Ga(ay,p) 1 Y:=X/X, ~Dia). (3)
J
In particular, each Y; = X,;/X; ~ Be(a;, a4 — «;) has a marginal beta distribution. For

n = 2, the result can be written

X ~Ga(e,1) LY ~Ga(B,1) & (X +Y) ~ Ga(a+ 8,1) 1L

Ty~ Bees) (@)

Using this in reverse one can construct independent X := ZB ~ Ga(a, 1) and Y := Z(1 —
B) ~ Ga(p, 1) beginning with independent Z ~ Ga(a + 3,1) and B ~ Be(a, 3).

The sum Y =3, X; of iid X; ~ Ga(a, 3) has exactly the Ga(na, ) distribution and,
by the Central Limit Theorem, approximately the No(na /3, na/3%) distribution if n is large.
It follows that
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2 The SII Gamma Process

Y ~ Ga(e, B) = ~ No(0, 1), for large a.

In this section we construct and study a stochastic process (; indexed by t € R with the
property that its increments [((¢;) — ((¢;—1)] are independent with gamma Ga(a(t; —t;-1), 3)
distributions. Because these distributions depend only on the length of the interval, and
not its location, such process are said to have “stationary independent increments,” or to be
“SIT processes” for short.

2.1 First Construction of Gamma Process

First let’s construct ((¢) for dyadic rational ¢t € [0,1]. Set (o = 0 and draw (; ~ Ga(a, ).
For integers 0 < j < co and 0 < i < 2/, set n := 2/ + ¢ and draw independent random

variables o ' '
B, ~Be(277,277), n=2+i, 0<i<?2.

For odd 4, define ¢(t) for dyadic rational ¢t = i/2/ by

(55) = 1=Ba¢(5) +Bo(5)




(note that for odd 4, ((t) for t = (i & 1)/2 will have been constructed at stage (7 — 1) or
earlier). By induction, and (4) with X = g(zij) _ g(z;l) and Y — g(zil) — g(z—) all
increments of ((t) are independent and gamma-distributed with rate 5 and shape « times
the length of the time intervals.

By construction the function ¢ ~ () is non-decreasing on the dyadic rationals Q, so we
may define

((t) =inf{C(q) : ¢€Q, ¢=1t}

to complete the definition of ((¢) for all real 0 < t < 1. Repeating this construction
independently for each interval [n,n + 1] for integers n € Z and patching the processes
together results in a construction of ((t) with the desired properties for all ¢ € R.

From this construction it is clear that the paths of ((¢) are right continuous, but it isn’t
obvious whether or not they are in fact continuous. The similar construction of Brownian
motion leads to a path-continuous process; the similar construction of a Poisson process does
not. The second construction presented in Section (2.2) shows that almost-surely the paths
of ((t) are discontinuous (on the left) at every point t.

2.2 Poisson Construction of Gamma Process

In this section we construct the SII gamma process as a stochastic integral of a Poisson
random measure. First, a few preliminaries about such random measures.

2.2.1 Poisson Random Measures

For any o-finite Borel measure v(dx) on a complete separable metric space X, there exists a
Poisson random measure N ~ Po(u(dm)) that assigns independent Poisson random variables
N (4;) ~ Po();) to disjoint Borel sets A; C X of finite measure \; = v(A;) < co. For any
simple function

o(r) =Y a;la,(2)
J
in L; one can define the stochastic integral

Nig] = /X SN (dr) == 3 aN(Ay),

J



a random variable with characteristic function, mean, and variance

Eexp (iwN[9]) = ] [exp {(" = 1)w(4))}

:exp{ /X (o) —1)u(d:r)} (52)
EN[g] = /X o) (d) (5b)
V] = /X ¢ (2)(dx) (5¢)

The continuous linear mapping ¢ — N[¢] can be extended from the simple functions to
all of Ly (X,v(dz)) by (5b). In fact the mapping can be extended further than this, to the
Musielak-Orlicz (M-O) space (Musielak, 1983),

M=o /(1/\ 6(2)]) v(d) < oo}, (6)
still with chf given by (5a) since [e“?®) — 1| < (Jw|V 2)(1 A |¢(x)|) for all z € X and w € R.

