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Karate Club Network

I 1977 paper by Wayne W. Zachary — 2652 citations on
Google Scholar.

I (Essentially a part of a PhD dissertation)

I Goal: study how and why fission takes place in small and
bounded groups.

I Is this a reasonable structure for many statistical graph
models?

I Why do we still use this then?
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Karate Club history

I Data collected over three years (1970-1972)

I 50-100 people observed but only 34 used for analysis.

I Instructor: Mr. Hi.

I Club president: John A.

I Conflict at the beginning of the study over price of classes:

I Mr. Hi wanted higher prices and claimed he could change
prices himself.

I Supporters see him as fatherly figure who is a spiritual and
physical mentor.

I John A. disagreed and wished to stabilize prices.

I Supporters see Mr. Hi as a paid employee demanding a higher
salary.

I Fission event: supporters of Mr. Hi resign when Mr. Hi is
fired.
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Social network data

I Can the fission be foreseen?

I “The feature of the karate club that appeared most important
in the ethnographic data was the network of friendship
relationships among club members”

I Zachary captured affective relationships (?)

I Social network section of the paper summarizes the graph and
the adjacency matrix as two, arguably differing in formality,
representations of the data.

I Zachary is considering the network as something that
information can flow over.
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What is the network?
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Why is this paper ahead of its time?
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What did Zachary do?

I He implemented a “maximum flow-minimum cut labeling
procedure”.

I Essentially he tested the hypothesis of how information flowed
through the network by where/how communication would
break down.

I Two hypothesis:

1. information from Mr. Hi would not flow to John A. (and vice
versa)

2. there is a bottleneck in the network.
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Zachary’s labeling
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Social network properties

What if we don’t know who the important nodes are?
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Social network properties: degree centrality
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Degree centralization:
∑

(dmax−di )
(n−1)(n−2) = 422

1056 ≈ 0.4
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Social network properties: weighted degree centrality
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Social network properties: closeness centrality
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Closeness centralization:
∑

(cmax−ci )
(n−1)(n−2)/(2n−3) = 4.844

16.246 ≈ 0.3
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Social network properties: betweeness centrality
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(bmax−bi )

(n−1)(n−1
2 )

= 7066.429
17424 ≈ 0.4
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Social network properties: eigenvector centrality
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Eigenvector centralization: ≈ 0.64
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Social network properties: comparison
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Social network properties: PageRank centrality
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