Model Comparison and Out of Sample Prediction

ISLR Chapter 5
Measuring Quality of Fit

- interactive building of models (transformations, interactions, etc)
- Measure of Quality of fit

\[
\text{MSE} = \frac{1}{n} \sum_i (Y_i - \hat{f}(x))^2
\]

- OLS: training MSE can be driven smaller by adding more predictors
- How well does model predict for new data \(Y^*\)?

\[
\text{MSE} = \frac{1}{n^*} \sum_i (Y_i^* - \hat{f}(x_i^*))^2
\]

No guarantee that model that has lowest training MSE will be the best out of sample MSE.
Bias - Variance Trade Off

MSE for Prediction

\[E[(Y^* - \hat{f}(x^*))^2] = \text{Var}(\hat{f}(x^*)) + [\text{Bias}(\hat{f}(x^*))]^2 + \text{Var}(\epsilon^*) \]

- **Variance**: amount \(\hat{f}(x) \) varies if we use a different training set
- **Bias**: error that is introduced by approximating model by a potentially simpler model
- **Variance of error**: irreducible error (Normal models)

Want a statistical procedure that has low variance and low bias

Need a test set
Evaluation on Test Set

- Split the data into 2 groups: training and test

```r
set.seed(8675309)
n.train = floor(.75*n)  # 75% training
train = sample(1:n, size=n.train, rep=F)
hiv.train = hiv[train,]
hiv.test = hiv[-train,]
```

- Fit model to training data
- Predict on test data
- Evaluate MSE (or root MSE) on test data

```r
rmse = function(y, ypred) {
  rmse = sqrt(mean((y - ypred)^2))
  return(rmse)
}
```
HIV Example Poisson Model

```r
hiv.train.glm = glm(fupacts~ bs_hiv + log(bupacts + 1) + sex + couples + women_alone, 
                     data=hiv.train, family=poisson)
poi.yhat.train = predict(hiv.train.glm)
poi.yhat.test = predict(hiv.train.glm, newdata=hiv.test)
rmse(hiv.train$fupacts, poi.yhat.train)

## [1] 29.15457

rmse(hiv.test$fupacts, poi.yhat.test)

## [1] 32.08803
```
Negative Binomial Model

```r
hiv.train.nb = glm.nb(fupacts ~ bs_hiv + log(bupacts + 1) + sex + couples + women_alone, 
                      data=hiv.train)

nb.yhat.train = predict(hiv.train.nb)

nb.yhat.test = predict(hiv.train.nb, newdata=hiv.test)

rmse(hiv.train$fupacts, nb.yhat.train)

## [1] 29.16413

rmse(hiv.test$fupacts, nb.yhat.test)

## [1] 32.09507

Predictions are not that different between the two models
```
What about other test sets? K-fold cross validation

- Split data into K groups
- first fold is test (or validation) set
- remaining $K - 1$ folds are training data
- MSE_1 obtained from prediction on test set

Repeat for each fold giving K MSE’s

$$CV_K = \frac{1}{K} \sum_i \text{MSE}_i$$

Usually $K = 5$ or $K = 10$

Special Case is Leave-one-out- Cross Validation
HIV with 10 fold Cross-Validation

```r
library(boot)

hiv.glm.poi = glm(fupacts ~ bs_hiv + log(bupacts + 1) +
                 sex + couples + women_alone,
                 data=hiv, family=poisson)

hiv.glm.nb = glm.nb(fupacts ~ bs_hiv + log(bupacts + 1) +
                   sex + couples + women_alone,
                   data=hiv)

# [1] 23.30877 23.28011

# [1] 23.02306 22.99372

NB slightly better
```
Coverage

Coverage is the nominal probability

\[P(Y^* \in (L, U)) \geq (1 - \alpha) \]

Does model achieve the desired coverage?

Estimate Predictive Coverage (empirical coverage)

```r
coverage = function(y, pi) {
  mean(y >= pi[,1] & y <= pi[,2])
}
```