2.2.2 Constructing the SII gamma process

Denote a o-finite measure on the on the complete separable metric space X = R, x R by
v(duds) = ou™ e " duds (7)

In this context, v(du ds) is called the “Lévy measure” for the process ((t) defined below. Let
N (duds) ~ Po(v(duds)) be a Poisson random measure on X with mean v. For ¢ € R, set

1 t>0
Gi(u,s) =4 o (®)
ulgop(s) t<0

and define a random process by

C(t) = Ngy] = / / N (8)

for t > 0, with a similar expression for ¢ < 0. By (5a) the chf for an increment [ (t) — ((s)]
for —oo < s <t < o0is

E exp (iw (./\/’[gbt — gbs])) = exp { / (el iem &) _ 1)au~te Ptdu dz}

R+><R

= exp {a(t —3) /R(eiw“ - 1)u_1e_5“du}
(1= /B



so increments [¢;— ¢, have Ga(a(t—s), 8) distributions. Increments over disjoint intervals are
independent because N(4;) are independent for sets A; C Ry X (¢;_1,t;] for any increasing
sequence t;.

From (8) we get a very clear picture of the sample paths for the process ((t). If we
enumerate all the (random) mass points (u;, s;) of N'(du ds), then ((t) increases by an amount
u; as t increases past each s;. The {s;} are dense in R, so ((t) is never constant and in fact
has infinitely-many jump increases in every nonempty time interval (s,t], but the increases
are summable in any bounded time interval. The number of jumps of magnitude exceeding
any threshold € > 0 in a time interval (s, t] has distribution

J =N ((e,00) x (s,1])
~ Po((t — s)aEl(ﬁe)),

where E;(z) is Gauss’ exponential integral function (Abramowitz and Stegun, 1964, §5.1)
Ei(z) = / u e " du, z > 0.

This is finite for € > 0, so only finitely-many jumps will exceed any ¢ > 0 in a finite time

interval. The probability that the maximum jump in that interval Up; will be smaller than

some number u > 0 is identical to the probability that N (du ds) puts zero points in the set

(u,00) X (s,t], an easy Poisson calculation:

PlUy <ul = P(N((u, 00) X (s,1]) = O) =exp (— (t — s)aEi(Bu)),

from which the pdf for Uy is easily available. A similar approach will give the joint pdf for
the largest k jumps Upy, - -+, Uy for any £ € N.

2.3 Stochastic Integrals

One can construct stochastic integrals of L; simple functions ¥(t) = > a;1,_,4;(t) on R
with respect to the SII gamma process, just as we did for Poisson random measures earlier:

clv) = [ wios(an = 3 alote) - ¢t
then extend by continuity to Ly or beyond that]to the M-O space
Mi= s [ (EA (o)) vduds) < oo}
~{v: [=e O uast [ B0 ds< o).

Any ¢ € Ly(ds) is also in M, but so is (for example) 9(s) = |s|™ for any v > 1, although
such a function is not integrable in any neighborhood of zero and so is not in Ly C M.

bt



From this stochastic integral, or from the Poisson representation (8), we can construct a
gamma random measure ((dt) assigning to disjoint Borel sets B; C R independent gamma-
distributed random variables ((B;) ~ Ga(a|Bj|, 5) with shape proportional to the Lebesgue
measure |B;| of B;:

¢(B) = ([15] =Ahmxuw

:N[U1B]:/1R RulB(S)N(duds).

2.4 SII Gamma Random Fields

The construction of a gamma random measure in Section (2.3) can be done in R? just as
easily as R', or on manifolds or graphs or other objects. For R?, for example, begin with a
Poisson random measure N (du dz) ~ Po(v(dudz)) on Ry x R? with mean

v(dudz) = au™'e ™" du dz,

where now = € R? is a vector, and set

¢((B) =Nlulg] = / ulp(s) N (dudz)

R+ xRd

to again have a random measure, now on R?, assigning to disjoint Borel sets B; independent
gamma-distributed random variables ((B;) ~ Ga(a|B;|, 3). Using such a random measure
one can build LARK semiparametric regression models (Wolpert et al., 2011; Wolpert and
Ickstadt, 1998a) of the form

ﬂw:/%qu@>

for kernel functions k(z,y). Gamma random measures on a graphical representation of a road
network were by Best et al. (2000) to model the uncertain amount of combustion biproducts
generated by automobile, coach, and lorry traffic in a Bayesian epidemiological analysis of
the effects of road pollution on respiratory disease rates in a midlands English town.

