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Outline

Jan 11 : Brief intro and Guest lecture by James Moody, Duke
Sociology

Jan 16 : Intro, why we do this
Jan 18 : Graph theory and random graphs
Jan 23 : Graph theory and random graphs
Jan 25 : Graph attributes
Jan 30 : Small world networks
Feb 1 : Small world networks
Feb 6 : Exponential Random Graph Models (Intro and MLE)
Feb 8 : Exponential Random Graph Models (Bayes and failures)

Feb 13 : Structural Equivalence
Feb 15 : Stochastic Equivalence and intro to stochastic blockmodels
Feb 20 : Stochastic blockmodels and the latent space model (MLE

and Bayes)
Feb 22 : Stochastic blockmodels (theory)
Feb 27 : Stochastic blockmodels and belief propagation

March 1 : Aldous-Hoover theorem and the latent space model
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Outline

March 6 : (catch up)

March 8 : Revisiting why we do this — applied examples

March 13 : [Spring Break]

March 15 : [Spring Break]

March 20 : Latent Space Models (MLE)

March 22 : Testing for independence

March 27 : Network regression

March 29 : Bayesian approaches to latent space models

April 3 : Bayesian approaches to latent space models

April 5 : Theory for latent space models

April 10 : Network regression with correlated errors
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Class format

I Lectures — some fundamentals

I Case studies — interesting examples of network analysis as it
is used

e.g. Class 0: James Moody

I Lab sections — cover some additional material and all of the
computing

I Duke Network Analysis Center seminars:
https://dnac.ssri.duke.edu

I Assignments: several homeworks throughout the semester and
a final project.

I Course page

I Online discussion: on Slack
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Course goals

I Interested in understanding the formation of relationships

I Applied fields: sociology, economics, biology, epidemiology
I Interested in fundamental theory questions:

I What assumptions are made for different network models?
I What models work when the assumptions fail?
I How to develop fail-safes to overcome these problems?

I Interested in implementation and methodology:

I How do we quickly estimate model parameters?
I How do we interpret model parameters when the model is

wrong?
I How do we run experiments on networks?
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Recent work

I Lots and lots of causal inference

I Big(gest) problem in causal inference: we assume that
everything is independent.

I Reality: nothing is independent!
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Some context: Facebook

I Facebook wants to change its’ ad algorithm.

I Can’t do it on the whole graph

I Need “total network effect”

7 / 35
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Some context: (im)migration

I Want to know how
regime change affects
population.

I Politicians during
election years care
about direct effects.
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Source: http://openscience.alpine-geckos.at/courses/social-network-
analyses/empirical-network-analysis/



Some context: disease spread

I Want to study
efficacy of isolation as
treatment for
influenza-like illness.

I Interested in spread,
duration of illness,
etc.

9 / 35

Source: Figure 9 of “Design and methods of a social network isolation study for
reducing respiratory infection transmission: The eX-FLU cluster randomized trial” by

Aiello et al.
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Other network contexts
Studying computer network congestion
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Source: Wikimedia



Other network contexts
Studying tram traffic in Vienna
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Source: kurier.at



Other network contexts
Studying ocean flows and pollution
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Source: Wikimedia



An applied problem

1

1Pierre Latouche, Etienne Birmelé, and Christophe Ambroise. “Overlapping
stochastic block models with application to the french political blogosphere”.
In: The Annals of Applied Statistics (2011), pp. 309–336
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An applied problem

I French political blogosphere

I 196 vertices — hostnames

I 2864 edges — is there a hyperlink between two hostnames?

I Want to classify the blogs.

I What does a good method do?

I It produces interpretable results...

I Additional information: there are four main French political
parties (UMP – republican, UDF – moderate, liberal, PS –
democrat)

I One way to calibrate whether a method performs well is to see
if it finds “subject-matter” groups.
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An applied problem: the picture

2

Lets assume that individuals within groups are similar
2Hugo Zanghi, Christophe Ambroise, and Vincent Miele. “Fast online graph

clustering via Erdős–Rényi mixture”. In: Pattern Recognition 41.12 (2008),
pp. 3592 –3599. issn: 0031-3203 – note that there are six colors...
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An applied problem: some output
Stochastic Block Model
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An applied problem: some output
Overlapping Stochastic Block Model
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What is actually happening here?

I Imagine the colors are the true
groups.

I Simplest model: stochastic
blockmodel — if you belong to the
same group you are stochastically
equivalent.

I Different methods try to find all of
the stochastically equivalent nodes
and put them in the same group.
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What is actually happening here?

I Imagine the colors are the true
groups.

I Simplest model: stochastic
blockmodel — if you belong to the
same group you are stochastically
equivalent.

I Different methods try to find all of
the stochastically equivalent nodes
and put them in the same group.

I Can we do it without colors?
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Stylized example
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Stylized example — some R
We will use the igraph package extensively.

