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Risk of coronary heart disease

This data is from an ongoing cardiovascular study on residents of the
town of Framingham, Massachusetts. The goal is to predict whether a
patient has a 10-year risk of future coronary heart disease.

Response:

TenYearCHD:

0 = Patient doesn’t have 10-year risk of future coronary heart
disease

1 = Patient has 10-year risk of future coronary heart disease

Predictor:

age: Age at exam time.

currentSmoker: 0 = nonsmoker; 1 = smoker

totChol: total cholesterol (mg/dL)
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Logistic Regression Model

Suppose  and 

The logistic regression model is

 is called the logit function

P( = 1| ) =yi xi πi P( = 0| ) = 1 −yi xi πi

log( ) = +
πi
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log( )πi

1−πi
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Modeling risk of coronary heart disease

term estimate std.error statistic p.value conf.low conf.high

(Intercept) -2.111 0.077 -27.519 0.000 -2.264 -1.963

ageCent 0.081 0.006 13.477 0.000 0.070 0.093

currentSmoker1 0.447 0.099 4.537 0.000 0.255 0.641

totCholCent 0.003 0.001 2.339 0.019 0.000 0.005

risk_m <- glm(TenYearCHD ~ ageCent + currentSmoker + totCholCent, 
              data = heart_data, family = binomial)
tidy(risk_m, conf.int = TRUE) %>% 
  kable(format = "markdown", digits = 3)

log( ) = −2.111 + 0.081ageCent + 0.447currentSmoker + 0.003totCholC
π ̂ 

1 − π ̂ 
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Part 1: Prediction
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Using the model for prediction

We are often interested in predicting whether a given observation
will have a "yes" response

To do so

Use the logistic regression model to calculate the predicted log-
odds that an observation has a "yes" response

Then, use the log-odds to calculate the predicted probability of
a "yes" response

Then, use the predicted probabilities to classify the observation
as having a "yes" or "no" response
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Calculating the predicted probability
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 vs. π ̂  log-oddsˆ
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Predicted response for a patient

Suppose a patient comes in who is 60 years old, does not currently
smoke, and has a total cholesterol of 263 mg/dL.

Predicted log-odds that this person is high risk for coronary heart
disease in the next 10 years:

The probability this patient is high risk for coronary heart disease in
the next 10 years:

log( ) = −2.111 + 0.081ageCent + 0.447currentSmoker + 0.003totC
π ̂ 

1 − π ̂ 

log( ) =
π ̂ i

1 − π ̂ i
− 2.111 + 0.081 × (60 − 49.552) + 0.447 × 0

+ 0.003 × (263 − 236.848) ≈ −1.186

= = 0.234π ̂ i
exp{−1.186}

1 + exp{−1.186}
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Predictions in R

x0 <- data_frame(ageCent = (60 - 49.552), 
                 totCholCent = (263 - 236.848), 
currentSmoker = as.factor(0))

Predicted log-odds

predict(risk_m, x0)

##         1 
## -1.192775

Predicted probabilities

predict(risk_m, x0, type = "response")

##         1 
## 0.2327631
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Is this patient high risk?

predict(risk_m, x0, type = "response")

##         1 
## 0.2327631

The probability the patient is at risk for coronary heart disease is 0.233.

Based on this probability, would you consider this patient as being
high risk for getting coronary heart disease in the next 10 years?
Why or why not?
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Confusion Matrix

We can use the predicted probability to predict the outcome for a
given observation

In other words, we can classify the observations into two
groups: "yes" and "no"

How: Establish a threshold such that  if predicted probability
is greater than the threshold 

To assess the accuracy of our predictions, we can make a table of
the observed (actual) response versus the predicted response.

This table is the confusion matrix

We can use this table to calculate the proportion of observations
that were misclassifed. This is the misclassification rate.

y = 1
(y = 0 otherwise)
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Confusion Matrix

Suppose we use 0.3 as the threshold to classify observations

threshold <- 0.3
risk_m_aug <- augment(risk_m, type.predict = "response", 
                      type.residuals = "response")

TenYearCHD risk_predict n

0 No 2899

0 Yes 202

1 No 457

1 Yes 100

risk_m_aug %>%
  mutate(risk_predict = if_else(.fitted > threshold, "Yes", "No"))
  group_by(TenYearCHD, risk_predict) %>%
  summarise(n = n()) %>%
  kable(format="markdown")

14



Confusion matrix

TenYearCHD risk_predict n

0 No 2899

0 Yes 202

1 No 457

1 Yes 100

What proportion of observations were misclassified?