3 Approximations & Implementation

The mathematical construction of (8) can’t be implemented precisely, because ((t) is repre-
sented as the sum of infinitely-many non-zero terms. Here we present two efficient approaches
to approximating ((t) with finite sums



3.1 Truncation

One approach is to select a small threshold € > 0 and include in (8) only those finitely-many
mass points (u, s) with u > e

() = N¥[gy] = / /( Ny (9)

where
N(duds) ~ Po(au'e 1 (sq duds).
The number J, = N ((e,00) x (0,]) of terms included is Poisson distributed with mean
EJ. = taE;(Be) < talog(1l + 1/fe). (10)

This leads to truncation approximations for the SII gamma process, stochastic integral, and
random measure:

Co(t) = / uN(duds) ] = /uw(s)./\f(duds) C(B) = /uN(duds). (11)

(€,00) % (0,¢] (e,00) xR (e,00)xB

3.1.1 Truncation Error

The truncation error A(t) = [((t) — (°(t)] also has a stochastic integral representation,

A (t) = // uN (duds),
(0,6 x(0,4]

nonnegative with mean and variance
EA(t) = / / wv(duds) = pt,  pe = (a/B)[1—e % (12a)
(0,€]x(0,4]
VA (t) = // wv(duds) = o’t, o= (a/BH)[1 — (1 + Be)e ], (12b)
(0, (0,4]

each of which converges to zero at rate < |¢| as € — 0. These give the pointwise bounds

EIA(H)]? < (Pu? +to?) < at(l+ at)
PlA(t)] > ¢] < (Pu +to?)/? < Eat(l+at)/c?
for each t and ¢ > 0, but we can do something better than this by using a little martingale
theory. The SII process M; := A.(t) — tu. is an Ly martingale with previsible quadratic

variation (Protter, 1990, §II1.5)
<M>t = tO’?,
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so for each ¢,T" > 0 Doob’s martingale maximal inequality (Doob, 1990, §VIL.3) gives

P[ sup |A(t) — tue| > ¢| < To?/c? < Tae?/c. (13)
0<I<T
Together, Equations (10) and (12) or (13) can guide the selection of € to attain a balance
between a uniform stochastic bound on the truncation error A.(¢) and a stochastic bound
on the computational expense J,.

3.2 Inverse Lévy Measure Algorithm

Wolpert and Ickstadt (1998a,b) introduced an efficient method of generating mass points for
processes like these in monotone decreasing order, making it possible to choose the threshold
dynamically or to ensure a non-stochastic bound for J.

View the number of J, of jumps of magnitude exceeding u > 0 on a bounded interval
[0, T, for an SIT Gamma process (;, as a random function of a decreasing u. This process has
independent Poisson-distributed increments, with (by (10)) mean E[J, — J,| = ta[E;(Su) —
Ei(Bv)]. By a monotone decreasing time change s — u(s) := E,"'(s/aT)/3, the inverse
function to the Lévy measure V((u, oo)) — s, we can construct a standard unit-rate Poisson
process

Ns — Ju(s) ~ PO(S)

indexed by s > 0. If we denote by 7,, the event times of that process, the nth-largest jump
of the gamma process is u(7,), or

u, = B, (1,/aT)/B, n € N. (14a)

The jump times s, are independent of these, distributed
S 25 Un(0, 7). (14b)

This leads to the ILM approximations for the SII gamma process, stochastic integral, and
random measure of

) =Y ulgen Gl =D upls)  GB) =D uilsls).  (19)

4 Extension: Gamma-Stable
The Lévy measure v(duds) of (7) is the special case v = 0 of a larger family of measures,
v(duds) = au’ e " du ds

which includes both the gamma (with v = 0) and the skewed a-Stable (with 5 = 0), as well
as something new (when both 5 > 0 and v > 0). Some of its properties are explored in class
notes (Wolpert, 2012) from a Duke stochastic processes course.
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5 Stationary Gamma Processes

In some applications one wants a process X; with Ga(a, ) marginal distribution at each
time ¢, with (X; — X) rather small for small |t — s| and X, X; nearly independent for
large |t — s|. The SII process of Section (2) doesn’t serve that need. There exists essentially
just one stationary Gaussian process X; with autocorrelation Cov(X,, X;) = e =l the
Ornstein-Uhlenbeck Velocity process. There exists essentially just one stationary Poisson
process X; with autocorrelation Cov(Xj, X;) = e MNt=sl as well. However, there exist many
different stationary processes with marginal X; ~ Ga(a, 8) distribution and autocorrelation
Cov(X,, X;) = e N7l Six of them are constructed and compared in class notes (Wolpert,
2014) from another Duke stochastic processes course. Code in R to generate all of them is
available from the author.
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