> membership(cluster_spinglass(first_graph))

[1] 2 1 1 2 1 2 1 2 2 1 1

> membership(cluster_spinglass(first_graph))

[1] 1 2 2 1 2 1 2 1 1 2 2

> membership(cluster_spinglass(first_graph))

[1] 2 1 1 2 1 2 1 2 2 1 1

> membership(cluster_optimal(first_graph))

[1] 1 2 2 1 2 1 2 1 1 2 2

> membership(cluster_spinglass(first_graph))

[1] 1 2 2 1 2 1 2 1 1 2 2

> membership(cluster_louvain(first_graph))

[1] 1 2 2 1 2 1 2 1 1 2 2

> membership(cluster_walktrap(first_graph))

[1] 2 1 1 2 1 2 1 2 2 1 1

> membership(cluster_infomap(first_graph))

[1] 2 1 1 2 1 2 1 2 2 1 1

> membership(cluster_fast_greedy(first_graph))

[1] 1 2 2 1 2 1 2 1 1 2 2

> membership(cluster_leading_eigen(first_graph))

[1] 1 2 2 1 2 1 2 1 1 2 2

> membership(cluster_edge_betweenness(first_graph))

[1] 1 2 2 1 2 1 2 1 1 2 2
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Stylized example
Some computer science?

I Graphs can naturally represent the flow of information
between nodes.

I Famous theorems such as Max-Flow Min-Cut.
I Groups might have lots of flow inside and little flow across.

> min_cut(first_graph,value.only=FALSE)

$value

[1] 1

$cut

+ 1/19 edge:

[1] 1--2

$partition1

+ 6/11 vertices:

[1] 2 5 7 10 11 3

$partition2

+ 5/11 vertices:

[1] 1 4 6 8 9
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Stylized example — troubled waters

●

●●

●

●
●

●
●

●

●

●

1

23

4

5
6

7
8

9

10

11

I Graphs are never ordered nicely.

I The job of many methods is to
untangle the hairball.

I This can be achieved manually,
some of the tools we used above,
and some basic math.
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Detour through math

I What is a “mathematically” untangled graph?

I Example: graph without any crossing edges.
I This type of graph is called a planar graph.
I Theorem (Kuratowski): A graph is planar if and only if it does

not contain a subgraph that is a subdivision of K5 or K3,3.
I Probably not that practical...
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How do we really work with graphs?

I Need to represent graphs numerically.

I Lets introduce some notation. A graph G has a vertex (node)
set V and an edge set E .

I If the (i , j) ∈ E iff (j , i) ∈ E then the graph is undirected.

I A graph can be represented by its’ adjacency matrix.

I An adjacency matrix A has entries 0 and 1 where aij = 1 if
node i is connected to node j .

I By convention aii = 0.

24 / 35



Back to the stylized example

A =



0 1 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 1 1 0 0
0 1 0 0 0 0 1 0 0 1 1
1 0 0 1 0 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 1 1
0 0 0 1 0 1 0 0 1 0 0
0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 0 1 0 0 1 0


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Back to the stylized example
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Back to the stylized example
This would be easier

πA =



0 1 0 1 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 1 1 1 0


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Back to the stylized example
This would be easier
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We don’t know that permutation...

I This is one of the hardest parts of the problem.

I Measure preserving transformation.

I Solution to this problem:

a. canonical permutation and hope for the best

b. permutation agnostic methods
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What are our methods for finding groups?

I Histogram methods

I Spectral methods

I Belief propagation methods

I Model-based approaches

30 / 35



Histogram Methods
Several approaches

Airoldi, Costa and Chan (2013):

I Compute some distance measure between nodes in a graph.

I Cluster nodes based on this distance measure.

I Estimate the block probabilities based on the assigned nodes.

Chan and Airoldi (2014):

I Imagine we know a good-enough permutation, call it π.

I Transform the adjacency matrix: A→ πA

I “Smooth” the transformed adjacency matrix.

I Minimize distance to a desirable object (such as a smooth
function or a piecewise constant function)

31 / 35
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Spectral Methods

Lots of theory developed in Rohe and Yu (2011), Rohe, Chatterjee,
and Yu (2011)

I Define an object of interest: For example, the graph Laplacian
L = I − D−1/2AD−1/2

I Find the eigenvectors associated with its largest k eigenvalues
(say in absolute value)

I Cluster the rows of the k × n eigenvector matrix into k
clusters.

I If need be, estimate the probabilities within each
cluster/block.
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Belief propagation methods

I A. Decelle, F. Krzakala, C. Moore, and L. Zdeborova,
Asymptotic analysis of the stochastic block model for modular
networks and its algorithmic applications, Phys. Rev. E 84
(2011), 066106.

I Essentially start with some group assignment for each node,
broadcast to nearby nodes and update.

I Loads of recent work on (theoretical) optimality of these
methods.
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Model based approaches

The stochastic blockmodel has a natural data generative form:

I Let z1, . . . , zn be the block memberships of n nodes

I Let B be the matrix of probabilities of connections between
blocks.

I There is an edge between nodes i and j with probability Bbibj .

By specifying a prior for the block memberships and observing
an adjacency matrix A we have all the ingredients to estimate
B and block membership.
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What do we have to look forward to

I Thursday: probability

I Tuesday: probability and karate

I Lab will start next week.
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