Use simulation to obtain the Prediction Interval
Prediction Interval Function for Negative Binomial

\[
\text{pi.nb} = \text{function}(\text{object, newdata, level=.95, nsim=10000}) \{ \\
\hspace{1em} \text{require(mvtnorm)} \\
\hspace{1em} n = \text{nrow}(\text{newdata}) \\
\hspace{1em} X = \text{model.matrix}(\text{object, data=newdata}) \\
\hspace{1em} \beta = \text{rmvnorm}(\text{nsim, coef(object), vcov(object)}) \quad \# \quad \text{use GLM to generate} \ \beta \\
\hspace{1em} \theta = \text{rnorm}(\text{nsim, object}θ, object$SE.\theta$) \\
\hspace{1em} y.\text{rep} = \text{matrix}(\text{NA, nsim, n}) \\
\hspace{1em} \text{for (i in 1:nsim) } \{ \\
\hspace{2em} \mu = \text{exp}(X \ %\% \ beta[i,]) \\
\hspace{2em} y.\text{rep}[i,] = \text{rnegbin}(n, \mu=\mu, \theta=\theta[i]) \\
\hspace{1em} \} \\
\hspace{1em} \pi = \text{t(apply(y.\text{rep}, 2, function(x) } \{ \\
\hspace{2em} \text{quantile(x, c((1 - level)/2, .5 + level/2))} \\
\hspace{1em} \text{)))} \\
\hspace{1em} \text{return(pi)} \\
\}
\]
Negative Binomial Coverage

K = 10
f = ceiling(n/K) # number of samples in each fold
folds = sample(rep(1:K, f), n)
NB.coverage = rep(NA, K)

for (i in 1:K) {
 hiv.train = hiv[folds != i,]
 hiv.test = hiv[folds == i,]
 hiv.train.NB = glm.nb(fupacts ~ bs_hiv + log(bupacts + 1) + sex + couples + women_alone,
 data=hiv.train)
 pi = pi.nb(hiv.train.NB, hiv.test)
 NB.coverage[i] = coverage(hiv.test$fupacts, pi)
}
mean(NB.coverage)

[1] 0.9722466
df = data.frame(fupacts = hiv.test$fupacts,
 pred = predict(hiv.train.NB, # training model
 hiv.test, # test data
 type="response"), # type of prediction = exp(X beta)
 lwr = pi[,1], upr=pi[,2])
df = df %>% arrange(pred) # sort by prediction

gp = ggplot(df, aes(x=pred, y=fupacts)) +
 geom_ribbon(aes(ymin = lwr, ymax = upr),
 fill = "blue", alpha = 0.2) +
 geom_point(aes(y=fupacts)) +
 xlab("Predicted Unprotected Acts after Intervention at end of Study") +
 ylab("Unprotected Acts after Intervention at end of Study") +
 ggtitle("95% Prediction Intervals under Poisson Model")
Prediction Interval Plot

95% Prediction Intervals under Poisson Model

Unprotected Acts after Intervention at end of Study

Predicted Unprotected Acts after Intervention at end of Study
Poisson Coverage

```r
poi.coverage = rep(NA, K)

for (i in 1:K) {
  hiv.train = hiv[folds != i,]
  hiv.test = hiv[folds == i,]
  hiv.train.poi = glm(fupacts ~ bs_hiv + log(bupacts + 1) +
                      sex + couples + women_alone,
                      data=hiv.train, family=poisson)
  pi = pi.poi(hiv.train.poi, hiv.test)
  poi.coverage[i] = coverage(hiv.test$fupacts, pi)
}

mean(poi.coverage)
```

[1] 0.3711794
Prediction interval from last fold Poisson model

95% Prediction Intervals under Poisson Model

Unprotected Acts after Intervention at end of Study

Predicted Unprotected Acts after Intervention at end of Study

95% Prediction Intervals under Poisson Model
predictions of Poisson and Negative Binomial are very similar - very little difference in RMSE (not impacted by overdispersion)

Prediction Intervals and Coverage do take into account (over) dispersion

Think about meaningful “cost” function for comparing models

Can overdispersion be reduced by adding other predictors?

a well calibrated method for model fitting should have in-sample and out-of-sample costs that are similar.
More on Predictive Checks:

- Define $T(y)$ or $T(y, \theta)$ a function to measure model adequacy (scalar summary) may be a function of y only
- Generate draws of $\theta^{(r)}$
- For each sample r, draw replicate Y's from the model $Y^{rep\ r} \mid \theta^r$ and evaluate $T(y^{rep\ r}, \theta^r)$
- If discrepancy depends on θ, evaluate $T(y^{obs}, \theta^r)$ for each r
- Plot the observed discrepancy $T(y^{obs}, \theta^r)$ versus the replicate discrepancy $T(y^{rep\ r}, \theta^r)$. Under the model the points should be scattered around the 45° line or look at histogram of $T(y^{obs}, \theta^r) - T(y^{rep\ r}, \theta^r)$ (should include 0)
- Are these values comparable to the out of sample discrepancies? Think about MSE decomposition.