What is the disadvantage of relying on the confusion matrix to
assess the accuracy of the model?
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Confusion matrix: 2 X 2 table

In practice, you often see the confusion matrix presented as a 2  2
table as shown below:

TenYearCHD No Yes

0 2899 202

1 457 100

risk_m_aug %>%
  mutate(risk_predict = if_else(.fitted > threshold, "Yes", "No"))
  group_by(TenYearCHD, risk_predict) %>%
  summarise(n = n()) %>%
  spread(risk_predict, n) %>%
  kable(format="markdown")

×

16



Receiver Operating Characteristic (ROC) curve

library(plotROC) #extension of ggplot2
(roc_curve <- ggplot(risk_m_aug, 
                     aes(d = as.numeric(TenYearCHD) - 1, 
                         m = .fitted)) +
  geom_roc(n.cuts = 10, labelround = 3) + 
  geom_abline(intercept = 0) + 
  labs(x = "False Positive Rate (1 - Specificity)", 
       y = "True Positive Rate (Sensitivity)") )
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Sensitivity & Specificity

Sensitivity: Proportion of observations with  that have
predicted probability above a specified threshold

Called true positive rate (y-axis)

Specificity: Proportion of observations with  that have
predicted probability below a specified threshold

(1 - specificity) called false positive rate (x-axis)

What we want:

High sensitivity

Low values of 1-specificity

y = 1

y = 0
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Area under curve (AUC)

We can use the area under the curve (AUC) as one way to assess how
well the logistic model fits the data

 very bad fit (no better than a coin flip)

 close to 1: good fit

calc_auc(roc_curve)$AUC

## [1] 0.6972743

AUC = 0.5

AUC
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Which threshold would you choose?

A doctor plans to use the results from your model to help select
patients for a new heart disease prevention program. She asks you
which threshold would be best to select patients for this program.
Based on the ROC curve from the previous slide, which threshold
would you recommend to the doctor? Why?
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Part 2: Checking Assumptions
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Assumptions for logistic regression

We want to check the following assumptions for the logistic regression
model:

Linearity: Is there a linear relationship between the log-odds and
the predictor variables?

Randomness: Was the sample randomly selected? Or can we
reasonably treat it as random?

Independence: There is no obvious relationship between
observations
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Linearity: binned residual plots

It is not useful to plot the raw residuals, so we will examine binned
residual plots

When examining binned residuals

Plot should have no discernible pattern or trend

Nonlinear trend may be indication that squared term or log
transformation of predictor variable required

If bins have average residuals with large magnitude

Look at averages of other predictor variables across bins

Interaction may be required if large magnitude residuals
correspond to certain combinations of predictor variables
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Binned plot vs. predicted values

Use the binnedplot function in the arm package.

Tip: Don't load the arm package to avoid conflicts with tidyverse

arm::binnedplot(x = risk_m_aug$.fitted, y = risk_m_aug$.resid,
                xlab = "Predicted Probabilities", 
                main = "Binned Residual vs. Predicted Values", 
                col.int = FALSE)
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Making binned residual plot

Calculate raw residuals 

Order observations either by the values of the predicted
probabilities (or by numeric predictor variable)

Use the ordered data to create g bins of approximately equal size.
Default value: 

Calculate average residual value in each bin

Plot average residuals vs. average predicted probability (or average
predictor value)

( − )yi π ̂ i

g = n‾√
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Residuals vs. Age

Make binned plot with predictor on  axis

arm::binnedplot(x = risk_m_aug$ageCent, 
                y = risk_m_aug$.resid, 
                col.int = FALSE,
                xlab = "Age (Mean-Centered)", 
                main = "Binned Residual vs. Age")

x
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Residuals vs. totChol

arm::binnedplot(x = risk_m_aug$totCholCent, 
                y = risk_m_aug$.resid, 
                col.int = FALSE,
                xlab = "Total Cholesterol (Mean-Centered)", 
                main = "Binned Residual vs. Total Cholesterol")
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Residuals vs. categorical predictors

Calculate average residual for each level of the predictor

Are all means close to 0? If not, there is a problem with model
fit.

risk_m_aug %>%
  group_by(currentSmoker) %>%
  summarise(mean_resid = mean(.resid))

## # A tibble: 2 x 2
##   currentSmoker mean_resid
##   <fct>              <dbl>
## 1 0              -2.95e-14
## 2 1              -2.42e-14
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Randomness

Assess randomness based on a description of the data collection

Was the sample randomly selected?

If the sample was not randomly selected, is there reason to believe
the observations in the sample differ systematically from the
population of interest?

What do you conclude about the randomness assumption for our
dataset?
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Independence

Assess independence based on a description of the data collection

Is there an obvious relationship between observations?

This assumption is most often violated when data was collected
over time or there is a spatial relationship between
observations?

What do you conclude about the independence assumption for our
dataset?
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